1
|
Yang L, Liao W, Dong J, Chen X, Huang L, Yang W, Jiang S. Zearalenone Promotes Uterine Hypertrophy through AMPK/mTOR Mediated Autophagy. Toxins (Basel) 2024; 16:73. [PMID: 38393151 PMCID: PMC10892946 DOI: 10.3390/toxins16020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Zearalenone (ZEN), a non-steroidal Fusarium graminearum with an estrogen effect, can cause damage to the gastrointestinal tract, immune organs, liver, and reproductive system. Further analysis of the mechanism of ZEN has become an important scientific issue. We have established in vivo and in vitro models of ZEN intervention, used AMPK/mTOR as a targeted pathway for ZEN reproductive toxicity, and explored the molecular mechanism by which ZEN may induce uterine hypertrophy in weaned piglets. Our study strongly suggested that ZEN can activate the phosphorylation of AMPK in uterine endometrial epithelium cells, affect the phosphorylation level of mTOR through TSC2 and Rheb, induce autophagy, upregulate the expression of proliferative genes PCNA and BCL2, downregulate the expression of apoptotic gene BAX, promote uterine endometrial epithelium cells proliferation, and ultimately lead to thickening of the endometrial and myometrium, increased density of uterine glands, and induce uterine hypertrophy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (L.Y.); (W.L.); (J.D.); (X.C.); (L.H.); (W.Y.)
| |
Collapse
|
2
|
Bai J, Zhou Y, Luo X, Hai J, Si X, Li J, Fu H, Dai Z, Yang Y, Wu Z. Roles of stress response-related signaling and its contribution to the toxicity of zearalenone in mammals. Compr Rev Food Sci Food Saf 2022; 21:3326-3345. [PMID: 35751400 DOI: 10.1111/1541-4337.12974] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
Zearalenone (ZEA) is a mycotoxin frequently found in cereal crops and cereal-derived foodstuffs worldwide. It affects plant productivity, and is also a serious hazard to humans and animals if being exposed to food/feed contaminated by ZEA. Studies over the last decade have shown that the toxicity of ZEA in animals is mainly mediated by the various stress responses, such as endoplasmic reticulum (ER) stress, oxidative stress, and others. Accumulating evidence shows that oxidative stress and ER stress signaling are actively implicated in and contributes to the pathophysiology of various diseases. Biochemically, the deleterious effects of ZEA are associated with apoptosis, DNA damage, and lipid peroxidation by regulating the expression of genes implicated in these biological processes. Despite these findings, the underlying mechanisms responsible for these alterations remain unclear. This review summarized the characteristics, metabolism, toxicity and the deleterious effects of ZEA exposure in various tissues of animals. Stress response signaling implicated in the toxicity as well as potential therapeutic options with the ability to reduce the deleterious effects of ZEA in animals were highlighted and discussed.
Collapse
Affiliation(s)
- Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yusong Zhou
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xin Luo
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jia Hai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jun Li
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China.,Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing, P. R. China
| |
Collapse
|
3
|
Yi Y, Wan S, Wang S, Khan A, Guo J, Zheng X, Li H, Sun N. Scutellarin protects mouse ovarian granulosa cells from injury induced by the toxin zearalenone. Food Funct 2021; 12:1252-1261. [PMID: 33433546 DOI: 10.1039/d0fo02711a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEA), present in animal grain feed is produced by Fusarium fungi and this toxin targets ovarian granulosa cells (GCs) to cause reproductive disorders in female animals. Current research on drugs that can rescue ZEA-induced ovarian GC damage is limited. The purpose of this study was to explore the effect of scutellarin (Scu) on ZEA-induced apoptosis of mouse ovarian GCs and its mechanism. In one set of experiments, the primary cultured mouse ovarian GCs were co-treated with ZEA and Scu for 24 h. The results showed that Scu significantly alleviated ZEA-induced cell damage, restored cell cycle arrest, and inhibited apoptosis by reducing the ratio of cleaved-caspase-3, cleaved-PARP, and Bax/Bcl-2. In another set of experiments, six-week-old mice were intragastrically administered with 40 mg kg-1 ZEA for 2 h, followed by 100 mg kg-1 Scu for 3 days. It was observed that Scu inhibited ZEA-induced apoptosis and positive signal expression of cleaved-caspase-3 in the ovarian granulosa layer, with the involvement of the mitochondrial apoptotic pathway. These data provide strong evidence that Scu can be further developed as a potential new therapeutic drug for preventing or treating reproductive toxicity caused by the exposure of animals to ZEA found in the grains of animal feeds.
