1
|
Tripathi H, Peng H, Donahue R, Chelvarajan L, Gottipati A, Levitan B, Al-Darraji A, Gao E, Abdel-Latif A, Berron BJ. Isolation Methods for Human CD34 Subsets Using Fluorescent and Magnetic Activated Cell Sorting: an In Vivo Comparative Study. Stem Cell Rev Rep 2021; 16:413-423. [PMID: 31953639 DOI: 10.1007/s12015-019-09939-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Acute myocardial infarction (AMI) and resulting cardiac damage and heart failure are leading causes of morbidity and mortality worldwide. Multiple studies have examined the utility of CD34+ cells for the treatment of acute and ischemic heart disease. However, the optimal strategy to enrich CD34 cells from clinical sources is not known. We examined the efficacy of fluorescence activated cell sorting (FACS) and magnetic beads cell sorting (MACS) methods for CD34 cell isolation from mobilized human mononuclear peripheral blood cells (mhPBMNCs). METHODS mhPBCs were processed following acquisition using FACS or MACS according to clinically established protocols. Cell viability, CD34 cell purity and characterization of surface marker expression were assessed using a flow cytometer. For in vivo characterization of cardiac repair, we conducted LAD ligation surgery on 8-10 weeks female NOD/SCID mice followed by intramyocardial transplantation of unselected mhPBMNCs, FACS or MACS enriched CD34+ cells. RESULTS Both MACS and FACS isolation methods achieved high purity rates, viability, and enrichment of CD34+ cells. In vivo studies following myocardial infarction demonstrated retention of CD34+ in the peri-infarct region for up to 30 days after transplantation. Retained CD34+ cells were associated with enhanced angiogenesis and reduced inflammation compared to unselected mhPBMNCs or PBS treatment arms. Cardiac scar and fibrosis as assessed by immunohistochemistry were reduced in FACS and MACS CD34+ treatment groups. Finally, reduced scar and augmented angiogenesis resulted in improved cardiac functional recovery, both on the global and regional function and remodeling assessments by echocardiography. CONCLUSION Cell based therapy using enriched CD34+ cells sorted by FACS or MACS result in better cardiac recovery after ischemic injury compared to unselected mhPBMNCs. Both enrichment techniques offer excellent recovery and purity and can be equally used for clinical applications.
Collapse
Affiliation(s)
- Himi Tripathi
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Hsuan Peng
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Renee Donahue
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Lakshman Chelvarajan
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Anuhya Gottipati
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Bryana Levitan
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Ahmed Al-Darraji
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Erhe Gao
- The Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ahmed Abdel-Latif
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Bradley J Berron
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Saucourt C, Vogt S, Merlin A, Valat C, Criquet A, Harmand L, Birebent B, Rouard H, Himmelspach C, Jeandidier É, Chartois-Leauté AG, Derenne S, Koehl L, Salem JE, Hulot JS, Tancredi C, Aries A, Judé S, Martel E, Richard S, Douay L, Hénon P. Design and Validation of an Automated Process for the Expansion of Peripheral Blood-Derived CD34 + Cells for Clinical Use After Myocardial Infarction. Stem Cells Transl Med 2019; 8:822-832. [PMID: 31037857 PMCID: PMC6646685 DOI: 10.1002/sctm.17-0277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
We previously demonstrated that intracardiac delivery of autologous peripheral blood‐derived CD34+ stem cells (SCs), mobilized by granulocyte‐colony stimulating factor (G‐CSF) and collected by leukapheresis after myocardial infarction, structurally and functionally repaired the damaged myocardial area. When used for cardiac indication, CD34+ cells are now considered as Advanced Therapy Medicinal Products (ATMPs). We have industrialized their production by developing an automated device for ex vivo CD34+‐SC expansion, starting from a whole blood (WB) sample. Blood samples were collected from healthy donors after G‐CSF mobilization. Manufacturing procedures included: (a) isolation of total nuclear cells, (b) CD34+ immunoselection, (c) expansion and cell culture recovery in the device, and (d) expanded CD34+ cell immunoselection and formulation. The assessment of CD34+ cell counts, viability, and immunophenotype and sterility tests were performed as quality tests. We established graft acceptance criteria and performed validation processes in three cell therapy centers. 59.4 × 106 ± 36.8 × 106 viable CD34+ cells were reproducibly generated as the final product from 220 ml WB containing 17.1 × 106 ± 8.1 × 106 viable CD34+ cells. CD34+ identity, genetic stability, and telomere length were consistent with those of basal CD34+ cells. Gram staining and mycoplasma and endotoxin analyses were negative in all cases. We confirmed the therapeutic efficacy of both CD34+‐cell categories in experimental acute myocardial infarct (AMI) in immunodeficient rats during preclinical studies. This reproducible, automated, and standardized expansion process produces high numbers of CD34+ cells corresponding to the approved ATMP and paves the way for a phase I/IIb study in AMI, which is currently recruiting patients. stem cells translational medicine2019;8:822&832
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Laurence Koehl
- INSERM, CIC-1421 and UMR ICAN 1166; AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Joe-Elie Salem
- INSERM, CIC-1421 and UMR ICAN 1166; AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Jean-Sébastien Hulot
- INSERM, CIC-1421 and UMR ICAN 1166; AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | | | | | | | | | | | - Luc Douay
- Université Pierre et Marie Curie, UMRS938, Paris, France
| | | |
Collapse
|
3
|
Abstract
For >4 decades, the holy grail in the treatment of acute myocardial infarction has been the mitigation of lethal injury. Despite promising initial results and decades of investigation by the cardiology research community, the only treatment with proven efficacy is early reperfusion of the occluded coronary artery. The remarkable record of failure has led us and others to wonder if cardioprotection is dead. The path to translation, like the ascent to Everest, is certainly littered with corpses. We do, however, highlight a therapeutic principle that provides a glimmer of hope: cellular postconditioning. Administration of cardiosphere-derived cells after reperfusion limits infarct size measured acutely, while providing long-term structural and functional benefits. The recognition that cell therapy may be cardioprotective, and not just regenerative, merits further exploration before we abandon the pursuit entirely.
