1
|
Zhang J, Ye Z, Huang L, Zhao Q, Dong K, Zhang W. Significant Biotransformation of Arsenobetaine into Inorganic Arsenic in Mice. TOXICS 2023; 11:91. [PMID: 36850967 PMCID: PMC9962689 DOI: 10.3390/toxics11020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Arsenic (As) is extremely toxic to living organisms at high concentrations. Arsenobetaine (AsB), confirmed to be a non-toxic form, is the main contributor to As in the muscle tissue of marine fish. However, few studies have investigated the biotransformation and biodegradation of AsB in mammals. In the current study, C57BL/6J mice were fed four different diets, namely, Yangjiang and Zhanjiang fish diets spiked with marine fish muscle containing AsB, and arsenite (As(III)) and arsenate (As(V)) diets spiked with As(III) and As(V), respectively, to investigate the biotransformation and bioaccumulation of AsB in mouse tissues for 42 d. Different diets exhibited different As species distributions, which contributed to varying levels of As bioaccumulation in different tissues. The intestines accumulated the highest level of As, regardless of form, which played a major part in As absorption and distribution in mice. We observed a significant biotransformation of AsB to As(V) following its diet exposure, and the liver, lungs, and spleen of AsB-treated mice showed higher As accumulation levels than those of As(III)- or As(V)-treated mice. Inorganic As showed relatively high accumulation levels in the lungs and spleen after long-term exposure to AsB. Overall, these findings provided strong evidence that AsB undergoes biotransformation to As(V) in mammals, indicating the potential health risk associated with long-term AsB intake in mammals.
Collapse
|
2
|
Stýblo M, Venkatratnam A, Fry RC, Thomas DJ. Origins, fate, and actions of methylated trivalent metabolites of inorganic arsenic: progress and prospects. Arch Toxicol 2021; 95:1547-1572. [PMID: 33768354 PMCID: PMC8728880 DOI: 10.1007/s00204-021-03028-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022]
Abstract
The toxic metalloid inorganic arsenic (iAs) is widely distributed in the environment. Chronic exposure to iAs from environmental sources has been linked to a variety of human diseases. Methylation of iAs is the primary pathway for metabolism of iAs. In humans, methylation of iAs is catalyzed by arsenic (+ 3 oxidation state) methyltransferase (AS3MT). Conversion of iAs to mono- and di-methylated species (MAs and DMAs) detoxifies iAs by increasing the rate of whole body clearance of arsenic. Interindividual differences in iAs metabolism play key roles in pathogenesis of and susceptibility to a range of disease outcomes associated with iAs exposure. These adverse health effects are in part associated with the production of methylated trivalent arsenic species, methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII), during AS3MT-catalyzed methylation of iAs. The formation of these metabolites activates iAs to unique forms that cause disease initiation and progression. Taken together, the current evidence suggests that methylation of iAs is a pathway for detoxification and for activation of the metalloid. Beyond this general understanding of the consequences of iAs methylation, many questions remain unanswered. Our knowledge of metabolic targets for MAsIII and DMAsIII in human cells and mechanisms for interactions between these arsenicals and targets is incomplete. Development of novel analytical methods for quantitation of MAsIII and DMAsIII in biological samples promises to address some of these gaps. Here, we summarize current knowledge of the enzymatic basis of MAsIII and DMAsIII formation, the toxic actions of these metabolites, and methods available for their detection and quantification in biomatrices. Major knowledge gaps and future research directions are also discussed.
Collapse
Affiliation(s)
- Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Abhishek Venkatratnam
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David J Thomas
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
3
|
Whiteside TE, Qu W, DeVito MJ, Brar SS, Bradham KD, Nelson CM, Travlos GS, Kissling GE, Kurtz DM. Elevated Arsenic and Lead Concentrations in Natural Healing Clay Applied Topically as a Treatment for Ulcerative Dermatitis in Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2020; 59:212-220. [PMID: 32059757 PMCID: PMC7073401 DOI: 10.30802/aalas-jaalas-19-000068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/10/2019] [Accepted: 08/22/2019] [Indexed: 11/05/2022]
Abstract
Ulcerative dermatitis in laboratory mice remains an ongoing clinical problem and animal welfare issue. Many products have been used to treat dermatitis in mice, with varying success. Recently, the topical administration of healing clays, such as bentonite and green clays, has been explored as a viable, natural treatment. We found high concentrations of arsenic and lead in experimental samples of therapeutic clay. Given the known toxic effects of these environmental heavy metals, we sought to determine whether the topical administration of a clay product containing bioavailable arsenic and lead exerted a biologic effect in mice that potentially could introduce unwanted research variability. Two cohorts of 20 singly housed, shaved, dermatitis free, adult male CD1 mice were dosed daily for 2 wk by topical application of saline or green clay paste. Samples of liver, kidney and whole blood were collected and analyzed for total arsenic and lead concentrations. Hepatic and renal concentrations of arsenic were not different between treated and control mice in either cohort; however, hepatic and renal concentrations of lead were elevated in clay treated mice compared to controls in both cohorts. In addition, in both cohorts, the activity of δ-aminolevulinate acid dehydratase, an enzyme involved with heme biosynthesis and a marker of lead toxicity, did not differ significantly between the clay-treated mice and controls. We have demonstrated that these clay products contain high concentrations of arsenic and lead and that topical application can result in the accumulation of lead in the liver and kidneys; however, these concentrations did not result in measurable biologic effects. These products should be used with caution, especially in studies of lead toxicity, heme biosynthesis, and renal α2 microglobulin function.