Collapse
Affiliation(s)
- Yanyan Yi
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, People's Republic of China.
| | - Shuangxiu Wan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, People's Republic of China. and School of Pharmacy, Heze University, Heze 274000, Shangdong, People's Republic of China
| | - Shaoyu Wang
- School of Community Health, Faculty of Science, Charles Sturt University, NSW 2800, Australia
| | - Ajab Khan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, People's Republic of China.
| | - Jianhua Guo
- Department of Veterinary Pathobiology, Schubot Exotic Bird Health Center, Texas A&M University, College Station, TX 77843, USA
| | - Xiaozhong Zheng
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Hongquan Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, People's Republic of China.
| | - Na Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, People's Republic of China.
| |
Collapse
|
4
|
Nguyen NH, Ha TKQ, Yang JL, Pham HTT, Oh WK. Triterpenoids from the genus Gynostemma: Chemistry and pharmacological activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113574. [PMID: 33186700 DOI: 10.1016/j.jep.2020.113574] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/20/2020] [Accepted: 11/05/2020] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE G. pentaphyllum, also known as Jiao-Gu-Lan, has been used traditionally as folk remedies for many diseases, including diabetes mellitus, metabolic syndrome, aging, and neurodegenerative diseases in China and some countries in East and Southeast Asia. It is considered as an "immortality herb" in Guizhou Province, because it was consumed regularly by the elderly native inhabitants. Other species of the same genus Gynostemma such as G. longipes and G. laxum have been used as alternatives to G. pentaphyllum in ethno-medicine in Vietnam and other Asian countries. AIM OF THE REVIEW The review aims to summarize up-to-date study results on Gynostemma species, including traditional usage, phytochemical profile, pharmacological activities, and toxicological studies, in order to suggest future research orientation and therapeutic applications on acute and chronic diseases. MATERIALS AND METHODS The relevant literature on the genus Gynostemma was gathered from secondary databases (Web of Science and PubMed), books, and official websites. The latest literature cited in this review was published in February 2020. RESULTS The genus Gynostemma has been widely used in traditional medicine, mainly for treatment of diabetes, hypertension, obesity, and hepatosteatosis. To date, 328 dammarane-type saponins were isolated and structurally elucidated from Gynostemma species. Crude extracts, saponin-rich fractions (gypenosides), and pure compounds were reported to show a wide range of pharmacological activities in both in vitro and in vivo experiments. The most notable pharmacological effects were anti-cancer, cardioprotective, hepatoprotective, neuroprotective, anti-diabetic, anti-obesity, and anti-inflammatory activities. Toxicological studies were conducted only on G. pentaphyllum, showing that the plant extracts were relatively safe in both acute and long-term toxicity experiments at the given dosage while no toxicological studies were reported for the other species. CONCLUSIONS The review summarizes current studies on traditional uses, phytochemistry, biological properties, and toxicology of medicinal Gynostemma species. Till now, the majority of publications still focused only on G. pentaphyllum. However, the promising preliminary data of other Gynostemma species indicated the research potential of this genus, both in phytochemical and pharmacological aspects. Furthermore, clinical data are required to evaluate the efficacy and undesired effects of crude extracts, standard saponin fractions, and pure compounds prepared from Gynostemma medicinal plants.
