1
|
Vulin I, Tenji D, Teodorovic I, Kaisarevic S. Undifferentiated versus retinoic acid-differentiated SH-SY5Y cells in investigation of markers of neural function in toxicological research. Toxicol Mech Methods 2025; 35:53-63. [PMID: 39076017 DOI: 10.1080/15376516.2024.2385968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
The SH-SY5Y human neuroblastoma cell line is a standard in vitro experimental model of neuronal-like cells used in neuroscience and toxicological research. These cells can be differentiated into mature neurons, most commonly using retinoic acid (RA). Despite differences in characteristics, both undifferentiated and differentiated SH-SY5Y cells are used in research. However, due to uncertainties regarding the expression of specific markers of neural function in each culture, there is no definite conclusion on which culture is better suited for (neuro)toxicological and/or neuroscience investigations. To address this dilemma, we investigated the basal expression/activity of the key elements of acetylcholine, dopamine, serotonin, and GABA neurotransmitter pathways, along with the elements involved in exocytosis of neurotransmitters, and neuron electrophysiological activity in undifferentiated and in RA-differentiated SH-SY5Y cells using a six-day differentiation protocol. Our findings revealed that both SH-SY5Y cell types are functionally active. While undifferentiated SH-SY5Y cells exhibited greater multipotency in the expression of tested markers, most of those markers expressed in both cell types showed higher expression levels in RA-differentiated SH-SY5Y cells. Our results suggest that the six-day differentiation protocol with RA induces maturation, but not differentiation of the cells into specific neuron phenotype. The greater multipotency of undifferentiated cells in neural markers expression, together with their higher sensitivity to xenobiotic exposure and more simple cultivation protocols, make them a better candidate for high throughput toxicological screenings. Differentiated neurons are better suited for neuroscience researches that require higher expression of more specific neural markers and the specific types of neural cells.
Collapse
Affiliation(s)
- Irina Vulin
- Department of Biology and Ecology, Faculty of Sciences, Laboratory for Ecophysiology and Ecotoxicology - LECOTOX, University of Novi Sad, Novi Sad, Serbia
| | - Dina Tenji
- Department of Biology and Ecology, Faculty of Sciences, Laboratory for Ecophysiology and Ecotoxicology - LECOTOX, University of Novi Sad, Novi Sad, Serbia
| | - Ivana Teodorovic
- Department of Biology and Ecology, Faculty of Sciences, Laboratory for Ecophysiology and Ecotoxicology - LECOTOX, University of Novi Sad, Novi Sad, Serbia
| | - Sonja Kaisarevic
- Department of Biology and Ecology, Faculty of Sciences, Laboratory for Ecophysiology and Ecotoxicology - LECOTOX, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
2
|
Veroni C, Olla S, Brignone MS, Siguri C, Formato A, Marra M, Manzoli R, Macario MC, Ambrosini E, Moro E, Agresti C. The Antioxidant Drug Edaravone Binds to the Aryl Hydrocarbon Receptor (AHR) and Promotes the Downstream Signaling Pathway Activation. Biomolecules 2024; 14:443. [PMID: 38672460 PMCID: PMC11047889 DOI: 10.3390/biom14040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
A considerable effort has been spent in the past decades to develop targeted therapies for the treatment of demyelinating diseases, such as multiple sclerosis (MS). Among drugs with free radical scavenging activity and oligodendrocyte protecting effects, Edaravone (Radicava) has recently received increasing attention because of being able to enhance remyelination in experimental in vitro and in vivo disease models. While its beneficial effects are greatly supported by experimental evidence, there is a current paucity of information regarding its mechanism of action and main molecular targets. By using high-throughput RNA-seq and biochemical experiments in murine oligodendrocyte progenitors and SH-SY5Y neuroblastoma cells combined with molecular docking and molecular dynamics simulation, we here provide evidence that Edaravone triggers the activation of aryl hydrocarbon receptor (AHR) signaling by eliciting AHR nuclear translocation and the transcriptional-mediated induction of key cytoprotective gene expression. We also show that an Edaravone-dependent AHR signaling transduction occurs in the zebrafish experimental model, associated with a downstream upregulation of the NRF2 signaling pathway. We finally demonstrate that its rapid cytoprotective and antioxidant actions boost increased expression of the promyelinating Olig2 protein as well as of an Olig2:GFP transgene in vivo. We therefore shed light on a still undescribed potential mechanism of action for this drug, providing further support to its therapeutic potential in the context of debilitating demyelinating conditions.