Collapse
Affiliation(s)
- David J Lefer
- From Cardiovascular Center of Excellence and Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans (D.J.L.); and Cedars-Sinai Heart Institute, Los Angeles, CA (E.M.).
| | - Eduardo Marbán
- From Cardiovascular Center of Excellence and Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans (D.J.L.); and Cedars-Sinai Heart Institute, Los Angeles, CA (E.M.)
| |
Collapse
|
4
|
Ferreras C, Cole CL, Urban K, Jayson GC, Avizienyte E. Segregation of late outgrowth endothelial cells into functional endothelial CD34- and progenitor-like CD34+ cell populations. Angiogenesis 2015; 18:47-68. [PMID: 25269667 DOI: 10.1007/s10456-014-9446-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 09/19/2014] [Indexed: 01/16/2023]
Abstract
Late outgrowth endothelial cells (OECs) that originate from peripheral blood mononuclear cells ex vivo have phenotypic and functional properties of mature endothelial cells. Given the potential therapeutic applications of OECs, understanding their biology is crucial. We have identified two distinct OEC populations based on differential expression of the cell surface marker CD34. OEC colonies lacked CD34 expression (CD34-), expressed CD34 in the majority of cells (CD34+), or showed a mixed expression pattern within a colony (CD34+/-). CD34+ and CD34- OECs were negative for hematopoietic cell marker CD45 and expressed the endothelial cell surface markers CD31, CD146, CD105, and VEGFR-2. Functionally CD34- and CD34+ OECs exhibited strikingly distinct behaviors. CD34- OECs, unlike CD34+ OECs, were capable of sprouting, formed tubes, and responded to angiogenic growth factors in vitro. In vivo, CD34- OECs formed endothelial tubes, while CD34+ OECs, despite being unable to form tubes, promoted infiltration of murine vasculature. Global gene expression profiling in CD34- and CD34+ OECs identified functional importance of the MMP-1/PAR-1 pathway in CD34- OECs. MMP-1 stimulated the expression of VEGFR-2, neuropilin-1, neuropilin-2, and CXCR4 and activated ERK1/2, whereas down-regulation of PAR-1 in CD34- OECs resulted in impaired angiogenic responses in vitro and reduced VEGFR-2 levels. In contrast, the CD34+ OEC colonies expressed high levels of the progenitor cell marker ALDH, which was absent in CD34- OECs. In summary, we show that OECs can be classified into functionally mature endothelial cells (CD34- OECs) that depend on the MMP-1/PAR-1 pathway and progenitor-like angiogenesis-promoting cells (CD34+ OECs).
Collapse
Affiliation(s)
- Cristina Ferreras
- Institute of Cancer Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Paterson Building, Wilmslow Road, Manchester, M20 4BX, UK
| | | | | | | | | |
Collapse
|
5
|
Abstract
There is worldwide demand for therapies to promote the robust repair and regeneration with maximum regain of function of particular tissues and organs damaged by disease or injury. The potential role of adult stem cells has been highlighted by an increasing number of in vitro and in vivo studies. Nowhere is this more evident than in adult stem cell-based therapies being explored to promote cardiac regeneration. In spite of encouraging advances, significant challenges remain.
Collapse
Affiliation(s)
- Kursad Turksen
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada,
| |
Collapse
|
6
|
Fadini GP, Losordo D, Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 2012; 110:624-37. [PMID: 22343557 DOI: 10.1161/circresaha.111.243386] [Citation(s) in RCA: 515] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diverse subsets of endothelial progenitor cells (EPCs) are used for the treatment of ischemic diseases in clinical trials, and circulating EPCs levels are considered as biomarkers for coronary and peripheral artery disease. However, despite significant steps forward in defining their potential for both therapeutic and diagnostic purposes, further progress has been mired by unresolved questions around the definition and the mechanism of action of EPCs. Diverse culturing methods and detection of various combinations of different surface antigens were used to enrich and identify EPCs. These attempts were particularly challenged by the close relationship and overlapping markers of the endothelial and hematopoietic lineages. This article will critically review the most commonly used protocols to define EPCs by culture assays or by fluorescence-activated cell sorter in the context of their therapeutic or diagnostic use. We also delineate new research avenues to move forward our knowledge on EPC biology.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, University of Frankfurt, Theodor-Stern-Kai 7, Frankfurt, Germany
| | | | | |
Collapse
|