1
|
Pall ML. Millimeter (MM) wave and microwave frequency radiation produce deeply penetrating effects: the biology and the physics. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:247-258. [PMID: 34043892 DOI: 10.1515/reveh-2020-0165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Millimeter wave (MM-wave) electromagnetic fields (EMFs) are predicted to not produce penetrating effects in the body. The electric but not magnetic part of MM-EMFs are almost completely absorbed within the outer 1 mm of the body. Rodents are reported to have penetrating MM-wave impacts on the brain, the myocardium, liver, kidney and bone marrow. MM-waves produce electromagnetic sensitivity-like changes in rodent, frog and skate tissues. In humans, MM-waves have penetrating effects including impacts on the brain, producing EEG changes and other neurological/neuropsychiatric changes, increases in apparent electromagnetic hypersensitivity and produce changes on ulcers and cardiac activity. This review focuses on several issues required to understand penetrating effects of MM-waves and microwaves: 1. Electronically generated EMFs are coherent, producing much higher electrical and magnetic forces then do natural incoherent EMFs. 2. The fixed relationship between electrical and magnetic fields found in EMFs in a vacuum or highly permeable medium such as air, predicted by Maxwell's equations, breaks down in other materials. Specifically, MM-wave electrical fields are almost completely absorbed in the outer 1 mm of the body due to the high dielectric constant of biological aqueous phases. However, the magnetic fields are very highly penetrating. 3. Time-varying magnetic fields have central roles in producing highly penetrating effects. The primary mechanism of EMF action is voltage-gated calcium channel (VGCC) activation with the EMFs acting via their forces on the voltage sensor, rather than by depolarization of the plasma membrane. Two distinct mechanisms, an indirect and a direct mechanism, are consistent with and predicted by the physics, to explain penetrating MM-wave VGCC activation via the voltage sensor. Time-varying coherent magnetic fields, as predicted by the Maxwell-Faraday version of Faraday's law of induction, can put forces on ions dissolved in aqueous phases deep within the body, regenerating coherent electric fields which activate the VGCC voltage sensor. In addition, time-varying magnetic fields can directly put forces on the 20 charges in the VGCC voltage sensor. There are three very important findings here which are rarely recognized in the EMF scientific literature: coherence of electronically generated EMFs; the key role of time-varying magnetic fields in generating highly penetrating effects; the key role of both modulating and pure EMF pulses in greatly increasing very short term high level time-variation of magnetic and electric fields. It is probable that genuine safety guidelines must keep nanosecond timescale-variation of coherent electric and magnetic fields below some maximum level in order to produce genuine safety. These findings have important implications with regard to 5G radiation.
Collapse
Affiliation(s)
- Martin L Pall
- Biochemistry and Basic Medical Sciences, Washington State University, Portland, OR 97232-3312, USA
| |
Collapse
|
2
|
Singh KV, Arya R, Nirala JP, Sahu D, Nanda RK, Rajamani P. Effects of mobile phone electromagnetic radiation on rat hippocampus proteome. ENVIRONMENTAL TOXICOLOGY 2022; 37:836-847. [PMID: 34984797 DOI: 10.1002/tox.23447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Worldwide, the number of mobile phone users has increased from 5.57 billion in 2011 to 6.8 billion in 2019. However, short- and long-term impact of the electromagnetic radiation emitting from mobile phones on tissue homeostasis with particular to brain proteome composition needs further investigation. In this study, we attempted a global proteome profiling study of rat hippocampus exposed to mobile phone radiation for 20 weeks (for 3 h/day for 5 days/week) to identify deregulated proteins and western blot analysis for validation. As a result, we identified 358 hippocampus proteins, of which 16 showed deregulation (log2 (exposed/sham) ≥ ±1.0, p-value <.05). Majority of these deregulated proteins grouped into three clusters sharing similar molecular pathways. A set of four proteins (Succinate-semialdehyde dehydrogenase: Aldh5a1, Na+ K+ transporting ATPase: Atp1b2, plasma membrane calcium transporting ATPase: PMCA and protein S100B) presenting each functional pathway were selected for validation. Western blot analysis of these proteins, in an independent sample set, corroborated the mass spectrometry findings. Aldh5a1 involve in cellular energy metabolism, both Atp1b2 and PMCA responsible for membrane transport and protein S100B have a neuroprotective role. In conclusion, we present a deregulated hippocampus proteome upon mobile phone radiation exposure, which might influence the healthy functioning of the brain.