Collapse
Affiliation(s)
- Caterina Veroni
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.V.); (M.S.B.); (E.A.)
| | - Stefania Olla
- Institute for Genetic and Biomedical Research (IRGB), The National Research Council (CNR), Monserrato, 09042 Cagliari, Italy; (S.O.); (C.S.)
| | - Maria Stefania Brignone
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.V.); (M.S.B.); (E.A.)
| | - Chiara Siguri
- Institute for Genetic and Biomedical Research (IRGB), The National Research Council (CNR), Monserrato, 09042 Cagliari, Italy; (S.O.); (C.S.)
| | - Alessia Formato
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Campus Adriano Buzzati Traverso, Monterotondo Scalo, 00015 Rome, Italy;
| | - Manuela Marra
- Core Facilities Technical-Scientific Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Rosa Manzoli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (R.M.); (M.C.M.)
| | - Maria Carla Macario
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (R.M.); (M.C.M.)
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.V.); (M.S.B.); (E.A.)
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (R.M.); (M.C.M.)
| | - Cristina Agresti
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.V.); (M.S.B.); (E.A.)
| |
Collapse
|
3
|
Picher EA, Wahajuddin M, Barth S, Chisholm J, Shipley J, Pors K. The Capacity of Drug-Metabolising Enzymes in Modulating the Therapeutic Efficacy of Drugs to Treat Rhabdomyosarcoma. Cancers (Basel) 2024; 16:1012. [PMID: 38473371 DOI: 10.3390/cancers16051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Rhabdomyosarcoma (RMS) is a rare soft tissue sarcoma (STS) that predominantly affects children and teenagers. It is the most common STS in children (40%) and accounts for 5-8% of total childhood malignancies. Apart from surgery and radiotherapy in eligible patients, standard chemotherapy is the only therapeutic option clinically available for RMS patients. While survival rates for this childhood cancer have considerably improved over the last few decades for low-risk and intermediate-risk cases, the mortality rate remains exceptionally high in high-risk RMS patients with recurrent and/or metastatic disease. The intensification of chemotherapeutic protocols in advanced-stage RMS has historically induced aggravated toxicity with only very modest therapeutic gain. In this review, we critically analyse what has been achieved so far in RMS therapy and provide insight into how a diverse group of drug-metabolising enzymes (DMEs) possess the capacity to modify the clinical efficacy of chemotherapy. We provide suggestions for new therapeutic strategies that exploit the presence of DMEs for prodrug activation, targeted chemotherapy that does not rely on DMEs, and RMS-molecular-subtype-targeted therapies that have the potential to enter clinical evaluation.
Collapse
Affiliation(s)
- Enric Arasanz Picher
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Julia Chisholm
- Children and Young People's Unit, Royal Marsden Hospital, Institute of Cancer Research, Sutton SM2 5PR, UK
| | - Janet Shipley
- Sarcoma Molecular Pathology Group, Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM2 5NG, UK
| | - Klaus Pors
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
4
|
Chaudhry KA, Jacobi JJ, Gillard BM, Karasik E, Martin JC, da Silva Fernandes T, Hurley E, Feltri ML, Attwood KM, Twist CJ, Smiraglia DJ, Long MD, Bianchi-Smiraglia A. Aryl hydrocarbon receptor is a tumor promoter in MYCN-amplified neuroblastoma cells through suppression of differentiation. iScience 2023; 26:108303. [PMID: 38026169 PMCID: PMC10654598 DOI: 10.1016/j.isci.2023.108303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/25/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. MYCN amplification is detected in almost half of high-risk cases and is associated with poorly differentiated tumors, poor patient prognosis and poor response to therapy, including retinoids. We identify the aryl hydrocarbon receptor (AhR) as a transcription factor promoting the growth and suppressing the differentiation of MYCN-amplified neuroblastoma. A neuroblastoma specific AhR transcriptional signature reveals an inverse correlation of AhR activity with patients' outcome, suggesting AhR activity is critical for disease progression. AhR modulates chromatin structures, reducing accessibility to regions responsive to retinoic acid. Genetic and pharmacological inhibition of AhR results in induction of differentiation. Importantly, AhR antagonism with clofazimine synergizes with retinoic acid in inducing differentiation both in vitro and in vivo. Thus, we propose AhR as a target for MYCN-amplified neuroblastoma and that its antagonism, combined with current standard-of-care, may result in a more durable response in patients.
