1
|
Poirier D. Recent advances in the development of 17beta-hydroxysteroid dehydrogenase inhibitors. Steroids 2025; 213:109529. [PMID: 39532224 DOI: 10.1016/j.steroids.2024.109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The family of 17β-hydroxysteroid dehydrogenases (17β-HSDs) occupies a prominent place due to its number of isoforms, which carry out a bidirectional transformation (reduction of a steroid carbonyl to alcohol and oxidation of a steroid alcohol to ketone) depending on the nature of the cofactor present. Involved in the activation or inactivation of key estrogens and androgens, 17β-HSDs are therefore therapeutic targets whose selective inhibition would make it possible to be considered for the treatment of several diseases, such as breast cancer, prostate cancer, endometriosis, Alzheimer's disease and osteoporosis. This review article is a continuation of those having reported the great diversity of inhibitors developed over the last years but focusses on inhibitors recently developed. Work to obtain more effective inhibitors that target the first known isoforms (types 1, 2, 3, 5 and 7) has continued, among others, but new inhibitors that target the isoforms more recently reported in the literature (types 10, 12, 13 and 14) are now being reported. Dual inhibitors of two enzymes (17β-HSD1 and steroid sulfatase) were also reported. These inhibitors were grouped according to the 17β-HSD type inhibited and their backbone (steroidal or non-steroidal) when necessary. They were also reported in chronological order and according to the research group.
Collapse
Affiliation(s)
- Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Ilovaisky AI, Scherbakov AM, Chernoburova EI, Shchetinina MA, Merkulova VM, Bogdanov FB, Sorokin DV, Salnikova DI, Bozhenko EI, Zavarzin IV, Terent'ev AO. Secosteroid diacylhydrazines as novel effective agents against hormone-dependent breast cancer cells. J Steroid Biochem Mol Biol 2024; 244:106597. [PMID: 39127416 DOI: 10.1016/j.jsbmb.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
This research aimed to develop novel selective secosteroids that are highly active against hormone-dependent breast cancer. A simple and convenient approach to N'-acylated 13,17-secoestra-1,3,5(10)-trien-17-oic acid hydrazides was disclosed and these novel types of secosteroids were screened for cytotoxicity against the hormone-dependent human breast cancer cell line MCF7. Most secosteroid N'-benzoyl hydrazides have demonstrated high cytotoxicity against MCF7 cells with IC50 values below 5 μM, which are superior to that of the reference drug cisplatin. Hit compounds 2c, 2e and 2i were characterized by high cytotoxicity (IC50 = 1.6-1.9 μM) and very good selectivity towards MCF7 breast cancer cells. The lead secosteroids 2c, 2e and 2i also exhibit antiestrogenic effects and alter the expression of cell cycle regulating proteins. The effect of selected compounds on PARP (poly(ADP-ribose) polymerase) and Bcl-2 (B-cell CLL/lymphoma 2) indicates their proapoptotic potential. The synthesized secosteroids may be considered as new promising anti-breast cancer agents targeting ERα and apoptosis pathways.