Collapse
Affiliation(s)
- Ngoc-Hieu Nguyen
- Faculty of Pharmacy, PHENIKAA University, Hanoi, 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No. 167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi, 11313, Viet Nam
| | - Thi Kim Quy Ha
- College of Natural Sciences, Cantho University, Campus II, Cantho City, Viet Nam
| | - Jun-Li Yang
- Key Laboratory of Chemistry of Northwestern Plant Resources of CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China
| | - Ha Thanh Tung Pham
- Department of Botany, Hanoi University of Pharmacy, Hanoi, 100000, Viet Nam
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Li K, Ma C, Li H, Dev S, He J, Qu X. Medicinal Value and Potential Therapeutic Mechanisms of Gynostemma pentaphyllum (Thunb.) Makino and Its Derivatives: An Overview. Curr Top Med Chem 2020; 19:2855-2867. [PMID: 31724506 DOI: 10.2174/1568026619666191114104718] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/25/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022]
Abstract
:
Gynostemma pentaphyllum (Thunb.) Makino (GpM) and its derivatives, especially gypenosides
(Gyps), are widely used as safe and convenient natural herbal drugs for the treatment of many
diseases for a long time, and Gyps have different oral bioavailability (OB) values and low ability to
cross the blood-brain barrier (BBB). The effects of GpM and isolates on fibrosis, inflammation, oxidation,
proliferation and migration are proved. GpM shows bidirectional regulation effect on proliferation,
oxidation and apoptosis in tumor and non-tumor cells. GpM and its extractions can resist proliferation,
activate oxidation and apoptosis in tumor cells and have opposite effects on non-tumor cells. We succinctly
present some current views of medicinal value and potential therapeutic mechanisms of GpM
and its derivatives.
Collapse
Affiliation(s)
- Kaijun Li
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Chao Ma
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Haoyu Li
- Graduate School, Guangxi University of Chinese Medicine, Guangxi, China
| | - Sooranna Dev
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369, Fulham Road, London SW10 9NH, United Kingdom
| | - JianFeng He
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Xiaosheng Qu
- National Engineering laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, Guangxi, China
| |
Collapse
|
6
|
Yang S, Gong P, Pan J, Wang N, Tong J, Wang M, Long M, Li P, He J. Pediococcus pentosaceus xy46 Can Absorb Zearalenone and Alleviate its Toxicity to the Reproductive Systems of Male Mice. Microorganisms 2019; 7:microorganisms7080266. [PMID: 31426404 PMCID: PMC6722568 DOI: 10.3390/microorganisms7080266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 01/15/2023] Open
Abstract
Zearalenone (ZEA) contamination is a very serious problem around the world as it can induce reproductive disorders in animals and affect the health of humans. Therefore, reducing the damage it causes to humans and animals is a current focus of research. In this study, we assess the removing capacity of Pediococcus pentosaceus xy46 towards ZEA and investigate the mechanism responsible for its action, thus confirming if it can alleviate ZEA toxicity to the reproductive systems of male mice. Our results show that the rate at which the strain removes ZEA is as high as 89.2% in 48 h when the concentration of ZEA is 4 μg/mL in the liquid medium. Heat and acid treatment significantly enhanced the ability of the bacteria to remove ZEA. The animal experiments results show that the oral administration of xy46 to mice (0.2 mL daily at a concentration of 109 CFU/mL for 28 days) significantly reduces the degree of testicular pathomorphological changes and apoptosis induced by ZEA when the mice are intragastric administration with 40 mg/kg ZEA daily for 28 days. Moreover, oral administration of xy46 enhances the decrease in the testosterone level and improves the oxidative stress injury induced by ZEA. Furthermore, oral administration of xy46 reverts the expression of these genes and proteins in the testicular tissues of the mice involved in the blood-testis barrier and apoptosis (e.g., Vim, caspase 12, Cldn11, N-cad, Bax, and Bcl-2). However, xy46 cannot significantly revert in some of these evaluated parameters, especially in sperm quantity and quality when the mice were given 70 mg/kg ZEA daily for 28 days. In conclusion, our results suggest that the strain Pediococcus pentosaceus xy46 can efficiently remove ZEA from the liquid medium, the mechanism responsible for its action is absorption, and it can alleviate the toxicity of ZEA to the reproductive systems of male mice when the mice are given 40 mg/kg ZEA daily, However, it cannot completely alleviate the reproductive toxicity of higher dosage of zearalenone through its ability to adsorb ZEA.
