1
|
Ozen M, Aghaeepour N, Marić I, Wong RJ, Stevenson DK, Jantzie LL. Omics approaches: interactions at the maternal-fetal interface and origins of child health and disease. Pediatr Res 2023; 93:366-375. [PMID: 36216868 PMCID: PMC9549444 DOI: 10.1038/s41390-022-02335-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 11/09/2022]
Abstract
Immunoperinatology is an emerging field. Transdisciplinary efforts by physicians, physician-scientists, basic science researchers, and computational biologists have made substantial advancements by identifying unique immunologic signatures of specific diseases, discovering innovative preventative or treatment strategies, and establishing foundations for individualized neonatal intensive care of the most vulnerable neonates. In this review, we summarize the immunobiology and immunopathology of pregnancy, highlight omics approaches to study the maternal-fetal interface, and their contributions to pregnancy health. We examined the importance of transdisciplinary, multiomic (such as genomics, transcriptomics, proteomics, metabolomics, and immunomics) and machine-learning strategies in unraveling the mechanisms of adverse pregnancy, neonatal, and childhood outcomes and how they can guide the development of novel therapies to improve maternal and neonatal health. IMPACT: Discuss immunoperinatology research from the lens of omics and machine-learning approaches. Identify opportunities for omics-based approaches to delineate infection/inflammation-associated maternal, neonatal, and later life adverse outcomes (e.g., histologic chorioamnionitis [HCA]).
Collapse
Affiliation(s)
- Maide Ozen
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Nima Aghaeepour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Ivana Marić
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald J Wong
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David K Stevenson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren L Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Collaco JM, McGrath-Morrow SA, Griffiths M, Chavez-Valdez R, Parkinson C, Zhu J, Northington FJ, Graham EM, Everett AD. Perinatal Inflammatory Biomarkers and Respiratory Disease in Preterm Infants. J Pediatr 2022; 246:34-39.e3. [PMID: 35460699 PMCID: PMC9264338 DOI: 10.1016/j.jpeds.2022.04.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/01/2022] [Accepted: 04/15/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To measure plasma levels of vascular endothelial growth factor (VEGF) and several cytokines (Interleukin [IL]-6 IL-8, IL-10) during the first week of life to examine the relationship between protein expression and likelihood of developing respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD). STUDY DESIGN Levels of IL-6, IL-8, IL-10, and VEGF were measured from plasma obtained from preterm patients during the first week of life. Newborns were recruited from a single center between April 2009 and April 2019. Criteria for the study included being inborn, birth weight of less than 1500 grams, and a gestational age of less than 32 weeks at birth. RESULTS The development of RDS in preterm newborns was associated with lower levels of VEGF during the first week of life. Higher plasma levels of IL-6 and IL-8 plasma were associated with an increased likelihood and increased severity of BPD at 36 weeks postmenstrual age. In contrast, plasma levels of VEGF, IL-6, IL-8, and IL-10 obtained during the first week of life were not associated with respiratory symptoms and acute care use in young children with BPD in the outpatient setting. CONCLUSIONS During the first week of life, lower plasma levels of VEGF was associated with the diagnosis of RDS in preterm infants. Preterm infants with higher levels of IL-6 and IL-8 during the first week of life were also more likely to be diagnosed with BPD. These biomarkers may help to predict respiratory morbidities in preterm newborns during their initial hospitalization.
Collapse
Affiliation(s)
- Joseph M Collaco
- Department of Pediatrics, Johns Hopkins Medical Institutions, Baltimore, MD.