Collapse
Affiliation(s)
- Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander M Scherbakov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia; Gause Institute of New Antibiotics, Bol'shaya Pirogovskaya ulitsa 11, Moscow 119021, Russia
| | - Elena I Chernoburova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Marina A Shchetinina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Valentina M Merkulova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Fedor B Bogdanov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Danila V Sorokin
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Diana I Salnikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia; N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Eugene I Bozhenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| |
Collapse
|
3
|
Peřina M, Börzsei R, Henrietta Ágoston, Hlogyik T, Poór M, Rigó R, Özvegy-Laczka C, Batta G, Hetényi C, Vojáčková V, Jorda R, Mernyák E. Synthesis and estrogenic activity of BODIPY-labeled estradiol conjugates. Eur J Pharm Sci 2024; 199:106813. [PMID: 38797442 DOI: 10.1016/j.ejps.2024.106813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Novel BODIPY-estradiol conjugates have been synthesized by selecting position C-3-O for labeling. The conjugation strategy was based on Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) or etherification. Estradiol derivatives used as azide partners bearing an ω-azidoalkyl function through C4-C8-long linkers have been prepared. CuAAC reactions of estradiol azides with BODIPY alkyne furnished fluorescent 3-O-labeled conjugates bearing the triazole ring as a coupling moiety. Williamson etherifications of 3-O-(ω-bromoalkyl)-17β-estradiol derivatives with BODIPY-OH resulted in labeled conjugates connected with an ether moiety. Interactions of the conjugates with estrogen receptor (ER) were investigated using molecular docking calculations in comparison with estradiol. The conjugates occupied both the classical and alternative binding sites on human ERα, with slightly lower binding affinity to references estradiol and diethystilbestrol. All compounds have displayed reasonable estrogenic activity. They increased the proliferation of ER-positive breast cancer cell line MCF7 contrary to ER-negative SKBR-3 cell line. The most potent compound 13a induced the transcriptional activity of ER in dose-dependent manner in dual luciferase recombinant reporter model and increased progesterone receptor's expression, proving the retained estrogenic activity. The fluorescence of candidate compound 13a co-localised with the ERα. The newly synthesized labeled compounds might serve as good starting point for further development of fluorescent probes for modern biological applications. In addition to studying steroid uptake and transport in cells, e.g. in the processes of biodegradation of estrogen-hormones micropollutants, they could also be utilized in examination of estrogen-binding proteins.
Collapse
Affiliation(s)
- Miroslav Peřina
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27 78371 Olomouc, Czech Republic
| | - Rita Börzsei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12 H-7624 Pécs, Hungary
| | - Henrietta Ágoston
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm tér 7‒8 H-6720 Szeged, Hungary
| | - Tamás Hlogyik
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm tér 7‒8 H-6720 Szeged, Hungary
| | - Miklós Poór
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, Pécs H-7624, Hungary; Molecular Medicine Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary
| | - Réka Rigó
- Drug resistance research group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Drug resistance research group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1 H-4032 Debrecen, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12 H-7624 Pécs, Hungary
| | - Veronika Vojáčková
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27 78371 Olomouc, Czech Republic
| | - Radek Jorda
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27 78371 Olomouc, Czech Republic.
| | - Erzsébet Mernyák
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm tér 7‒8 H-6720 Szeged, Hungary; Department of Pharmacognosy, University of Szeged, Eötvös u. 6 H-6720 Szeged, Hungary.
| |
Collapse
|
4
|
Ilovaisky AI, Scherbakov AM, Chernoburova EI, Povarov AA, Shchetinina MA, Merkulova VM, Salnikova DI, Sorokin DV, Bozhenko EI, Zavarzin IV, Terent'ev AO. Secosteroid thiosemicarbazides and secosteroid-1,2,4-triazoles as antiproliferative agents targeting breast cancer cells: Synthesis and biological evaluation. J Steroid Biochem Mol Biol 2023; 234:106386. [PMID: 37666392 DOI: 10.1016/j.jsbmb.2023.106386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
A convenient and selective approach to 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-arylcarbothioamido]hydrazides and hybrid molecules containing secosteroid and 1,2,4-triazole fragments was disclosed and these novel types of secosteroids were screened for cytotoxicity against hormone-dependent human breast cancer cell line MCF-7. Most of secosteroid-1,2,4-triazole hybrids showed significant cytotoxic effect comparable or superior to that of the reference drug cisplatin. Hit secosteroid-1,2,4-triazole hybrids 4b and 4h were characterized by high cytotoxicity and good selectivity towards MCF-7 breast cancer cells. PARP cleavage (marker of apoptosis) and ERα and cyclin D1 downregulation were discovered in MCF-7 cells treated with lead secosteroid-1,2,4-triazole hybrid 4b. The synthesized secosteroids may be considered as new promising anticancer agents.