Collapse
Affiliation(s)
| | - Rakesh Arya
- Translational Health Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Odisha, India
| | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Debasis Sahu
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Ranjan Kumar Nanda
- Translational Health Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Takamatsu Y, Inoue T, Okamura M, Ikegami R, Maejima H. In vivo local transcranial static magnetic field stimulation alters motor behavior in normal rats. Neurosci Lett 2021; 753:135864. [PMID: 33812926 DOI: 10.1016/j.neulet.2021.135864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 11/18/2022]
Abstract
Transcranial static magnetic field stimulation (tSMS) has inhibitory neuromodulatory effects on the human brain. Most of the studies on static magnetic fields have been performed in vitro. To further understand the biological mechanisms of tSMS, we investigated the effects of in vivo tSMS on motor behavior in normal awake rats. The skull of a male Wistar rat was exposed and a polyethylene tube was attached to the skull using dental cement at the center of the motor cortex (n = 7) or the other cortex (n = 6). By attaching a cylindrical NdFeB neodymium magnet into the tube, in vivo tSMS (REAL) was performed. For SHAM, we applied a similar size non-magnetic stainless-steel cylinder. All rats received twice each SHAM and REAL stimulation every two days using a crossover design, and motor function was measured during the stimulation. Activity level and asymmetry of forelimb use were not affected, but less accurate movements in the horizontal ladder test were found in REAL stimulation of the motor cortex. This study shows that in vivo tSMS has inhibitory neuromodulatory effects on motor behavior depending on the stimulated region on the rat cortex.
Collapse
Affiliation(s)
- Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan.
| | - Takahiro Inoue
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan; Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Misato Okamura
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Ryo Ikegami
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
4
|
Transcranial static magnetic stimulation over the motor cortex can facilitate the contralateral cortical excitability in human. Sci Rep 2021; 11:5370. [PMID: 33686102 PMCID: PMC7940605 DOI: 10.1038/s41598-021-84823-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/19/2021] [Indexed: 01/27/2023] Open
Abstract
Transcranial static magnetic stimulation (tSMS) has been focused as a new non-invasive brain stimulation, which can suppress the human cortical excitability just below the magnet. However, the non-regional effects of tSMS via brain network have been rarely studied so far. We investigated whether tSMS over the left primary motor cortex (M1) can facilitate the right M1 in healthy subjects, based on the hypothesis that the functional suppression of M1 can cause the paradoxical functional facilitation of the contralateral M1 via the reduction of interhemispheric inhibition (IHI) between the bilateral M1. This study was double-blind crossover trial. We measured the corticospinal excitability in both M1 and IHI from the left to right M1 by recording motor evoked potentials from first dorsal interosseous muscles using single-pulse and paired-pulse transcranial magnetic stimulation before and after the tSMS intervention for 30 min. We found that the corticospinal excitability of the left M1 decreased, while that of the right M1 increased after tSMS. Moreover, the evaluation of IHI revealed the reduced inhibition from the left to the right M1. Our findings provide new insights on the mechanistic understanding of neuromodulatory effects of tSMS in human.