| | | | - Megan Griffiths
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Raul Chavez-Valdez
- Department of Pediatrics, Johns Hopkins Medical Institutions, Baltimore, MD
| | | | - Jie Zhu
- Department of Pediatrics, Johns Hopkins Medical Institutions, Baltimore, MD
| | | | - Ernest M Graham
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Allen D Everett
- Department of Pediatrics, Johns Hopkins Medical Institutions, Baltimore, MD
| |
Collapse
|
3
|
Yu X, Liu Z, Pan Y, Cui X, Zhao X, Li D, Xue X, Fu J. Co-expression network analysis for identification of novel biomarkers of bronchopulmonary dysplasia model. Front Pediatr 2022; 10:946747. [PMID: 36440350 PMCID: PMC9696732 DOI: 10.3389/fped.2022.946747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most common neonatal chronic lung disease. However, its exact molecular pathogenesis is not understood. We aimed to identify relevant gene modules that may play crucial roles in the occurrence and development of BPD by weighted gene co-expression network analysis (WGCNA). METHODS We used RNA-Seq data of BPD and healthy control rats from our previous studies, wherein data from 30 samples was collected at days 1, 3, 7, 10, and 14. Data for preprocessing analysis included 17,613 differentially expressed genes (DEGs) with false discovery rate <0.05. RESULTS We grouped the highly correlated genes into 13 modules, and constructed a network of mRNA gene associations, including the 150 most associated mRNA genes in each module. Lgals8, Srpra, Prtfdc1, and Thap11 were identified as the key hub genes. Enrichment analyses revealed Golgi vesicle transport, coated vesicle, actin-dependent ATPase activity and endoplasmic reticulum pathways associated with these genes involved in the pathological process of BPD in module. CONCLUSIONS This is a study to analyze data obtained from BPD animal model at different time-points using WGCNA, to elucidate BPD-related susceptibility modules and disease-related genes.
Collapse
Affiliation(s)
- Xuefei Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuqing Pan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuewei Cui
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyi Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Bersani I, Gazzolo D, Piersigilli F. Editorial: Perinatal assessment of biomarkers in invasive and non-invasive procedures of biological fluid collection. Front Pediatr 2022; 10:1010205. [PMID: 36147806 PMCID: PMC9486836 DOI: 10.3389/fped.2022.1010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Iliana Bersani
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Diego Gazzolo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | - Fiammetta Piersigilli
- Section of Neonatology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Bruxelles, Belgium
| |
Collapse
|
5
|
Cannavò L, Perrone S, Viola V, Marseglia L, Di Rosa G, Gitto E. Oxidative Stress and Respiratory Diseases in Preterm Newborns. Int J Mol Sci 2021; 22:ijms222212504. [PMID: 34830385 PMCID: PMC8625766 DOI: 10.3390/ijms222212504] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
Premature infants are exposed to increased generation of reactive oxygen species, and on the other hand, they have a deficient antioxidant defense system. Oxidative insult is a salient part of lung injury that begins as acute inflammatory injury in respiratory distress disease and then evolves into chronic and structural scarring leading to bronchopulmonary dysplasia. Oxidative stress is also involved in the pathogenesis of pulmonary hypertension in newborns through the modulation of the vascular tone and the response to pulmonary vasodilators, with consequent decrease in the density of the pulmonary vessels and thickening of the pulmonary arteriolar walls. Oxidative stress has been recognized as both a trigger and an endpoint for several events, including inflammation, hypoxia, hyperoxia, drugs, transfusions, and mechanical ventilation, with impairment of pulmonary function and prolonged lung damage. Redoxomics is the most fascinating new measure to address lung damage due to oxidative stress. The new challenge is to use omics data to discover a set of biomarkers useful in diagnosis, prognosis, and formulating optimal and individualized neonatal care. The aim of this review was to examine the most recent evidence on the relationship between oxidative stress and lung diseases in preterm newborns. What is currently known regarding oxidative stress-related lung injury pathogenesis and the available preventive and therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Laura Cannavò
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (L.C.); (V.V.); (L.M.); (E.G.)
| | - Serafina Perrone
- Neonatology Unity, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence: ; Tel.: +39-0521-703518
| | - Valeria Viola
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (L.C.); (V.V.); (L.M.); (E.G.)
| | - Lucia Marseglia
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (L.C.); (V.V.); (L.M.); (E.G.)
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (L.C.); (V.V.); (L.M.); (E.G.)