Collapse
Affiliation(s)
- Kanita A. Chaudhry
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Justine J. Jacobi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Bryan M. Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jeffrey C. Martin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | - Edward Hurley
- Department of Biochemistry and Neurology, Institute for Myelin and Glia Exploration, State University of New York at Buffalo, Buffalo, NY, USA
| | - Maria Laura Feltri
- Department of Biochemistry and Neurology, Institute for Myelin and Glia Exploration, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Foundation I.R.C.C.S. Carlo Besta Neurological Institute Milan, Italy
| | - Kristopher M. Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Clare J. Twist
- Department of Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dominic J. Smiraglia
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mark D. Long
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Anna Bianchi-Smiraglia
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
5
|
The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: focus on organic pollutants. Neurotoxicology 2022; 92:131-155. [PMID: 35914637 DOI: 10.1016/j.neuro.2022.07.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022]
Abstract
Investigation of the toxicity triggered by chemicals on the human brain has traditionally relied on approaches using rodent in vivo models and in vitro cell models including primary neuronal cultures and cell lines from rodents. The issues of species differences between humans and rodents, the animal ethical concerns and the time and cost required for neurotoxicity studies on in vivo animal models, do limit the use of animal-based models in neurotoxicology. In this context, human cell models appear relevant in elucidating cellular and molecular impacts of neurotoxicants and facilitating prioritization of in vivo testing. The SH-SY5Y human neuroblastoma cell line (ATCC® CRL-2266TM) is one of the most used cell lines in neurosciences, either undifferentiated or differentiated into neuron-like cells. This review presents the characteristics of the SH-SY5Y cell line and proposes the results of a systematic review of literature on the use of this in vitro cell model for neurotoxicity research by focusing on organic environmental pollutants including pesticides, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), flame retardants, PFASs, parabens, bisphenols, phthalates, and PAHs. Organic environmental pollutants are widely present in the environment and increasingly known to cause clinical neurotoxic effects during fetal & child development and adulthood. Their effects on cultured SH-SY5Y cells include autophagy, cell death (apoptosis, pyroptosis, necroptosis, or necrosis), increased oxidative stress, mitochondrial dysfunction, disruption of neurotransmitter homeostasis, and alteration of neuritic length. Finally, the inherent advantages and limitations of the SH-SY5Y cell model are discussed in the context of chemical testing.
Collapse
|
6
|
Imran SJ, Vagaska B, Kriska J, Anderova M, Bortolozzi M, Gerosa G, Ferretti P, Vrzal R. Aryl Hydrocarbon Receptor (AhR)-Mediated Signaling in iPSC-Derived Human Motor Neurons. Pharmaceuticals (Basel) 2022; 15:ph15070828. [PMID: 35890127 PMCID: PMC9321538 DOI: 10.3390/ph15070828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Exposure to environmental pollutants and endogenous metabolites that induce aryl hydrocarbon receptor (AhR) expression has been suggested to affect cognitive development and, particularly in boys, also motor function. As current knowledge is based on epidemiological and animal studies, in vitro models are needed to better understand the effects of these compounds in the human nervous system at the molecular level. Here, we investigated expression of AhR pathway components and how they are regulated by AhR ligands in human motor neurons. Motor neurons generated from human induced pluripotent stem cells (hiPSCs) were characterized at the molecular level and by electrophysiology. mRNA levels of AhR target genes, CYP1A1 and CYP1B1 (cytochromes P450 1A1/1B1), and AhR signaling components were monitored in hiPSCs and in differentiated neurons following treatment with AhR ligands, 2,3,7,8,-tetrachlodibenzo-p-dioxin (TCDD), L-kynurenine (L-Kyn), and kynurenic acid (KA), by RT-qPCR. Changes in AhR cellular localization and CYP1A1 activity in neurons treated with AhR ligands were also assessed. The neurons we generated express motor neuron-specific markers and are functional. Transcript levels of CYP1B1, AhR nuclear translocators (ARNT1 and ARNT2) and the AhR repressor (AhRR) change with neuronal