Collapse
|
5
|
Kirimoto H, Watanabe T, Kubo N, Date S, Sunagawa T, Mima T, Ogata K, Nakazono H, Tobimatsu S, Oliviero A. Influence of Static Magnetic Field Stimulation on the Accuracy of Tachystoscopically Presented Line Bisection. Brain Sci 2020; 10:brainsci10121006. [PMID: 33352946 PMCID: PMC7766566 DOI: 10.3390/brainsci10121006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
Transcranial static magnetic stimulation (tSMS) has been known to reduce human cortical excitability. Here, we investigated whether tSMS would modulate visuo-spatial cognition in healthy humans. Subjects performed a visuo-spatial task requiring judgements about the symmetry of pre-bisected lines. Visual stimuli consisted of symmetrically or asymmetrically transected lines, tachystoscopically presented for 150 ms on a computer monitor. Task performance was examined before, immediately after, and 10 min after tSMS/sham stimulation of 20 min over the posterior parietal cortex (PPC: P4 from the international 10-20 system) or superior temporal gyrus (STG: C6). Nine out of 16 subjects misjudged pre-bisected lines by consistently underestimating the length of the right-side segment (judging lines to be exactly pre-bisected when the transector was located to the left of the midpoint, or judging the left-side segment to be longer when the transector was located at the midpoint). In these subjects showing a leftward bias, tSMS over the right STG reduced the magnitude of the leftward bias. This did not occur with tSMS over the right PPC or sham stimulation. In the remaining right-biased subjects, no intervention effect was observed with any stimulation. Our findings indicate that application of tSMS over the right STG modulates visuo-spatial cognition in healthy adults.
Collapse
Affiliation(s)
- Hikari Kirimoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348553, Japan; (T.W.); (N.K.)
- Correspondence:
| | - Tatsunori Watanabe
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348553, Japan; (T.W.); (N.K.)
| | - Nami Kubo
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348553, Japan; (T.W.); (N.K.)
| | - Shota Date
- Department of Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348553, Japan; (S.D.); (T.S.)
| | - Toru Sunagawa
- Department of Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348553, Japan; (S.D.); (T.S.)
| | - Tatsuya Mima
- Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto 6038577, Japan;
| | - Katsuya Ogata
- Department of Speech and Hearing Sciences, Faculty of Health and Medical Sciences, International University of Health and Welfare, Fukuoka 8318501, Japan;
| | - Hisato Nakazono
- Department of Occupational Therapy, Fukuoka International University of Health and Welfare, Fukuoka 8140001, Japan; (H.N.); (S.T.)
| | - Shozo Tobimatsu
- Department of Occupational Therapy, Fukuoka International University of Health and Welfare, Fukuoka 8140001, Japan; (H.N.); (S.T.)
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Paraple’jicos, SESCAM, 45071 Toledo, Spain;
| |
Collapse
|
6
|
NOJIMA I, OLIVIERO A, MIMA T. Transcranial static magnetic stimulation —From bench to bedside and beyond—. Neurosci Res 2020; 156:250-255. [DOI: 10.1016/j.neures.2019.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/04/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022]
|
7
|
Todorović D, Ilijin L, Mrdaković M, Vlahović M, Grčić A, Petković B, Perić-Mataruga V. The impact of chronic exposure to a magnetic field on energy metabolism and locomotion of Blaptica dubia. Int J Radiat Biol 2020; 96:1076-1083. [PMID: 32412321 DOI: 10.1080/09553002.2020.1770360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: This study deals with a comparative analysis of the effects of chronic exposure to a static magnetic field (SMF) and an extremely low frequency magnetic field (ELF MF) in Blaptica dubia nymphs. The outcome of such treatment on insect and fat body mass, glycogen and total lipid content in the fat body and locomotion, as an energy demanding process, were examined.Materials and methods: One-month-old nymphs of B. dubia were exposed to an SMF (110 mT) or ELF MF (50 Hz, 10 mT) for 5 months. Their locomotion was monitored in the 'open-field' test for 10 min and expressed as travel distance, time in movement and average speed while in motion. After that, fat body mass and content of its main components (glycogen and total lipids) were determined. Nymph body mass was also estimated after 1 and 5 months of MF treatment.Results: Chronic exposure to the SMF and ELF MF decreased nymph body mass and glycogen content in the fat body but increased all examined parameters of locomotion. In addition, chronic SMF treatment elevated total lipid content in the fat body, while chronic ELF MF treatment reduced fat body mass and total lipid content.Conclusions: These findings indicate that B. dubia nymphs are sensitive to the applied MFs and possess different strategies for fuel usage in response to the SMF and ELF MF in order to satisfy increased energy demands and to overcome stressful conditions.