| |
Collapse
|
6
|
Gunjak M, Morty RE. World Prematurity Day 2020: “Together for babies born too soon—Caring for the future”. Am J Physiol Lung Cell Mol Physiol 2020; 319:L875-L878. [DOI: 10.1152/ajplung.00482.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Miša Gunjak
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rory E. Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
7
|
Novel biomarkers of bronchopulmonary dysplasia and bronchopulmonary dysplasia-associated pulmonary hypertension. J Perinatol 2020; 40:1634-1643. [PMID: 32811975 PMCID: PMC7664991 DOI: 10.1038/s41372-020-00788-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To quantify and compare levels of potential biomarkers in neonates with (i) Bronchopulmonary dysplasia (BPD); (ii) BPD-associated pulmonary hypertension (BPD-PH); (iii) PH without BPD; and (iv) neonates without lung disease at ~36 weeks postmenstrual age. STUDY DESIGN Multiple potential biomarkers were measured in plasma samples of 90 patients using a multi-spot enzyme-linked immunosorbent assay. Statistical tests done included one-way ANOVA to compare levels of biomarkers between different groups. RESULTS Higher levels of ICAM-1 were present in infants with BPD and correlated with its severity. Infants with BPD have significantly higher levels of ANG-2 and lower levels of ANG-1. Infants with PH have higher levels of: IL-6, IL-8, IL-10, and TNF-α. Infants with BPD-PH have significantly lower levels of MCP-1 and higher levels of IL-1β than infants with PH without BPD. CONCLUSION ICAM-1 may be used as a specific biomarker for diagnosis of BPD and its severity.
Collapse
|
8
|
Abstract
In the current era, the survival of extremely low-birth-weight infants has increased considerably because of new advances in technology; however, these infants often develop chronic dysfunction of the lung, which is called bronchopulmonary dysplasia (BPD). BPD remains an important cause of neonatal mortality and morbidity despite newer and gentler modes of ventilation. BPD results from the exposure of immature lungs to various antenatal and postnatal factors that lead to an impairment in lung development and aberrant growth of lung parenchyma and vasculature. However, we still struggle with a uniform definition for BPD that can help predict various short- and long-term pulmonary outcomes. With new research, our understanding of the pathobiology of this disease has evolved, and many new mechanisms of lung injury and repair are now known. By utilizing the novel ‘omic’ approaches in BPD, we have now identified various factors in the disease process that may act as novel therapeutic targets in the future. New investigational agents being explored for the management and prevention of BPD include mesenchymal stem cell therapy and insulin-like growth factor 1. Despite this, many questions remain unanswered and require further research to improve the outcomes of premature infants with BPD.
Collapse
Affiliation(s)
- Mitali Sahni
- Pediatrix Medical Group, Sunrise Children's Hospital, Las Vegas, NV, USA.,University of Nevada, Las Vegas, NV, USA
| | - Vineet Bhandari
- Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, Camden, NJ, USA
| |
Collapse
|
9
|
Bonadies L, Zaramella P, Porzionato A, Perilongo G, Muraca M, Baraldi E. Present and Future of Bronchopulmonary Dysplasia. J Clin Med 2020; 9:jcm9051539. [PMID: 32443685 PMCID: PMC7290764 DOI: 10.3390/jcm9051539] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common respiratory disorder among infants born extremely preterm. The pathogenesis of BPD involves multiple prenatal and postnatal mechanisms affecting the development of a very immature lung. Their combined effects alter the lung's morphogenesis, disrupt capillary gas exchange in the alveoli, and lead to the pathological and clinical features of BPD. The disorder is ultimately the result of an aberrant repair response to antenatal and postnatal injuries to the developing lungs. Neonatology has made huge advances in dealing with conditions related to prematurity, but efforts to prevent and treat BPD have so far been only partially effective. Seeing that BPD appears to have a role in the early origin of chronic obstructive pulmonary disease, its prevention is pivotal also in long-term respiratory outcome of these patients. There is currently some evidence to support the use of antenatal glucocorticoids, surfactant therapy, protective noninvasive ventilation, targeted saturations, early caffeine treatment, vitamin A, and fluid restriction, but none of the existing strategies have had any significant impact in reducing the burden of BPD. New areas of research are raising novel therapeutic prospects, however. For instance, early topical (intratracheal or nebulized) steroids seem promising: they might help to limit BPD development without the side effects of systemic steroids. Evidence in favor of stem cell therapy has emerged from several preclinical trials, and from a couple of studies in humans. Mesenchymal stromal/stem cells (MSCs) have revealed a reparatory capability, preventing the progression of BPD in animal models. Administering MSC-conditioned media containing extracellular vesicles (EVs) have also demonstrated a preventive action, without the potential risks associated with unwanted engraftment or the adverse effects of administering cells. In this paper, we explore these emerging treatments and take a look at the revolutionary changes in BPD and neonatology on the horizon.