Collapse
Affiliation(s)
- Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander M Scherbakov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Elena I Chernoburova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Andrey A Povarov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Marina A Shchetinina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Valentina M Merkulova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Diana I Salnikova
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Danila V Sorokin
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Eugene I Bozhenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| |
Collapse
|
5
|
Kulmány ÁE, Herman BE, Zupkó I, Sinreih M, Rižner TL, Savić M, Oklješa A, Nikolić A, Nagy V, Ocsovszki I, Szécsi M, Jovanović-Šanta S. Heterocyclic androstane and estrane d-ring modified steroids: Microwave-assisted synthesis, steroid-converting enzyme inhibition, apoptosis induction, and effects on genes encoding estrogen inactivating enzymes. J Steroid Biochem Mol Biol 2021; 214:105997. [PMID: 34509617 DOI: 10.1016/j.jsbmb.2021.105997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022]
Abstract
d-ring-fused and d-homo lactone compounds in estratriene and androstane series were synthesized using microwave-assisted reaction conditions. Microwave-irradiated synthesis methods were convenient and effective, and provided high yields with short reaction times. Their inhibition of C17,20-lyase and 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) activities were studied in in vitro enzyme assays. d-ring-fused triazolyl estrone analog 24 showed potent inhibition of NADH-complexed 17β-HSD1, with a binding affinity similar to that of the substrate estrone; its inhibition against NADPH-complexed 17β-HSD1 was markedly weaker. Compound 24 also significantly and selectively reduced proliferation of cancer cell lines of gynecological origin. This estrane triazole changed the cell cycle and induced apoptosis of HeLa, SiHa, and MDA-MB-231 cancer cells, measured by both increased subG1 fraction of cells and activation of caspase-independent signaling pathways. A third mode of anti-estrogenic action of 24 saw increased mRNA expression of the SULT1E1 gene in HeLa cells; in contrast, its 3-benzyloxy analog 23 increased mRNA expression of the HSD17B2 gene, thus showing pronounced pro-drug anti-estrogenic activity. Estradiol-derived d-ring triazole compound 24 thus acts at the enzyme, gene expression and cellular levels to decrease the production of active estrogen hormones, demonstrating its pharmacological potential.
Collapse
Affiliation(s)
- Ágnes Erika Kulmány
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | | | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Masa Sinreih
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marina Savić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Aleksandar Oklješa
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Andrea Nikolić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Viktória Nagy
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Imre Ocsovszki
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Mihály Szécsi
- Department of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Suzana Jovanović-Šanta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia.
| |
Collapse
|
6
|
Ilovaisky AI, Merkulova VM, Chernoburova EI, Shchetinina MA, Salnikova DI, Scherbakov AM, Zavarzin IV, Terent'ev AO. Secosteroidal hydrazides: Promising scaffolds for anti-breast cancer agents. J Steroid Biochem Mol Biol 2021; 214:106000. [PMID: 34547379 DOI: 10.1016/j.jsbmb.2021.106000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/15/2022]
Abstract
A convenient and selective approach to 13,17-secoestra-1,3,5(10)-trien-17-oic acid hydrazides and their N'-(het)arylmethylene derivatives was disclosed and these novel types of secosteroids were screened for cytotoxicity against hormone-dependent human breast cancer cell line MCF-7. A number of 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-(het)arylmethylene]hydrazides show significant cytotoxic effect comparable or superior to that for reference drug cisplatin. Compound 3l exhibits the highest activity with the IC50 value of about 2 μM and is 2.8 times more active than cisplatin. Hit 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-(het)arylmethylene]hydrazides 3d, 3l and 3q are characterized by high cytotoxicity and good selectivity towards MCF-7 breast cancer cells. The synthesized secosteroids may be considered as new promising antitumor agents.