Collapse
Affiliation(s)
- Tanya E Whiteside
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Wei Qu
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Michael J DeVito
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Sukhdev S Brar
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Karen D Bradham
- Office of Research and Development, Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Clay M Nelson
- Office of Research and Development, Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Gregory S Travlos
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Grace E Kissling
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - David M Kurtz
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina;,
| |
Collapse
|
4
|
Coryell M, Roggenbeck BA, Walk ST. The Human Gut Microbiome's Influence on Arsenic Toxicity. CURRENT PHARMACOLOGY REPORTS 2019; 5:491-504. [PMID: 31929964 PMCID: PMC6953987 DOI: 10.1007/s40495-019-00206-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Arsenic exposure is a public health concern of global proportions with a high degree of interindividual variability in pathologic outcomes. Arsenic metabolism is a key factor underlying toxicity, and the primary purpose of this review is to summarize recent discoveries concerning the influence of the human gut microbiome on the metabolism, bioavailability, and toxicity of ingested arsenic. We review and discuss the current state of knowledge along with relevant methodologies for studying these phenomena. RECENT FINDINGS Bacteria in the human gut can biochemically transform arsenic-containing compounds (arsenicals). Recent publications utilizing culture-based approaches combined with analytical biochemistry and molecular genetics have helped identify several arsenical transformations by bacteria that are at least possible in the human gut and are likely to mediate arsenic toxicity to the host. Other studies that directly incubate stool samples in vitro also demonstrate the gut microbiome's potential to alter arsenic speciation and bioavailability. In vivo disruption or elimination of the microbiome has been shown to influence toxicity and body burden of arsenic through altered excretion and biotransformation of arsenicals. Currently, few clinical or epidemiological studies have investigated relationships between the gut microbiome and arsenic-related health outcomes in humans, although current evidence provides strong rationale for this research in the future. SUMMARY The human gut microbiome can metabolize arsenic and influence arsenical oxidation state, methylation status, thiolation status, bioavailability, and excretion. We discuss the strength of current evidence and propose that the microbiome be considered in future epidemiologic and toxicologic studies of human arsenic exposure.
Collapse
Affiliation(s)
- Michael Coryell
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, MT 59717, USA
| | - Barbara A. Roggenbeck
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, MT 59717, USA
| | - Seth T. Walk
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, MT 59717, USA
| |
Collapse
|
5
|
Bae J, Jang Y, Kim H, Mahato K, Schaecher C, Kim IM, Kim E, Ro SH. Arsenite exposure suppresses adipogenesis, mitochondrial biogenesis and thermogenesis via autophagy inhibition in brown adipose tissue. Sci Rep 2019; 9:14464. [PMID: 31594991 PMCID: PMC6783448 DOI: 10.1038/s41598-019-50965-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Arsenite, a trivalent form of arsenic, is an element that occurs naturally in the environment. Humans are exposed to high dose of arsenite through consuming arsenite-contaminated drinking water and food, and the arsenite can accumulate in the human tissues. Arsenite induces oxidative stress, which is linked to metabolic disorders such as obesity and diabetes. Brown adipocytes dissipating energy as heat have emerging roles for obesity treatment and prevention. Therefore, understanding the pathophysiological role of brown adipocytes can provide effective strategies delineating the link between arsenite exposure and metabolic disorders. Our study revealed that arsenite significantly reduced differentiation of murine brown adipocytes and mitochondrial biogenesis and respiration, leading to attenuated thermogenesis via decreasing UCP1 expression. Oral administration of arsenite in mice resulted in heavy accumulation in brown adipose tissue and suppression of lipogenesis, mitochondrial biogenesis and thermogenesis. Mechanistically, arsenite exposure significantly inhibited autophagy necessary for homeostasis of brown adipose tissue through suppression of Sestrin2 and ULK1. These results clearly confirm the emerging mechanisms underlying the implications of arsenite exposure in metabolic disorders.