Collapse
Affiliation(s)
- Dajana Todorović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Larisa Ilijin
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Mrdaković
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milena Vlahović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Anja Grčić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka Petković
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Tsuru D, Watanabe T, Chen X, Kubo N, Sunagawa T, Mima T, Kirimoto H. The effects of transcranial static magnetic fields stimulation over the supplementary motor area on anticipatory postural adjustments. Neurosci Lett 2020; 723:134863. [DOI: 10.1016/j.neulet.2020.134863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 01/27/2023]
|
9
|
Heimrath K, Spröggel A, Repplinger S, Heinze HJ, Zaehle T. Transcranial Static Magnetic Field Stimulation Over the Temporal Cortex Modulating the Right Ear Advantage in Dichotic Listening. Neuromodulation 2019; 23:335-340. [PMID: 31353758 DOI: 10.1111/ner.13023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/23/2019] [Accepted: 06/21/2019] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Transcranial static magnetic field stimulation (tSMS) has proposed a new, promising, and simple non-invasive brain stimulation method. While several studies gained certain evidence about tSMS effects in the motor, somatosensory, and visual domains, there is still a controversial debate about its general effectiveness. In the present study, we investigated potential tSMS effects on auditory speech processing as measured by a dichotic listening (DL) task. MATERIALS AND METHODS Fifteen healthy participants received in randomized order on three different days one session of either sham, tSMS over the left, or tSMS over the right auditory cortex (AC). Under stimulation, participants performed a standard DL task with consonant-vowel syllables. Simultaneously, we recorded electroencephalogram from central sites (Fz, Cz, Pz). RESULTS TSMS over the left AC changed the behavioral performance and modulated auditory evoked potentials. Stimulation of the left AC significantly reduced the right ear advantage during the DL task and the N1 component of auditory evoked potentials in response to these syllables. CONCLUSIONS The preliminary results of the present exploratory study demonstrate the ability of tSMS to modulate human brain activity on a behavioral as well as physiologic level. Furthermore, tSMS effects on acoustic processing may have clinical implications by fostering potential approaches for a treatment of speech-related pathologies associated with hyperexcitability in the AC.
Collapse
Affiliation(s)
- Kai Heimrath
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Alexander Spröggel
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Stefan Repplinger
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
10
|
Pall ML. Wi-Fi is an important threat to human health. ENVIRONMENTAL RESEARCH 2018; 164:405-416. [PMID: 29573716 DOI: 10.1016/j.envres.2018.01.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Repeated Wi-Fi studies show that Wi-Fi causes oxidative stress, sperm/testicular damage, neuropsychiatric effects including EEG changes, apoptosis, cellular DNA damage, endocrine changes, and calcium overload. Each of these effects are also caused by exposures to other microwave frequency EMFs, with each such effect being documented in from 10 to 16 reviews. Therefore, each of these seven EMF effects are established effects of Wi-Fi and of other microwave frequency EMFs. Each of these seven is also produced by downstream effects of the main action of such EMFs, voltage-gated calcium channel (VGCC) activation. While VGCC activation via EMF interaction with the VGCC voltage sensor seems to be the predominant mechanism of action of EMFs, other mechanisms appear to have minor roles. Minor roles include activation of other voltage-gated ion channels, calcium cyclotron resonance and the geomagnetic magnetoreception mechanism. Five properties of non-thermal EMF effects are discussed. These are that pulsed EMFs are, in most cases, more active than are non-pulsed EMFs; artificial EMFs are polarized and such polarized EMFs are much more active than non-polarized EMFs; dose-response curves are non-linear and non-monotone; EMF effects are often cumulative; and EMFs may impact young people more than adults. These general findings and data presented earlier on Wi-Fi effects were used to assess the Foster and Moulder (F&M) review of Wi-Fi. The F&M study claimed that there were seven important studies of Wi-Fi that each showed no effect. However, none of these were Wi-Fi studies, with each differing from genuine Wi-Fi in three distinct ways. F&M could, at most conclude that there was no statistically significant evidence of an effect. The tiny numbers studied in each of these seven F&M-linked studies show that each of them lack power to make any substantive conclusions. In conclusion, there are seven repeatedly found Wi-Fi effects which have also been shown to be caused by other similar EMF exposures. Each of the seven should be considered, therefore, as established effects of Wi-Fi.