Collapse
Affiliation(s)
- Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Valentina M Merkulova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Elena I Chernoburova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Marina A Shchetinina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Diana I Salnikova
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24 Kashirskoye sh., Moscow, 115522, Russia
| | - Alexander M Scherbakov
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24 Kashirskoye sh., Moscow, 115522, Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.
| |
Collapse
|
7
|
Herman BE, Gardi J, Julesz J, Tömböly C, Szánti-Pintér E, Fehér K, Skoda-Földes R, Szécsi M. Steroidal ferrocenes as potential enzyme inhibitors of the estrogen biosynthesis. Biol Futur 2021; 71:249-264. [PMID: 34554507 DOI: 10.1007/s42977-020-00023-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/04/2020] [Indexed: 01/13/2023]
Abstract
The potential inhibitory effect of diverse triazolyl-ferrocene steroids on key enzymes of the estrogen biosynthesis was investigated. Test compounds were synthesized via copper-catalyzed cycloaddition of steroidal azides and ferrocenyl-alkynes using our efficient methodology published previously. Inhibition of human aromatase, steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) activities was investigated with in vitro radiosubstrate incubations. Some of the test compounds were found to be potent inhibitors of the STS. A compound bearing ferrocenyl side chain on the C-2 displayed a reversible inhibition, whereas C-16 and C-17 derivatives displayed competitive irreversible binding mechanism toward the enzyme. 17α-Triazolyl-ferrocene derivatives of 17β-estradiol exerted outstanding inhibitory effect and experiments demonstrated a key role of the ferrocenyl moiety in the enhanced binding affinity. Submicromolar IC50 and Ki parameters enroll these compounds to the group of the most effective STS inhibitors published so far. STS inhibitory potential of the steroidal ferrocenes may lead to the development of novel compounds able to suppress in situ biosynthesis of 17β-estradiol in target tissues.
Collapse
Affiliation(s)
- Bianka Edina Herman
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary
| | - János Gardi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary
| | - János Julesz
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, P. O. Box 521, Szeged, 6726, Hungary
| | - Eszter Szánti-Pintér
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Egyetem utca 10, P. O. Box 158, Veszprém, 8200, Hungary
| | - Klaudia Fehér
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Egyetem utca 10, P. O. Box 158, Veszprém, 8200, Hungary
| | - Rita Skoda-Földes
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Egyetem utca 10, P. O. Box 158, Veszprém, 8200, Hungary.
| | - Mihály Szécsi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary.
| |
Collapse
|
8
|
Fan XM, Shen JJ, Xu YY, Gao J, Zhang YW. Metabolic integration of azide functionalized glycan on Escherichia coli cell surface for specific covalent immobilization onto magnetic nanoparticles with click chemistry. BIORESOURCE TECHNOLOGY 2021; 324:124689. [PMID: 33450627 DOI: 10.1016/j.biortech.2021.124689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
A method for specific immobilization of whole-cell with covalent bonds was developed through a click reaction between alkyne and azide groups. In this approach, magnetic nanoparticle Fe3O4@SiO2-NH2-alkyne was synthesized with Fe3O4 core preparation, SiO2 coating, and alkyne functionalization on the surface. The azides were successfully integrated onto the cell surface of the recombinant E. coli harboring glycerol dehydrogenase, which was employed as the model cell. The highest immobilization yield of 83% and activity recovery of 94% were obtained under the conditions of 0.67 mg mg-1 cell-support ratio, pH 6.0, temperature 45 °C, and 20 mM Cu2+ concentration. The immobilized cell showed good reusability, which remained over 50% of initial activity after 10 cycles of utilization. Its activity was 9.7-fold higher than that of the free cell at the condition of pH 8.0 and each optimal temperature. Furthermore, the immobilized cell showed significantly higher activity, operational stability, and reusability.