Collapse
Affiliation(s)
- Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Jianwen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jingjing Tong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
7
|
Yang D, Jiang X, Sun J, Li X, Li X, Jiao R, Peng Z, Li Y, Bai W. Toxic effects of zearalenone on gametogenesis and embryonic development: A molecular point of review. Food Chem Toxicol 2018; 119:24-30. [DOI: 10.1016/j.fct.2018.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
|
8
|
Effects of Zearalenone Exposure on the TGF-β1/Smad3 Signaling Pathway and the Expression of Proliferation or Apoptosis Related Genes of Post-Weaning Gilts. Toxins (Basel) 2018; 10:toxins10020049. [PMID: 29360780 PMCID: PMC5848150 DOI: 10.3390/toxins10020049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/11/2022] Open
Abstract
Zearalenone (ZEA) is an estrogenic toxin produced by Fusarium species, which is widely distributed and posed a great health risk to both humans and farm animals. Reproductive disorders associated with ZEA such as premature puberty, infertility and abortion have plagued the animal husbandry, but the molecular mechanism is unclear. Because transforming growth factor-β1 (TGF-β1) signaling pathway is involved in the proliferation and apoptosis of cells, proliferating cell nuclear antigen (PCNA), B-cell lymphoma/leukemia-2 (BCL-2) and BCL-2 associated X protein (BAX) that all play indispensable roles in the normal development of the uterus, it is hypothesized that ZEA induces reproductive disorders is closely related to the expression of these genes. The objective of this study was to assess the effects of dietary ZEA at the concentrations of 0.5 to 1.5 mg/kg on the mRNA and protein expression of these genes in the uteri of post-weaning gilts and to explore the possible molecular mechanism. Forty healthy post-weaning female piglets (Duroc × Landrace × Large White) aged 38 d were randomly allocated to basal diet supplemented with 0 (Control), 0.5 (ZEA0.5), 1.0 (ZEA1.0), or 1.5 (ZEA1.5) mg/kg purified ZEA, and fed for 35 d. Piglets were euthanized at the end of the experiment and samples were taken and subjected to immunohistochemistry, qRT-PCR and Western blot analyses. The relative mRNA expressions of PCNA, BCL-2 and Smad3 in the uteri of post-weaning gilts increased linearly (p < 0.05) and quadratically (p < 0.05) as ZEA concentration increased in the diet. The relative protein expressions of PCNA, BAX, BCL-2, TGF-β1, Smad3, and phosphorylated Smad3 (p-Smad3) in the uteri of post-weaning gilts increased linearly (p < 0.05) and quadratically (p < 0.001) with an increasing level of ZEA. The results showed that uterine cells in the ZEA (0.5–1.5 mg/kg) treatments were in a high proliferation state, indicating that ZEA could accelerate the proliferation of uteri and promote the development of the uteri. At the same time, the results suggested that ZEA activates the TGF-β1/Smad3 signaling pathway, suggesting it plays an important role in accelerating the development of the uterus.