differentiation, being significantly higher in neurons than hiPSCs. In contrast, CYP1A1 and AhR transcript levels are slightly lower in neurons than in hiPSCs. The response to TCDD treatment differs in hiPSCs and neurons, with only the latter showing significant CYP1A1 up-regulation. In contrast, TCDD slightly up-regulates CYP1B1 mRNA in hiPSCs, but downregulates it in neurons. Comparison of the effects of different AhR ligands on AhR and some of its target genes in neurons shows that L-Kyn and KA, but not TCDD, regulate AhR expression and differently affect CYP1A1 and CYP1B1 expression. Finally, although TCDD does not significantly affect AhR transcript levels, it induces AhR protein translocation to the nucleus and increases CYP1A1 activity. This is in contrast to L-Kyn and KA, which either do not affect or reduce, respectively, CYP1A1 activity. Expression of components of the AhR signaling pathway are regulated with neuronal differentiation and are differently affected by TCDD, suggesting that pluripotent stem cells might be less sensitive to this toxin than neurons. Crucially, AhR signaling is affected differently by TCDD and other AhR ligands in human motor neurons, suggesting that they can provide a valuable tool for assessing the impact of environmental pollutants.
Collapse
Affiliation(s)
- Saima Jalil Imran
- Department of Cell Biology and Genetics, Faculty of Science, 77147 Olomouc, Czech Republic
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
- Correspondence: (S.J.I.); (R.V.); Tel.: +39-498212410 (S.J.I.); +420-58-5634904 (R.V.)
| | - Barbora Vagaska
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.K.); (M.A.)
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.K.); (M.A.)
- Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Mario Bortolozzi
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy;
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| | - Gino Gerosa
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
| | - Patrizia Ferretti
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, 77147 Olomouc, Czech Republic
- Correspondence: (S.J.I.); (R.V.); Tel.: +39-498212410 (S.J.I.); +420-58-5634904 (R.V.)
| |
Collapse
|
7
|
Shang Y, Xue W, Kong J, Chen Y, Qiu X, An X, Li Y, Wang H, An J. Ultrafine black carbon caused mitochondrial oxidative stress, mitochondrial dysfunction and mitophagy in SH-SY5Y cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151899. [PMID: 34838543 DOI: 10.1016/j.scitotenv.2021.151899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/02/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Exposure to ambient ultrafine black carbon (uBC, with aerodynamic diameter less than 100 nm) is associated with many neurodegenerative diseases. Oxidative stress is the predominantly reported neurotoxic effects caused by uBC exposure. Mitochondrion is responsible for production of majority of ROS in cells and mitochondrial dysfunction is closely related to adverse nervous outcomes. Mitophagy is an important cellular process to eliminate dysfunctional or damaged mitochondria. However, the mechanisms that modulate mitophagy and mitochondrial dysfunction initiated by uBC remain to be elucidated. The purpose of this study was to investigate how mitochondrial oxidative stress regulated mitochondrial dysfunction and mitophagy in human neuroblastoma cell line (SH-SY5Y) after uBC treatment. RNA interference was further applied to explore the roles of mitophagy in mitochondrial dysfunction. We found uBC triggered cell apoptosis via ROS-mitochondrial apoptotic pathway. The uBC also caused serious mitochondrial damage and respiratory dysfunction, indicated by the abnormalities in mitochondrial division and fusion related proteins, decreased mitochondria number and ATP level. Increased PTEN induced putative kinase 1 (PINK1) and Parkin protein levels and the autolysosome numbers suggested uBC could promote Pink1/Parkin-dependent mitophagy process in SH-SY5Y cells. Mitophagy inhibition could reserve mitochondria number and ATP activity, but not fusion and division related protein levels in SH-SY5Y cells exposed to uBC. Administration of a mitochondria-targeted antioxidant (mitoquinone) significantly eliminated uBC caused apoptosis, mitochondrial dysfunction and mitophagy. Our data suggested mitochondrial oxidative stress regulated uBC induced mitochondrial dysfunction and PINK1/Parkin-dependent mitophagy. PINK1/Parkin-dependent mitophagy probably participated in regulating uBC caused mitochondrial dysfunction but not by controlling mitochondrial fusion and division related proteins. Our results may provide some new insights and evidences to understand the mechanisms of neurotoxicity induced by uBC.