Collapse
Affiliation(s)
- Xiao-Man Fan
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jia-Jia Shen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yuan-Yuan Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jian Gao
- College of Petroleum and Chemical Engineering, Beibu Gulf University, 535100 Qinzhou, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China; College of Petroleum and Chemical Engineering, Beibu Gulf University, 535100 Qinzhou, People's Republic of China.
| |
Collapse
|
9
|
El-Naggar M, Amr AEGE, Fayed AA, Elsayed EA, Al-Omar MA, Abdalla MM. Potent Anti-Ovarian Cancer with Inhibitor Activities on both Topoisomerase II and V600EBRAF of Synthesized Substituted Estrone Candidates. Molecules 2019; 24:E2054. [PMID: 31146483 PMCID: PMC6600292 DOI: 10.3390/molecules24112054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 01/05/2023] Open
Abstract
A series of 16-(α-alkoxyalkane)-17-hydrazino-estra-1(10),2,4-trien[17,16-c]-3-ol (3a-l) and estra-1(10),2,4-trien-[17,16-c]pyrazoline-3-ol derivatives (4a-d) were synthesized from corresponding arylidines 2a,b which was prepared from estrone 1 as starting material. Condensation of 1 with aldehydes gave the corresponding arylidine derivatives 2a,b which were treated with hydrazine derivatives in alcohols to give the corresponding derivatives 3a-l, respectively. Additionally, treatment of 2a,b with methyl- or phenylhydrazine in ethanolic potassium hydroxide afforded the corresponding N-substituted pyrazoline derivatives 4a-d, respectively. All these derivatives showed potent anti-ovarian cancer both in vitro and in vivo. The mechanism of anti-ovarian cancer was suggested to process via topoisomerase II and V600EBRAF inhibition.
Collapse
Affiliation(s)
- Mohamed El-Naggar
- Chemistry Department, Faculty of Sciences, University of Sharjah, Sharjah 27272, UAE.
| | - Abd El-Galil E Amr
- Drug Exploration & Development Chair (DEDC), Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Applied Organic Chemistry Department, National Research Center, Cairo 12622, Egypt.
| | - Ahmed A Fayed
- Applied Organic Chemistry Department, National Research Center, Cairo 12622, Egypt.
- Respiratory Therapy Department, College of Medical Rehabilitation Sciences, Taibah University, Madinah Munawara 22624, Saudi Arabia.
| | - Elsayed A Elsayed
- Zoology Department, Bioproducts Research Chair, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo 12622, Egypt.
| | - Mohamed A Al-Omar
- Drug Exploration & Development Chair (DEDC), Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | | |
Collapse
|
10
|
Herman BE, Kiss A, Wölfling J, Mernyák E, Szécsi M, Schneider G. Synthesis of substituted 15β-alkoxy estrone derivatives and their cofactor-dependent inhibitory effect on 17β-HSD1. J Enzyme Inhib Med Chem 2019; 34:1271-1286. [PMID: 31307240 PMCID: PMC6691805 DOI: 10.1080/14756366.2019.1634064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) is a key enzyme in the biosynthesis of 17β-estradiol. Novel estrone-based compounds bearing various 15β-oxa-linked substituents and hydroxy, methoxy, benzyloxy, and sulfamate groups in position C3 as potential 17β-HSD1 inhibitors have been synthesized. In addition, in vitro inhibitory potentials measured in the presence of excess amount of NADPH or NADH were investigated. We observed substantial inhibitory potentials for several derivatives (IC50 < 1 µM) and increased binding affinities compared to unsubstituted core molecules. Binding and inhibition were found to be cofactor-dependent for some of the compounds and we propose structural explanations for this phenomenon. Our results may contribute to the development of new 17β-HSD1 inhibitors, potential drug candidates for antiestrogen therapy of hormone-dependent gynecological cancers.
Collapse
Affiliation(s)
| | - Anita Kiss
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - Mihály Szécsi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
11
|
Bacsa I, Herman BE, Jójárt R, Herman KS, Wölfling J, Schneider G, Varga M, Tömböly C, Rižner TL, Szécsi M, Mernyák E. Synthesis and structure-activity relationships of 2- and/or 4-halogenated 13β- and 13α-estrone derivatives as enzyme inhibitors of estrogen biosynthesis. J Enzyme Inhib Med Chem 2018; 33:1271-1282. [PMID: 30230387 PMCID: PMC6147116 DOI: 10.1080/14756366.2018.1490731] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ring A halogenated 13α-, 13β-, and 17-deoxy-13α-estrone derivatives were synthesised with N-halosuccinimides as electrophile triggers. Substitutions occurred at positions C-2 and/or C-4. The potential inhibitory action of the halogenated estrones on human aromatase, steroid sulfatase, or 17β-hydroxysteroid dehydrogenase 1 activity was investigated via in vitro radiosubstrate incubation. Potent submicromolar or low micromolar inhibitors were identified with occasional dual or multiple inhibitory properties. Valuable structure–activity relationships were established from the comparison of the inhibitory data obtained. Kinetic experiments performed with selected compounds revealed competitive reversible inhibition mechanisms against 17β-hydroxysteroid dehydrogenase 1 and competitive irreversible manner in the inhibition of the steroid sulfatase enzyme.