Collapse
|
9
|
Ren Z, Deng H, Deng Y, Liang Z, Deng J, Zuo Z, Hu Y, Shen L, Yu S, Cao S. Combined effects of deoxynivalenol and zearalenone on oxidative injury and apoptosis in porcine splenic lymphocytes in vitro. ACTA ACUST UNITED AC 2017; 69:612-617. [DOI: 10.1016/j.etp.2017.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
|
10
|
Adibnia E, Razi M, Malekinejad H. Zearalenone and 17 β-estradiol induced damages in male rats reproduction potential; evidence for ERα and ERβ receptors expression and steroidogenesis. Toxicon 2016; 120:133-46. [PMID: 27527272 DOI: 10.1016/j.toxicon.2016.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 12/29/2022]
Abstract
The estrogen receptors (ERs)-dependent effects of Zearalenone (ZEA) on structure and function of the testis as well as sperm parameters were compared with 17-β estradiol as endogenous substance. For this purpose, 30 mature male rats were assigned into five groups as; control (appropriate volume of normal saline, i. p.), ZEA-received (1, 2 and 4 mg/kg, b. w., i. p.) and 17 β-estradiol (E2)-received (appropriate dose of 0.1 mg/kg, i. p.). Following 28 days, the mRNA levels of estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) in the testis and sperms and the expression of them at protein levels in testicles were estimated. Mitochondrial content of germinal epithelium, Leydig cells steroid foci, sperm quality parameters and serum level of testosterone were assessed. Fluorescent techniques were used for analyzing apoptosis and mRNA damage in necrotic cells. ZEA reduced the mRNA and protein levels of ERα in testicles while up-regulated the ERβ expression. The mRNA level of ERα decreased in sperms of ZEA and E2-received animals. No remarkable changes were found for ERβ expression in sperms from ZEA and E2-received animals. ZEA reduced the Leydig cells steroidogenesis, mitochondrial content of germinal cells and elevated cellular apoptosis and necrosis dose-dependently. E2 reduced the testosterone concentration, enhanced the apoptosis and reduced sperm quality. Our data suggest that ZEA-induced detrimental effects in the structure and function of testis, may attribute to changing the ERs expression at mRNA and translational level.
Collapse
Affiliation(s)
- Elmira Adibnia
- Department of Comparative Histology & Embryology, Faculty of Veterinary Medicine, P.O. Box: 1177, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Department of Comparative Histology & Embryology, Faculty of Veterinary Medicine, P.O. Box: 1177, Urmia University, Urmia, Iran.
| | - Hassan Malekinejad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran; Department of Pharmacology & Toxicology, Faculty of Veterinary Medicine, P.O. Box: 1177, Urmia University, Urmia, Iran
| |
Collapse
|
11
|
Lin-Na S, Yong-Xiu S. Effects of polysaccharides from Gynostemma pentaphyllum (Thunb.), Makino on physical fatigue. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2014; 11:112-7. [PMID: 25371572 PMCID: PMC4202428 DOI: 10.4314/ajtcam.v11i3.17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Gynostemma pentaphyllum (Thunb.) Makino has been reported to have a wide range of health benefits in Chinese herbal medicines. Polysaccharides from Gynostemma pentaphyllum (PGP), has been identified as one of the active ingredients responsible for its biological activities. Although many pharmacological activities of PGP have received a great deal of attention, there is limited evidence for the anti-fatigue effects of PGP. The purpose of this study was to investigate the effects of polysaccharides from PGP on physical fatigue. MATERIALS AND METHOD The rats were divided into four groups, with 10 animals per group: control (C), group, low-treated (LT), group, medium-treated (MT), group, and high-treated (HT), group. The C group received distilled water, while LT, MT and HT groups were given various doses of PGP (100, 200, 400 mg/kg· d). After 30 days, forced swimming test was carried out in an acrylic plastic pool, then the exhaustive swimming time of rats and some biochemical parameters related to fatigue were measured. The data obtained showed that PGP could extend the exhaustive swimming time of the rats, as well as decrease the blood lactic acid (BLA), and blood urea nitrogen (BUN), concentrations, and increase the hemoglobin, liver glycogen and muscle glycogen concentrations. RESULT The data obtained showed that different doses of PGP could extend the exhaustive swimming time of the rats, as well as decrease the BLA and BUN concentrations, and increase the hemoglobin, liver glycogen and muscle glycogen concentrations, which suggests that PGP had significant anti-fatigue effects on rats. CONCLUSION PGP may be of use as a potential anti-fatigue agent, but there is a need for further research on long-term use in order to show its positive effects on physical fatigue.