Collapse
Affiliation(s)
- Martin L Pall
- Washington State University, 638 NE 41st Avenue, Portland, OR 97232-3312, USA.
| |
Collapse
|
11
|
Premi E, Benussi A, La Gatta A, Visconti S, Costa A, Gilberti N, Cantoni V, Padovani A, Borroni B, Magoni M. Modulation of long-term potentiation-like cortical plasticity in the healthy brain with low frequency-pulsed electromagnetic fields. BMC Neurosci 2018; 19:34. [PMID: 29895259 PMCID: PMC5998451 DOI: 10.1186/s12868-018-0434-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/29/2018] [Indexed: 02/04/2023] Open
Abstract
Background Non-depolarizing magnetic fields, like low frequency-pulsed electromagnetic fields (LF-PEMFs) have shown the ability to modulate living structures, principally by influencing synaptic activity and ion channels on cellular membranes. Recently, the CTU Mega 20 device was presented as a molecular accelerator, using energy up to 200 J and providing high-power (2 Tesla) pulsating fields with a water-repulsive (diamagnetic) action and tissue biostimulation. We tested the hypothesis that LF-PEMFs could modulate long-term corticospinal excitability in healthy brains by applying CTU Mega 20®. Ten healthy subjects without known neurological and/or psychiatric diseases entered the study. A randomized double-blind sham-controlled crossover design was employed, recording TMS parameters (amplitude variation of the motor evoked potential as index of cortical excitability perturbations of the motor system) before (pre) and after (post + 0, + 15, + 30 min) a single CTU Mega 20 session on the corresponding primary right-hand motor area, using a real (magnetic field = 2 Tesla; intensity = 90 J; impulse frequency = 7 Hz; duration = 15 min) or sham device. A two-way repeated measures ANOVA with TIME (pre, post + 0, + 15, + 30 min) and TREATMENT (real vs. sham stimulation) as within-subjects factor was applied. Results A significant TIME × TREATMENT interaction was found (p < 0.001). Post hoc comparisons showed a significant effect of TIME, with significant differences at + 0, + 15 and + 30 min compared to baseline after real stimulation (all p < 0.05) but not after sham stimulation (all p < 0.05) and significant effects of TREATMENT, with significant differences at + 0, + 15 and + 30 min for real stimulation compared to sham stimulation (all p < 0.005). No significant depolarizing effects were detected throughout the (real) stimulation. Conclusions Our proof-of-concept study in healthy subjects supports the idea that non-ionizing LF-PEMFs induced by the CTU Mega 20 diamagnetic acceleration system could represent a new approach for brain neuromodulation. Further studies to optimize protocol parameters for different neurological and psychiatric conditions are warranted. Trial Registration The present work has been retrospectively registered as clinical trial on ClinicalTrials.gov NCT03537469 and publicly released on May 24, 2018 Electronic supplementary material The online version of this article (10.1186/s12868-018-0434-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Enrico Premi
- Stroke Unit, Azienda Socio Sanitaria Territoriale "Spedali Civili", "Spedali Civili" Hospital, Piazza Spedali Civili 1, 25123, Brescia, Italy. .,Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Stefano Visconti
- Rehabilitation Unit, Casa di Cura "Villa Barbarano", Salò, Brescia, Italy
| | - Angelo Costa
- Stroke Unit, Azienda Socio Sanitaria Territoriale "Spedali Civili", "Spedali Civili" Hospital, Piazza Spedali Civili 1, 25123, Brescia, Italy
| | - Nicola Gilberti
- Stroke Unit, Azienda Socio Sanitaria Territoriale "Spedali Civili", "Spedali Civili" Hospital, Piazza Spedali Civili 1, 25123, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Mauro Magoni
- Stroke Unit, Azienda Socio Sanitaria Territoriale "Spedali Civili", "Spedali Civili" Hospital, Piazza Spedali Civili 1, 25123, Brescia, Italy
| |
Collapse
|
12
|
Kirimoto H, Tamaki H, Otsuru N, Yamashiro K, Onishi H, Nojima I, Oliviero A. Transcranial Static Magnetic Field Stimulation over the Primary Motor Cortex Induces Plastic Changes in Cortical Nociceptive Processing. Front Hum Neurosci 2018; 12:63. [PMID: 29497371 PMCID: PMC5818436 DOI: 10.3389/fnhum.2018.00063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/05/2018] [Indexed: 11/13/2022] Open
Abstract
Transcranial static magnetic field stimulation (tSMS) is a novel and inexpensive, non-invasive brain stimulation (NIBS) technique. Here, we performed non-invasive modulation of intra-epidermal electrical stimulation-evoked potentials (IES-EPs) by applying tSMS or sham stimulation over the primary motor (M1) and somatosensory (S1) cortices in 18 healthy volunteers for 15 min. We recorded EPs after IES before, right after, and 10 min after tSMS. The IES-EP amplitude was significantly reduced immediately after tSMS over M1, whereas tSMS over S1 and sham stimulation did not affect the IES-EP amplitude. Thus, tSMS may affect cortical nociceptive processing. Although the results of intervention for experimental acute pain in healthy subjects cannot be directly translated into the clinical situation, tSMS may be a potentially useful NIBS method for managing chronic pain, in addition to standard of care treatments.