Collapse
Affiliation(s)
- Jiyoung Bae
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Yura Jang
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Heejeong Kim
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA
| | - Kalika Mahato
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA
| | - Cameron Schaecher
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Isaac M Kim
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68588, USA
| | - Seung-Hyun Ro
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA.
| |
Collapse
|
6
|
Torres-Sánchez L, López-Carrillo L, Rosado JL, Rodriguez VM, Vera-Aguilar E, Kordas K, García-Vargas GG, Cebrian ME. Sex differences in the reduction of arsenic methylation capacity as a function of urinary total and inorganic arsenic in Mexican children. ENVIRONMENTAL RESEARCH 2016; 151:38-43. [PMID: 27450997 DOI: 10.1016/j.envres.2016.07.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Chronic arsenic (As) exposure decreases adult and children's ability to methylate inorganic As (iAs); however, few studies have examined children's sex differences. We measured urinary concentrations of iAs, monomethylarsonic (MMA), and dimethylarsinic (DMA) acids, and calculated the primary (PMI: MMA/iAs) and secondary (SMI: DMA/MMA) methylation capacity indexes in 591 children 6-8 years in Torreón, Mexico. We determined iAs, MMA, and DMA by hydride generation cryotrapping AAS. Lineal regression models estimated associations between methylation capacity and total As (TAs) or iAs. Interactions with sex were tested at p<0.10. Boys had significantly higher TAs levels, (58.4µg/L) than girls (46.2µg/L). We observed negative associations between TAs and PMI (β=-0.039; p<0.18) and SMI (β=-0.08; p=0.002) with significant sex differences; PMI reduction was significant in boys (β=-0.09; p=0.02) but not in girls (β=0.021; p=0.63), p for interaction=0.06. In contrast, SMI reduction was significantly more pronounced in girls. Furthermore, negative associations PMI (β=-0.19; p<0.001) and SMI (β=-0.35; p<0.001) were a function of urinary iAs levels, independently of TAs; however, the reduction in PMI was more pronounced in boys (β=-0.24; p<0.001; girls β=-0.15; p<0.001), p for interaction=0.04. A significant negative association was observed between SMI and iAs levels without significant sex differences. TAs and iAs associations with metabolite percentages were in good agreement with those observed with methylation indexes. Our results suggest that iAs plays an important role in reducing As methylation ability and that significant sex differences are present in As metabolism. These differences merit further investigation to confirm our findings and their potential implications for arsenic toxicity in children.
Collapse
Affiliation(s)
| | | | - Jorge L Rosado
- Escuela de Ciencias Naturales, Universidad Autónoma del Estado de Querétaro, Querétaro, Mexico
| | - Valentina M Rodriguez
- International Exchange Program for Minority Students, Mount Sinai School of Medicine, New York, NY, USA
| | - Eunice Vera-Aguilar
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Katarzyna Kordas
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Gonzalo G García-Vargas
- Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Mariano E Cebrian
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico.
| |
Collapse
|
7
|
Lewis AS, Beyer LA, Zu K. Considerations in deriving quantitative cancer criteria for inorganic arsenic exposure via inhalation. ENVIRONMENT INTERNATIONAL 2015; 74:258-273. [PMID: 25454243 DOI: 10.1016/j.envint.2014.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 06/04/2023]
Abstract
The inhalation unit risk (IUR) that currently exists in the United States Environmental Protection Agency's (US EPA's) Integrated Risk Information System was developed in 1984 based on studies examining the relationship between respiratory cancer and arsenic exposure in copper smelters from two US locations: the copper smelter in Anaconda, Montana, and the American Smelting And Refining COmpany (ASARCO) smelter in Tacoma, Washington. Since US EPA last conducted its assessment, additional data have become available from epidemiology and mechanistic studies. In addition, the California Air Resources Board, Texas Commission of Environmental Quality, and Dutch Expert Committee on Occupational Safety have all conducted new risk assessments. All three analyses, which calculated IURs based on respiratory/lung cancer mortality, generated IURs that are lower (i.e., less restrictive) than the current US EPA value of 4.3×10(-3) (μg/m(3))(-1). The IURs developed by these agencies, which vary more than 20-fold, are based on somewhat different studies and use different methodologies to address uncertainties in the underlying datasets. Despite these differences, all were developed based on a cumulative exposure metric assuming a low-dose linear dose-response relationship. In this paper, we contrast and compare the analyses conducted by these agencies and critically evaluate strengths and limitations inherent in the data and methodologies used to develop quantitative risk estimates. In addition, we consider how these data could be best used to assess risk at much lower levels of arsenic in air, such as those experienced by the general public. Given that the mode of action for arsenic supports a threshold effect, and epidemiological evidence suggests that the arsenic concentration in air is a reliable predictor of lung/respiratory cancer risk, we developed a quantitative cancer risk analysis using a nonlinear threshold model. Applying a nonlinear model to occupational data, we established points of departure based on both cumulative exposure (μg/m(3)-years) to arsenic and arsenic concentration (μg/m(3)) via inhalation. Using these values, one can assess the lifetime risk of respiratory cancer mortality associated with ambient air concentrations of arsenic for the general US population.
Collapse
Affiliation(s)
- Ari S Lewis
- Gradient, 20 University Road, Cambridge, MA 02138, USA.
| | | | - Ke Zu
- Gradient, 20 University Road, Cambridge, MA 02138, USA
| |
Collapse
|