Collapse
Affiliation(s)
- Shan Lin-Na
- Department of Physical Education, Tangshan Teacher's College, Tangshan 063000, China
| | - Shi Yong-Xiu
- Department of Physical Education, Tangshan Teacher's College, Tangshan 063000, China
| |
Collapse
|
12
|
Effect of zearalenone on reproductive parameters and expression of selected testicular genes in mice. Reprod Toxicol 2014; 45:20-30. [PMID: 24412631 DOI: 10.1016/j.reprotox.2014.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 12/19/2013] [Accepted: 01/02/2014] [Indexed: 02/01/2023]
Abstract
We tested the effect of two different concentrations (150μg/l and 0.15μg/l) of mycotoxin zearalenone (ZEA) on the reproductive parameters and expression of testicular genes in male mice. In adult males, no reduction of body or reproductive organ weight was observed, and the seminiferous tubules were morphologically normal with ongoing spermatogenesis. However, we found decreased sperm concentration, increase of morphologically abnormal spermatozoa and increased binding of apoptotic marker annexin V. This study was also focused on the evaluation of gene expression profiles of 28 genes playing important roles during the processes occurring in the testicular tissue. We detected changes in the expression of genes important for proper spermatogenesis. Surprisingly, we observed a stronger effect after exposure to the lower dose of ZEA.
Collapse
|
13
|
Koraïchi F, Inoubli L, Lakhdari N, Meunier L, Vega A, Mauduit C, Benahmed M, Prouillac C, Lecoeur S. Neonatal exposure to zearalenone induces long term modulation of ABC transporter expression in testis. Toxicology 2013; 310:29-38. [PMID: 23707492 DOI: 10.1016/j.tox.2013.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
Abstract
Mycotoxin zearalenone (ZEN) is a cereal contaminant produced by various species of Fusarium fungi. When interacting with estrogen receptors, ZEN leads to animal fertility disturbances and other reproductive pathologies. Few data are available on the effects of perinatal exposure to ZEN, particularly in the blood-testis barrier. The aim of this study was to assess the impact of ZEN in adult rats exposed neonatally. We focused on the expression and cellular localization of major ABC transporters expressed in adult rat testis, comparing ZEN effects with those of Estradiol Benzoate (EB) neonatal exposure. Dose-dependent and long term modulations of mRNA and protein levels of Abcb1, Abcc1, Abcg2, Abcc4 and Abcc5 were observed, along with Abcc4 protein cellular delocalization. ZEN exposure of SerW3 Sertoli cells showed modulation of Abcb1, Abcc4 and Abcc5. Comparison with EB exposure showed similar modulation profiles for Abcg2 but differential modulations for Abcb1, Abcc1, Abcc4 and Abcc5 in vivo, and a similar profile for Abcb1 modulation by ZEN and EB, but differential modulation for Abcc4 and Abcc5 in vitro. ZEN and EB effects were inhibited by in vitro addition of the pure anti-estrogen ICI 182.780, suggesting the at least partial implication of ZEN estrogenic activity in these modulations. These results suggested that ZEN neonatal exposure could affect the exposure of testis to ABC transporter substrates, and negatively influence spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Farah Koraïchi
- CarMeN, INRA 1235/INSERM 1060/UCBL1/INSA Lyon/HCL, Faculté de Médecine, LYON SUD-BP 12, 165 Chemin du Grand Revoyet, 69921 Oullins Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hou YJ, Zhao YY, Xiong B, Cui XS, Kim NH, Xu YX, Sun SC. Mycotoxin-containing diet causes oxidative stress in the mouse. PLoS One 2013; 8:e60374. [PMID: 23555961 PMCID: PMC3610673 DOI: 10.1371/journal.pone.0060374] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 02/26/2013] [Indexed: 11/18/2022] Open
Abstract
Mycotoxins which mainly consist of Aflatoxin (AF), Zearalenone (ZEN) and Deoxynivalenol (DON) are commonly found in many food commodities. Although each component has been shown to cause liver toxicity and oxidative stress in several species, there is no evidence regarding the effect of naturally contained multiple mycotoxins on tissue toxicity and oxidative stress in vivo. In the present study, mycotoxins-contaminated maize (AF 597 µg/kg, ZEN 729 µg/kg, DON 3.1 mg/kg maize) was incorporated into the diet at three different doses (0, 5 and 20%) to feed the mice, and blood and tissue samples were collected to examine the oxidative stress related indexes. The results showed that the indexes of liver, kidney and spleen were all increased and the liver and kidney morphologies changed in the mycotoxin-treated mice. Also, the treatment resulted in the elevated glutathione peroxidase (GPx) activity and malondialdehyde (MDA) level in the serum and liver, indicating the presence of the oxidative stress. Moreover, the decrease of catalase (CAT) activity in the serum, liver and kidney as well as superoxide dismutase (SOD) activity in the liver and kidney tissue further confirmed the occurrence of oxidative stress. In conclusion, our data indicate that the naturally contained mycotoxins are toxic in vivo and able to induce the oxidant stress in the mouse.