Collapse
Affiliation(s)
- Luca Bonadies
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.B.); (P.Z.)
| | - Patrizia Zaramella
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.B.); (P.Z.)
| | - Andrea Porzionato
- Human Anatomy Section, Department of Neurosciences, University of Padova, 35128 Padova, Italy;
| | - Giorgio Perilongo
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
| | - Maurizio Muraca
- Institute of Pediatric Research “Città della Speranza”, Stem Cell and Regenerative Medicine Laboratory, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.B.); (P.Z.)
- Correspondence: ; Tel.: +39-049-821-3560; Fax: +39-049-821-3502
| |
Collapse
|
10
|
Exome sequencing of extreme phenotypes in bronchopulmonary dysplasia. Eur J Pediatr 2020; 179:579-586. [PMID: 31848748 DOI: 10.1007/s00431-019-03535-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 01/08/2023]
Abstract
Bronchopulmonary dysplasia is the most common chronic respiratory disease in premature infants with growing evidence that genetic factors contribute largely to moderate and severe cases. We assessed by exome sequencing if rare genetic variants could account for extremely severe phenotypes. We selected 6 infants born very preterm with severe bronchopulmonary dysplasia and 8 very preterm born controls for exome sequencing. We filtered whole exome sequencing results to include only rare variants and selected variants and/or genes with variants that were present in at least 2 cases and absent in controls. We selected variants, all heterozygous, in 9 candidate genes, 7 with a putative role in lung development and 2 that displayed 3 variations in 3 different cases, independently of their potential role in lung development. Sequencing of 5 other severe cases for these variants did not replicate our results.Conclusion: In selected preterm born infants with severe bronchopulmonary dysplasia and controls, we failed to find any rare variant shared by several infants with an extremely severe phenotype. Our results are not consistent with the role of rare causative variants in bronchopulmonary dysplasia's development and argue for the highly polygenic nature of susceptibility of this disorder.What is Known:• Bronchopulmonary dysplasia is a multifactorial disease resulting from complex environmental and genetic interactions occurring in an immature lung.• It is not known whether rare genetic variants in coding regions could account for extreme phenotypes of the disease.What is New:• In a group of infants with an extreme phenotype of bronchopulmonary dysplasia and in comparison to controls, no common genetic variants were found, nor did variants that were select in other exome studies in this setting.• These results argue for the highly polygenic nature of susceptibility of bronchopulmonary dysplasia.
Collapse
|
11
|
Capasso L, Vento G, Loddo C, Tirone C, Iavarone F, Raimondi F, Dani C, Fanos V. Oxidative Stress and Bronchopulmonary Dysplasia: Evidences From Microbiomics, Metabolomics, and Proteomics. Front Pediatr 2019; 7:30. [PMID: 30815432 PMCID: PMC6381008 DOI: 10.3389/fped.2019.00030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/24/2019] [Indexed: 01/02/2023] Open
Abstract
Bronchopulmonary dysplasia is a major issue affecting morbidity and mortality of surviving premature babies. Preterm newborns are particularly susceptible to oxidative stress and infants with bronchopulmonary dysplasia have a typical oxidation pattern in the early stages of this disease, suggesting the important role of oxidative stress in its pathogenesis. Bronchopulmonary dysplasia is a complex disease where knowledge advances as new investigative tools become available. The explosion of the "omics" disciplines has recently affected BPD research. This review focuses on the new evidence coming from microbiomics, metabolomics and proteomics in relation to oxidative stress and pathogenesis of bronchopulmonary dysplasia. Since the pathogenesis is not yet completely understood, information gained in this regard would be important for planning an efficacious prevention and treatment strategy for the future.