Collapse
Affiliation(s)
- Ildikó Bacsa
- a Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | | | - Rebeka Jójárt
- a Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | | | - János Wölfling
- a Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Gyula Schneider
- a Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Mónika Varga
- c Department of Microbiology , University of Szeged, University of Szeged , Szeged , Hungary
| | - Csaba Tömböly
- d Laboratory of Chemical Biology , Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences , Szeged , Hungary
| | - Tea Lanišnik Rižner
- e Institute of Biochemistry, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| | - Mihály Szécsi
- b 1st Department of Medicine , University of Szeged , Szeged , Hungary
| | - Erzsébet Mernyák
- a Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| |
Collapse
|
12
|
In Vitro and In Vivo Anti-Breast Cancer Activities of Some Synthesized Pyrazolinyl-estran-17-one Candidates. Molecules 2018; 23:molecules23071572. [PMID: 29958453 PMCID: PMC6100451 DOI: 10.3390/molecules23071572] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/14/2018] [Accepted: 06/20/2018] [Indexed: 01/26/2023] Open
Abstract
A series of estrone derivatives, 2–4, were synthesized from the corresponding arylidine estrone, 2a,b, as starting materials, which were prepared by condensation of estrone (3-hydroxy-estran-17-one, 1) with 4-bromobenzaldehyde and thiophene-2-aldehyde. Treating of 2a,b with hydrazine derivatives in acetic acid or propionic acid afforded pyrazoline derivatives, 3a–f and 4a–f, respectively. Furthermore, results proved the superiority of thienyl derivatives over 4-bromophenol derivatives in terms of cytotoxic effects on MCF-7 cancer cells. In vivo xenograft breast cancer animal model experiments revealed that the synthesized derivatives can be used for decreasing tumor volume, while the most potent derivative (4f) decreased the development of tumor volume by about 87.0% after 12 days.
Collapse
|
13
|
Bacsa I, Konc C, Orosz AB, Kecskeméti G, Rigó R, Özvegy-Laczka C, Mernyák E. Synthesis of Novel C-2- or C-15-Labeled BODIPY-Estrone Conjugates. Molecules 2018; 23:E821. [PMID: 29614041 PMCID: PMC6017578 DOI: 10.3390/molecules23040821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 11/16/2022] Open
Abstract
Novel BODIPY-estrone conjugates were synthesized via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). Estrone-alkynes or an estrone-azide as starting compounds were synthesized via Michael addition or Sonogashira reaction as key steps. Fluorescent dyes based on BODIPY-core were provided by azide or alkyne functional groups. Fluorescent labeling of estrone was efficiently achieved at the C-2 or C-15 position. The newly-elaborated coupling procedures might have a broad applicability in the synthesis of fluorescent-labeled estrone conjugates suitable for biological assays.
Collapse
Affiliation(s)
- Ildikó Bacsa
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Csilla Konc
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Anna Boglárka Orosz
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Gábor Kecskeméti
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Réka Rigó
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary.
| | - Csilla Özvegy-Laczka
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary.