Collapse
Affiliation(s)
- Hikari Kirimoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Tamaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Naufumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Koya Yamashiro
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Ippei Nojima
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Toledo, Spain
| |
Collapse
|
13
|
Osanai H, Minusa S, Tateno T. Micro-coil-induced Inhomogeneous Electric Field Produces sound-driven-like Neural Responses in Microcircuits of the Mouse Auditory Cortex In Vivo. Neuroscience 2018; 371:346-370. [DOI: 10.1016/j.neuroscience.2017.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022]
|
14
|
Matsugi A, Okada Y. Cerebellar transcranial static magnetic field stimulation transiently reduces cerebellar brain inhibition. FUNCTIONAL NEUROLOGY 2017; 32:77-82. [PMID: 28676140 DOI: 10.11138/fneur/2017.32.2.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate whether transcranial static magnetic field stimulation (tSMS) delivered using a compact cylindrical NdFeB magnet over the cerebellum modulates the excitability of the cerebellum and contralateral primary motor cortex, as measured using cerebellar brain inhibition (CBI), motor evoked potentials (MEPs), and resting motor threshold (rMT). These parameters were measured before tSMS or sham stimulation and immediately, 5 minutes and 10 minutes after stimulation. There were no significant changes in CBI, MEPs or rMT over time in the sham stimulation condition, and no changes in MEPs or rMT in the tSMS condition. However, CBI was significantly decreased immediately after tSMS as compared to that before and 5 minutes after tSMS. Our results suggest that tSMS delivered to the cerebellar hemisphere transiently reduces cerebellar inhibitory output but does not affect the excitability of the contralateral motor cortex.
Collapse
|
15
|
Tasić T, Djordjević DM, De Luka SR, Trbovich AM, Japundžić-Žigon N. Static magnetic field reduces blood pressure short-term variability and enhances baro-receptor reflex sensitivity in spontaneously hypertensive rats. Int J Radiat Biol 2017; 93:527-534. [PMID: 28051886 DOI: 10.1080/09553002.2017.1276307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE It has been shown that chronic exposure of young spontaneously hypertensive rats (SHR) to static magnetic field (SMF) delays the development of overt hypertension. Therefore the aim of the present work was to investigate the effects of SMF on autonomic cardiovascular control in adult spontaneously hypertensive rats. MATERIALS AND METHODS Experiments were performed in freely moving spontaneously hypertensive rats equipped with femoral arterial catheter for blood pressure recording. Spontaneously hypertensive rats were exposed for 30 days to upward-oriented SMF (n = 17) or downward-oriented SMF (n = 17) of 16 mT intensity. A control group of spontaneously hypertensive rats (n = 17) was not exposed to SMF. Neurogenic cardiovascular control was evaluated by spectral analysis of arterial blood pressure and heart rate short-term variability and baro-receptor reflex sensitivity using the sequence method. RESULTS Exposure of spontaneously hypertensive rats to both upward- and downward-oriented SMF significantly reduced arterial blood pressure and enhanced baro-receptor reflex sensitivity. Downward-oriented SMF reduced heart rate, too. SMF of either orientation reduced systolic blood pressure variability in very low frequency domain while downward-oriented SMF also reduced low-frequency and increased high frequency domains. CONCLUSION It follows that prolonged exposure to SMF is beneficial for neurogenic cardiovascular control in hypertension.