Collapse
Affiliation(s)
- Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| | - Wanlei Xue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jiexing Kong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xingqin An
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yi Li
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
8
|
Shang Y, Liu M, Wang T, Wang L, He H, Zhong Y, Qian G, An J, Zhu T, Qiu X, Shang J, Chen Y. Modifications of autophagy influenced the Alzheimer-like changes in SH-SY5Y cells promoted by ultrafine black carbon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:763-771. [PMID: 30623832 DOI: 10.1016/j.envpol.2018.12.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/18/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Ambient ultrafine black carbon (uBC) can potentially cross blood-brain barrier, however, very little is currently known about the effects they may have on central nervous system. This study aimed to explore the roles of autophagy in Alzheimer-like pathogenic changes promoted by uBC in SH-SY5Y cells. We firstly found uBC could cause cytotoxicity and oxidative stress in SH-SY5Y cells. Additionally we found uBC initiated progressive development of Alzheimer's disease (AD) associated features, mainly including neuro-inflammation and phosphorylation of tau protein (p-Tau) accumulation. Meanwhile, autophagy process was activated by uBC probably through phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway. RNA interference and autophagosome-lysosome fusion inhibitor were applied to block autophagy process at different stages. Autophagy dysfunction at the initial membrane expansion stage could aggravate p-Tau accumulation and other Alzheimer-like changes in SH-SY5Y cells promoted by uBC. However, autophagy inhibition at the final stage could alleviate p-Tau accumulation caused by uBC. This suggested that inhibition of the infusion of autophagosome and lysosome could possibly activate ubiquitination degradation pathway to regulate p-Tau equilibrium in SH-SY5Y cells. Our findings further raise the concerns about the effects of uBC on the risk of AD and indicate potential roles of autophagy in early Alzheimer-like pathogenic changes caused by ambient uBC.
Collapse
Affiliation(s)
- Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Mingyuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Tiantian Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Lu Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Huixin He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yufang Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jing Shang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
9
|
Fernandez-Abascal J, Ripullone M, Valeri A, Leone C, Valoti M. β-Naphtoflavone and Ethanol Induce Cytochrome P450 and Protect towards MPP⁺ Toxicity in Human Neuroblastoma SH-SY5Y Cells. Int J Mol Sci 2018; 19:ijms19113369. [PMID: 30373287 PMCID: PMC6274691 DOI: 10.3390/ijms19113369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Cytochrome P450 (CYP) isozymes vary their expression depending on the brain area, the cell type, and the presence of drugs. Some isoforms are involved in detoxification and/or toxic activation of xenobiotics in central nervous system. However, their role in brain metabolism and neurodegeneration is still a subject of debate. We have studied the inducibility of CYP isozymes in human neuroblastoma SH-SY5Y cells, treated with β-naphtoflavone (β-NF) or ethanol (EtOH) as inducers, by qRT-PCR, Western blot (WB), and metabolic activity assays. Immunohistochemistry was used to localize the isoforms in mitochondria and/or endoplasmic reticulum (ER). Tetrazolium (MTT) assay was performed to study the role of CYPs during methylphenyl pyridine (MPP+) exposure. EtOH increased mRNA and protein levels of CYP2D6 by 73% and 60% respectively. Both β-NF and EtOH increased CYP2E1 mRNA (4- and 1.4-fold, respectively) and protein levels (64% both). The 7-ethoxycoumarin O-deethylation and dextromethorphan O-demethylation was greater in treatment samples than in controls. Furthermore, both treatments increased by 22% and 18%, respectively, the cell viability in MPP+-treated cells. Finally, CYP2D6 localized at mitochondria and ER. These data indicate that CYP is inducible in SH-SY5Y cells and underline this in vitro system for studying the role of CYPs in neurodegeneration.