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| |
Collapse
|
14
|
Bacsa I, Jójárt R, Wölfling J, Schneider G, Herman BE, Szécsi M, Mernyák E. Synthesis of novel 13α-estrone derivatives by Sonogashira coupling as potential 17β-HSD1 inhibitors. Beilstein J Org Chem 2017; 13:1303-1309. [PMID: 28694873 PMCID: PMC5496578 DOI: 10.3762/bjoc.13.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/14/2017] [Indexed: 01/08/2023] Open
Abstract
Novel 13α-estrone derivatives were synthesized by Sonogashira coupling. Transformations of 2- or 4-iodo regioisomers of 13α-estrone and its 3-methyl ether were carried out under different conditions in a microwave reactor. The 2-iodo isomers were reacted with para-substituted phenylacetylenes using Pd(PPh3)4 as catalyst and CuI as a cocatalyst. Coupling reactions of 4-iodo derivatives could be achieved by changing the catalyst to Pd(PPh3)2Cl2. The product phenethynyl derivatives were partially or fully saturated. Compounds bearing a phenolic OH group furnished benzofurans under the conditions used for the partial saturation. The inhibitory effects of the compounds on human placental 17β-hydroxysteroid dehydrogenase type 1 isozyme (17β-HSD1) were investigated by an in vitro radiosubstrate incubation method. Certain 3-hydroxy-2-phenethynyl or -phenethyl derivatives proved to be potent 17β-HSD1 inhibitors, displaying submicromolar IC50 values.
Collapse
Affiliation(s)
- Ildikó Bacsa
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Rebeka Jójárt
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Bianka Edina Herman
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged, Hungary
| | - Mihály Szécsi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| |
Collapse
|
15
|
Synthesis and in vitro investigation of potential antiproliferative monosaccharide–d-secoestrone bioconjugates. Bioorg Med Chem Lett 2017; 27:1938-1942. [DOI: 10.1016/j.bmcl.2017.03.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/11/2017] [Accepted: 03/14/2017] [Indexed: 01/16/2023]
|
16
|
Bodnár B, Mernyák E, Wölfling J, Schneider G, Herman BE, Szécsi M, Sinka I, Zupkó I, Kupihár Z, Kovács L. Synthesis and Biological Evaluation of Triazolyl 13α-Estrone-Nucleoside Bioconjugates. Molecules 2016; 21:molecules21091212. [PMID: 27626395 PMCID: PMC6273310 DOI: 10.3390/molecules21091212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 02/03/2023] Open
Abstract
2′-Deoxynucleoside conjugates of 13α-estrone were synthesized by applying the copper-catalyzed alkyne–azide click reaction (CuAAC). For the introduction of the azido group the 5′-position of the nucleosides and a propargyl ether functional group on the 3-hydroxy group of 13α-estrone were chosen. The best yields were realized in our hands when the 3′-hydroxy groups of the nucleosides were protected by acetyl groups and the 5′-hydroxy groups were modified by the tosyl–azide exchange method. The commonly used conditions for click reaction between the protected-5′-azidonucleosides and the steroid alkyne was slightly modified by using 1.5 equivalent of Cu(I) catalyst. All the prepared conjugates were evaluated in vitro by means of MTT assays for antiproliferative activity against a panel of human adherent cell lines (HeLa, MCF-7 and A2780) and the potential inhibitory activity of the new conjugates on human 17β-hydroxysteroid dehydrogenase 1 (17β-HSD1) was investigated via in vitro radiosubstrate incubation. Some protected conjugates displayed moderate antiproliferative properties against a panel of human adherent cancer cell lines (the protected cytidine conjugate proved to be the most potent with IC50 value of 9 μM). The thymidine conjugate displayed considerable 17β-HSD1 inhibitory activity (IC50 = 19 μM).