Collapse
Affiliation(s)
- Letizia Capasso
- Neonatology, Section of Pediatrics, Department of Translational Sciences, University of Naples Federico II, Naples, Italy
| | - Giovanni Vento
- Division of Neonatology, Department of Woman and Child Health, Pediatrics area, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristina Loddo
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, Azienda Ospedaliero-Universitaria Cagliari and University of Cagliari, Cagliari, Italy
| | - Chiara Tirone
- Division of Neonatology, Department of Woman and Child Health, Pediatrics area, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Iavarone
- Institute of Biochemistry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Raimondi
- Neonatology, Section of Pediatrics, Department of Translational Sciences, University of Naples Federico II, Naples, Italy
| | - Carlo Dani
- Neonatology, University Hospital Careggi, Firenze, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, Azienda Ospedaliero-Universitaria Cagliari and University of Cagliari, Cagliari, Italy
| |
Collapse
|
12
|
Nardiello C, Morty RE. MicroRNA in late lung development and bronchopulmonary dysplasia: the need to demonstrate causality. Mol Cell Pediatr 2016; 3:19. [PMID: 27216745 PMCID: PMC4877338 DOI: 10.1186/s40348-016-0047-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022] Open
Abstract
MicroRNA are emerging as powerful regulators of cell differentiation and tissue and organ development. Several microRNA have been described to play a role in branching morphogenesis, a key step in early lung development. However, considerably less attention has been paid to microRNA as regulators of the process of secondary septation, which drives lung alveolarization during late lung development. Secondary septation is severely perturbed in bronchopulmonary dysplasia (BPD), a common complication of preterm birth characterized by blunted alveolarization. A number of studies to date have reported microRNA microarray screens in animal models of BPD; however, only two studies have attempted to demonstrate causality. Although the expression of miR-150 was altered in experimental BPD, a miR-150−/− knockout mouse did not exhibit appreciable protection in a BPD animal model. Similarly, while the expression of miR-489 in the lung was reduced in clinical and experimental BPD, antagomiR and over-expression approaches could not validate a role for miR-489 in the impaired alveolarization associated with experimental BPD. This mini-review aims to highlight microRNA that have been revealed by multiple microarray studies to be potential causal players in normal and pathological alveolarization. Additionally, the challenges faced in attempting to demonstrate a causal role for microRNA in lung alveolarization are discussed. These include the tremendous variability in the animal models employed, and the limitations and advantages offered by the available tools, including antagomiRs and approaches for the validation of a specific microRNA-mRNA interaction during lung alveolarization.
Collapse
Affiliation(s)
- Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany. .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
13
|
Pereira-Fantini PM, Tingay DG. The proteomics of lung injury in childhood: challenges and opportunities. Clin Proteomics 2016; 13:5. [PMID: 26933399 PMCID: PMC4772280 DOI: 10.1186/s12014-016-9106-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/15/2016] [Indexed: 12/02/2022] Open
Abstract
Proteomics, the large-scale study of the structure and function of proteins of a cell or organism, is a rapidly developing area of biomedical research which is perfectly suited to the study of pediatric lung injury, where a variety of samples are easily, and repeatedly, accessible including plasma (reflecting a whole body response) and broncheoalveolar lung fluid (reflecting the lungs response). When applied to pediatric lung injury, proteomics could be used to develop much needed early biomarkers of lung injury, elucidate pathological pathways and determine protein alterations associated with specific disease processes. However despite the obvious benefits and need, proteomics is rarely utilized in studies of pediatric injury. This review primarily reports on the last decade of pediatric research into proteomes associated with specific respiratory diseases including bronchopulmonary dysplasia, respiratory infection, cystic fibrosis and asthma whilst also reflecting on the challenges unique to proteomic studies of the pediatric respiratory disease population. We conclude that the number of key pathological differences between the pediatric and adult study populations inhibit inference of results from adult studies onto a pediatric population and necessitate studies of the pediatric proteome. Furthermore the disparity amongst pediatric lung disease in terms of age at onset and underlying pathological mechanism (genetic, immunological, intervention-based, developmental arrest, inhaled toxin) will require proteomic studies which are well designed, with large disease specific patient sets to ensure adequate power as well as matched controls. Regardless of causative agent, pulmonary biomarkers are needed to predict the clinical course of pediatric lung disease, status, progression and response to treatment. Identification of early biomarkers is particularly pertinent in order to understand the natural history of disease and monitor progression so prevention of ongoing lung injury and impact on childhood can targeted.
Collapse
Affiliation(s)
- Prue M Pereira-Fantini
- Neonatal Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052 Australia ; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - David G Tingay
- Neonatal Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052 Australia ; Department of Paediatrics, University of Melbourne, Parkville, Australia ; Department of Neonatology, Royal Children's Hospital, Parkville, Australia
| |
Collapse
|