Collapse
Affiliation(s)
- Tatjana Tasić
- a Institute of Pharmacology , Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade , Belgrade , Serbia
| | - Drago M Djordjević
- b Institute of Pathophysiology , Faculty of Medicine, University of Belgrade , Belgrade , Serbia
| | - Silvio R De Luka
- b Institute of Pathophysiology , Faculty of Medicine, University of Belgrade , Belgrade , Serbia
| | - Alexander M Trbovich
- b Institute of Pathophysiology , Faculty of Medicine, University of Belgrade , Belgrade , Serbia
| | - Nina Japundžić-Žigon
- a Institute of Pharmacology , Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade , Belgrade , Serbia
| |
Collapse
|
16
|
Hashemi S, Abdolali A. Three-dimensional analysis, modeling, and simulation of the effect of static magnetic fields on neurons. Bioelectromagnetics 2016; 38:128-136. [PMID: 27862074 DOI: 10.1002/bem.22019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 10/20/2016] [Indexed: 11/11/2022]
Abstract
The effect of static magnetic fields on neuron function has been studied. None of the possible explanations are decisive or fully consistent with evidence in the literature. Therefore, the purpose of this paper is to examine the different possibilities, for the first time, through a three-dimensional modeling strategy in an effort to find out which possibility or combination is effective on cell function. A full-wave analysis was employed to simulate various effects of magnetic fields. The possibilities included force exerted on mobile ions, magnetophoretic force exerted on ions with permeability different from intracellular or extracellular fluids, magnetophoretic force exerted on sensor proteins in ion channels, and magnetophoretic pressure exerted on the membrane and spatial rotation of anisotropic diamagnetic particles. According to the simulations, the last two possibilities are more likely to be effective; therefore, their corresponding equations in this article were formulated to verify the results of the literature experiments. Bioelectromagnetics. 38:128-136, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soheil Hashemi
- Department of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.,Bioelectromagnetics Lab, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Ali Abdolali
- Department of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.,Bioelectromagnetics Lab, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
17
|
Kirimoto H, Asao A, Tamaki H, Onishi H. Non-invasive modulation of somatosensory evoked potentials by the application of static magnetic fields over the primary and supplementary motor cortices. Sci Rep 2016; 6:34509. [PMID: 27698365 PMCID: PMC5048290 DOI: 10.1038/srep34509] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/15/2016] [Indexed: 12/25/2022] Open
Abstract
This study was performed to investigate the possibility of non-invasive modulation of SEPs by the application of transcranial static magnetic field stimulation (tSMS) over the primary motor cortex (M1) and supplementary motor cortex (SMA), and to measure the strength of the NdFeB magnetic field by using a gaussmeter. An NdFeB magnet or a non-magnetic stainless steel cylinder (for sham stimulation) was settled on the scalp over M1 and SMA of 14 subjects for periods of 15 min. SEPs following right median nerve stimulation were recorded before and immediately after, 5 min after, and 10 min after tSMS from sites C3′ and F3. Amplitudes of the N33 component of SEPs at C3′ significantly decreased immediately after tSMS over M1 by up to 20%. However, tSMS over the SMA did not affect the amplitude of any of the SEP components. At a distance of 2–3 cm (rough depth of the cortex), magnetic field strength was in the range of 110–190 mT. Our results that tSMS over M1 can reduce the amplitude of SEPs are consistent with those of low-frequency repeated TMS and cathodal tDCS studies. Therefore, tSMS could be a useful tool for modulating cortical somatosensory processing.