Collapse
Affiliation(s)
- Brigitta Bodnár
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Bianka Edina Herman
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged, Hungary.
| | - Mihály Szécsi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged, Hungary.
| | - Izabella Sinka
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Zoltán Kupihár
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Lajos Kovács
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| |
Collapse
|
17
|
Herman BE, Szabó J, Bacsa I, Wölfling J, Schneider G, Bálint M, Hetényi C, Mernyák E, Szécsi M. Comparative investigation of the in vitro inhibitory potencies of 13-epimeric estrones and D-secoestrones towards 17β-hydroxysteroid dehydrogenase type 1. J Enzyme Inhib Med Chem 2016; 31:61-69. [PMID: 27424610 DOI: 10.1080/14756366.2016.1204610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The inhibitory effects of 13-epimeric estrones, D-secooxime and D-secoalcohol estrone compounds on human placental 17β-hydroxysteroid dehydrogenase type 1 isozyme (17β-HSD1) were investigated. The transformation of estrone to 17β-estradiol was studied by an in vitro radiosubstrate incubation method. 13α-Estrone inhibited the enzyme activity effectively with an IC50 value of 1.2 μM, which indicates that enzyme affinity is similar to that of the natural estrone substrate. The 13β derivatives and the compounds bearing a 3-hydroxy group generally exerted stronger inhibition than the 13α and 3-ether counterparts. The 3-hydroxy-13β-D-secoalcohol and the 3-hydroxy-13α-D-secooxime displayed an outstanding cofactor dependence, i.e. more efficient inhibition in the presence of NADH than NADPH. The 3-hydroxy-13β-D-secooxime has an IC50 value of 0.070 μM and is one of the most effective 17β-HSD1 inhibitors reported to date in the literature.
Collapse
Affiliation(s)
| | - Johanna Szabó
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Ildikó Bacsa
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - János Wölfling
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Gyula Schneider
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Mónika Bálint
- c Department of Biochemistry , Eötvös Loránd University , Budapest , Hungary , and
| | - Csaba Hetényi
- d MTA-ELTE Molecular Biophysics Research Group, Hungarian Academy of Sciences , Budapest , Hungary
| | - Erzsébet Mernyák
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Mihály Szécsi
- a 1st Department of Medicine, University of Szeged , Szeged , Hungary
| |
Collapse
|
18
|
Szabó J, Jerkovics N, Schneider G, Wölfling J, Bózsity N, Minorics R, Zupkó I, Mernyák E. Synthesis and in Vitro Antiproliferative Evaluation of C-13 Epimers of Triazolyl-d-Secoestrone Alcohols: The First Potent 13α-d-Secoestrone Derivative. Molecules 2016; 21:molecules21050611. [PMID: 27187336 PMCID: PMC6273777 DOI: 10.3390/molecules21050611] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 11/23/2022] Open
Abstract
The syntheses of C-13 epimeric 3-[(1-benzyl-1,2,3-triazol-4-yl)methoxy]-d-secoestrones are reported. Triazoles were prepared from 3-(prop-2-inyloxy)-d-secoalcohols and p-substituted benzyl azides via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The antiproliferative activities of the products and their precursors were determined in vitro against a panel of human adherent cervical (HeLa, SiHa and C33A), breast (MCF-7, MDA-MB-231, MDA-MB-361 and T47D) and ovarian (A2780) cell lines by means of MTT assays. The orientation of the angular methyl group and the substitution pattern of the benzyl group of the azide greatly influenced the cell growth-inhibitory potential of the compounds. The 13β derivatives generally proved to be more potent than their 13α counterparts. Introduction of a benzyltriazolylmethyl group onto the 3-OH position seemed to be advantageous. One 13α compound containing an unsubstituted benzyltriazolyl function displayed outstanding antiproliferative activities against three cell lines.
Collapse
Affiliation(s)
- Johanna Szabó
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged H-6720, Hungary.
| | - Nóra Jerkovics
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged H-6720, Hungary.
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged H-6720, Hungary.
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged H-6720, Hungary.
| | - Noémi Bózsity
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, Szeged H-6720, Hungary.
| | - Renáta Minorics
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, Szeged H-6720, Hungary.
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, Szeged H-6720, Hungary.
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged H-6720, Hungary.
| |
Collapse
|
19
|
Structural analysis and biomedical potential of novel salicyloyloxy estrane derivatives synthesized by microwave irradiation. Struct Chem 2015. [DOI: 10.1007/s11224-015-0678-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|