Collapse
Affiliation(s)
- Jesus Fernandez-Abascal
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Mariantonia Ripullone
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Aurora Valeri
- Molecular Horizon srl, Via Montelino 32, Bettona, 06084 Perugia, Italy.
| | - Cosima Leone
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
10
|
The Aryl Hydrocarbon Receptor and the Nervous System. Int J Mol Sci 2018; 19:ijms19092504. [PMID: 30149528 PMCID: PMC6163841 DOI: 10.3390/ijms19092504] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (or AhR) is a cytoplasmic receptor of pollutants. It translocates into the nucleus upon binding to its ligands, and forms a heterodimer with ARNT (AhR nuclear translocator). The heterodimer is a transcription factor, which regulates the transcription of xenobiotic metabolizing enzymes. Expressed in many cells in vertebrates, it is mostly present in neuronal cell types in invertebrates, where it regulates dendritic morphology or feeding behavior. Surprisingly, few investigations have been conducted to unravel the function of the AhR in the central or peripheral nervous systems of vertebrates. In this review, we will present how the AhR regulates neural functions in both invertebrates and vertebrates as deduced mainly from the effects of xenobiotics. We will introduce some of the molecular mechanisms triggered by the well-known AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which impact on neuronal proliferation, differentiation, and survival. Finally, we will point out the common features found in mice that are exposed to pollutants, and in AhR knockout mice.
Collapse
|
11
|
Florean C, Schnekenburger M, Lee JY, Kim KR, Mazumder A, Song S, Kim JM, Grandjenette C, Kim JG, Yoon AY, Dicato M, Kim KW, Christov C, Han BW, Proksch P, Diederich M. Discovery and characterization of Isofistularin-3, a marine brominated alkaloid, as a new DNA demethylating agent inducing cell cycle arrest and sensitization to TRAIL in cancer cells. Oncotarget 2018; 7:24027-49. [PMID: 27006469 PMCID: PMC5029682 DOI: 10.18632/oncotarget.8210] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/02/2016] [Indexed: 12/20/2022] Open
Abstract
We characterized the brominated alkaloid Isofistularin-3 (Iso-3), from the marine sponge Aplysina aerophoba, as a new DNA methyltransferase (DNMT)1 inhibitor. Docking analysis confirmed our in vitro DNMT inhibition data and revealed binding of Iso-3 within the DNA binding site of DNMT1. Subsequent increased expression of tumor suppressor gene aryl hydrocarbon receptor (AHR) could be correlated to decreased methylation of CpG sites within the essential Sp1 regulatory region of its promoter. Iso-3 induced growth arrest of cancer cells in G0/G1 concomitant with increased p21 and p27 expression and reduced cyclin E1, PCNA and c-myc levels. Reduced proliferation was accompanied by morphological changes typical of autophagy revealed by fluorescent and transmission electron microscopy and validated by LC3I-II conversion. Furthermore, Iso-3 strongly synergized with tumor-necrosis-factor related apoptosis inducing ligand (TRAIL) in RAJI [combination index (CI) = 0.22] and U-937 cells (CI = 0.21) and increased TRAIL-induced apoptosis via a mechanism involving reduction of survivin expression but not of Bcl-2 family proteins nor X-linked inhibitor of apoptosis protein (XIAP). Iso-3 treatment decreased FLIPL expression and triggered activation of endoplasmatic reticulum (ER) stress with increased GRP78 expression, eventually inducing TRAIL receptor death receptor (DR)5 surface expression. Importantly, as a potential candidate for further anticancer drug development, Iso-3 reduced the viability, colony and in vivo tumor forming potential without affecting the viability of PBMCs from healthy donors or zebrafish development.
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Lëtzebuerg, Luxembourg
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Lëtzebuerg, Luxembourg
| | - Jin-Young Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| | - Kyung Rok Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| | - Aloran Mazumder
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| | - Sungmi Song
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| | - Jae-Myun Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| | - Cindy Grandjenette
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Lëtzebuerg, Luxembourg
| | - Jeoung-Gyun Kim
- SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Korea
| | - Ah-Young Yoon
- SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Korea
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Lëtzebuerg, Luxembourg
| | - Kyu-Won Kim
- SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Korea
| | | | - Byung-Woo Han
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| | - Peter Proksch
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| |
Collapse
|