Collapse
Affiliation(s)
- Hikari Kirimoto
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Akihiko Asao
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hiroyuki Tamaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
18
|
Tekieh T, Sasanpour P, Rafii-Tabar H. Effects of electromagnetic field exposure on conduction and concentration of voltage gated calcium channels: A Brownian dynamics study. Brain Res 2016; 1646:560-569. [PMID: 27346366 DOI: 10.1016/j.brainres.2016.06.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/25/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
Abstract
A three-dimensional Brownian Dynamics (BD) in combination with electrostatic calculations is employed to specifically study the effects of radiation of high frequency electromagnetic fields on the conduction and concentration profile of calcium ions inside the voltage-gated calcium channels. The electrostatic calculations are performed using COMSOL Multiphysics by considering dielectric interfaces effectively. The simulations are performed for different frequencies and intensities. The simulation results show the variations of conductance, average number of ions and the concentration profiles of ions inside the channels in response to high frequency radiation. The ionic current inside the channel increases in response to high frequency electromagnetic field radiation, and the concentration profiles show that the residency of ions in the channel decreases accordingly.
Collapse
Affiliation(s)
- Tahereh Tekieh
- Computational Nano-Bioelectromagnetics Research Group, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Computational Nano-Bioelectromagnetics Research Group, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Hashem Rafii-Tabar
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Chervyakov AV, Chernyavsky AY, Sinitsyn DO, Piradov MA. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation. Front Hum Neurosci 2015; 9:303. [PMID: 26136672 PMCID: PMC4468834 DOI: 10.3389/fnhum.2015.00303] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/12/2015] [Indexed: 11/16/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS) has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson’s disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation and long-term depression. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells, and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals). It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.
Collapse
Affiliation(s)
| | - Andrey Yu Chernyavsky
- Moscow Institute of Physics and Technology, Russian Academy of Sciences , Moscow , Russia ; Faculty of Computational Mathematics and Cybernetics, Moscow State University , Moscow , Russia
| | - Dmitry O Sinitsyn
- Research Center of Neurology , Moscow , Russia ; Semenov Institute of Chemical Physics, Russian Academy of Sciences , Moscow , Russia
| | | |
Collapse
|
20
|
Chervyakov AV, Chernyavsky AY, Sinitsyn DO, Piradov MA. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation. Front Hum Neurosci 2015. [PMID: 26136672 DOI: 10.3389/fnhum.2015.00303.e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS) has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson's disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation and long-term depression. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells, and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals). It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.
Collapse
Affiliation(s)
| | - Andrey Yu Chernyavsky
- Moscow Institute of Physics and Technology, Russian Academy of Sciences , Moscow , Russia ; Faculty of Computational Mathematics and Cybernetics, Moscow State University , Moscow , Russia
| | - Dmitry O Sinitsyn
- Research Center of Neurology , Moscow , Russia ; Semenov Institute of Chemical Physics, Russian Academy of Sciences , Moscow , Russia
| | | |
Collapse
|
21
|
Kim EC, Leesungbok R, Lee SW, Lee HW, Park SH, Mah SJ, Ahn SJ. Effects of moderate intensity static magnetic fields on human bone marrow-derived mesenchymal stem cells. Bioelectromagnetics 2015; 36:267-76. [DOI: 10.1002/bem.21903] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 02/01/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Eun-Cheol Kim
- Department of Maxillofacial Tissue Regeneration; School of Dentistry and Institute of Oral Biology
| | - Richard Leesungbok
- Department of Biomaterials & Prosthodontics; Kyung Hee University Hospital at Gangdong, School of Dentistry
| | - Suk-Won Lee
- Department of Biomaterials & Prosthodontics; Kyung Hee University Hospital at Gangdong, School of Dentistry
| | - Hyeon-Woo Lee
- Department of Maxillofacial Tissue Regeneration; School of Dentistry and Institute of Oral Biology
| | - Sang Hyuk Park
- Department of Conservative Dentistry; Kyung Hee University Hospital at Gangdong, School of Dentistry
| | - Su-Jung Mah
- Department of Orthodontics; Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University; Seoul Korea
| | - Su-Jin Ahn
- Department of Biomaterials & Prosthodontics; Kyung Hee University Hospital at Gangdong, School of Dentistry
| |
Collapse
|