Collapse
Affiliation(s)
- Yan-Jun Hou
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Yong-Yan Zhao
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
| | - Bo Xiong
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Yin-Xue Xu
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
- * E-mail: (YXX); (SCS)
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, China
- * E-mail: (YXX); (SCS)
| |
Collapse
|
15
|
Scientific Opinion on the risks for public health related to the presence of zearalenone in food. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2197] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
16
|
Zhang M, He Z, Wen L, Wu J, Yuan L, Lu Y, Guo C, Zhu L, Deng S, Yuan H. Cadmium suppresses the proliferation of piglet Sertoli cells and causes their DNA damage, cell apoptosis and aberrant ultrastructure. Reprod Biol Endocrinol 2010; 8:97. [PMID: 20712887 PMCID: PMC3224921 DOI: 10.1186/1477-7827-8-97] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 08/16/2010] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Very little information is known about the toxic effects of cadmium on somatic cells in mammalian testis. The objective of this study is to explore the toxicity of cadmium on piglet Sertoli cells. METHODS Sertoli cells were isolated from piglet testes using a two-step enzyme digestion and followed by differential plating. Piglet Sertoli cells were identified by oil red O staining and Fas ligand (FasL) expression as assayed by immunocytochemistry and expression of transferrin and androgen binding protein by RT-PCR. Sertoli cells were cultured in DMEM/F12 supplemented with 10% fetal calf serum in the absence or presence of various concentrations of cadmium chloride, or treatment with p38 MAPK inhibitor SB202190 and with cadmium chloride exposure. Apoptotic cells in seminiferous tubules of piglets were also performed using TUNEL assay in vivo. RESULTS Cadmium chloride inhibited the proliferation of Piglet Sertoli cells as shown by MTT assay, and it increased malondialdehyde (MDA) but reduced superoxide dismutase (SOD) and Glutathione peroxidase (GSH-Px) activity. Inhibitor SB202190 alleviated the proliferation inhibition of cadmium on piglet Sertoli cells. Comet assay revealed that cadmium chloride caused DNA damage of Piglet Sertoli cells and resulted in cell apoptosis as assayed by flow cytometry. The in vivo study confirmed that cadmium induced cell apoptosis in seminiferous tubules of piglets. Transmission electronic microscopy showed abnormal and apoptotic ultrastructure in Piglet Sertoli cells treated with cadmium chloride compared to the control. CONCLUSION cadmium has obvious adverse effects on the proliferation of piglet Sertoli cells and causes their DNA damage, cell apoptosis, and aberrant morphology. This study thus offers novel insights into the toxicology of cadmium on male reproduction.
Collapse
Affiliation(s)
- Ming Zhang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China
- Jiangxi Biotech Vocational College, Nanchang, Jiangxi 330200, P. R. China
| | - Zuping He
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA
| | - Lixin Wen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China
| | - Jing Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China
| | - Liyun Yuan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China
| | - Yin Lu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China
| | - Chengzhi Guo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China
| | - Li Zhu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China
| | - Sijun Deng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China
| | - Hui Yuan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China
| |
Collapse
|