1
|
Increased Serum Levels of Matrix-metalloproteinase-9, Cyclo-oxygenase-2 and Prostaglandin E-2 in Patients with Chronic Obstructive Pulmonary Disease (COPD). Indian J Clin Biochem 2021; 37:169-177. [PMID: 35463116 PMCID: PMC8994009 DOI: 10.1007/s12291-021-00973-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD), a heterogeneous lung disorder that is characterized by airflow obstruction and the third leading cause of death, globally. COPD is influenced by environmental and genetic factors. Here, we measured the serum level of matrix metalloproteinase-9 (MMP-9), cyclooxygenase-2 (COX-2) and prostaglandin E-2 (PGE-2) and reveal the correlation between their levels in COPD subjects. In this study, we included a total of 79 COPD and 79 healthy controls. We assessed demographic profile, risk factors, respiratory symptoms, clinical history, COPD Assessment Test (CAT) score and spirometry. Further, we determined the serum levels of MMP-9, COX-2 and PGE-2 by enzyme-linked immunosorbent assay (ELISA). The correlation between their serum levels was also determined. Among the studied population age, gender, body mass index and socioeconomic status were comparable. Serum levels of MMP-9, COX-2 and PGE-2 were significantly increased in the COPD group than in healthy controls (P < 0.0001). Moreover, MMP-9, COX-2 and PGE-2 levels were increased with the GOLD grades and CAT score (> 10). Serum levels of MMP-9, COX-2 and PGE-2 was enhanced in patients with larger clinical history (> 20 years) than those with lower clinical history (< 10 years). Serum levels of MMP-9 and COX-2; MMP-9 and PGE-2; COX-2 and PGE-2 showed a positive correlation (P < 0.0001) with the COPD group. Our data demonstrate that serum levels of MMP-9, COX-2 and PGE-2 were correlated with the GOLD grade, CAT score and clinical history of the COPD group, pointing that they can be used as a indicators to understand the disease progression. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-021-00973-2.
Collapse
|
2
|
Hu H, Cai C, Xue M, Luo J, Liao C, Huang H, Sun B. Increased MMP8 Levels in Atopic Chronic Obstructive Pulmonary Disease: A Study Testing Multiple Immune Factors in Atopic and Non-Atopic Patients. Int J Chron Obstruct Pulmon Dis 2020; 15:1839-1848. [PMID: 32801681 PMCID: PMC7410334 DOI: 10.2147/copd.s263313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/15/2020] [Indexed: 12/01/2022] Open
Abstract
Objective The aim of this study was to analyse the level of serum matrix metalloproteinases (MMPs) in atopic and non-atopic COPD patients, providing guidance for clinical practice and theory for atopic COPD. Methods Blood samples from 50 adult male patients with COPD, including 17 atopic and 33 non-atopic patients, were submitted for detection of MMP8, MMP9, surfactant associated protein D (SPD), noradrenaline (NE), leukotriene (LT) B4, recombinant proteoglycan (PRG4), Phadiatop sIgE, and tIgE levels. Patients’ Modified Medical Research Council Dyspnea Scale (mMRC), COPD Assessment Test (CAT), pulmonary function test results, FeNO, blood cell ratio and induced sputum were collected. Results The level of serum tIgE in patients with atopic COPD [1876.00 kU/l (760.50, 5347.00)] was significantly higher than in patients with non-atopic COPD [377.00 kU/l (93.50, 581.50), P < 0.001]. The MMP8 levels in atopic COPD (1600 ± 1181 ng/mL) were significantly higher than in non-atopic COPD (973.3 ±921.5 ng/mL, P = 0.0494), but there was no significant difference in MMP9, SPD, NE, LTB4, and PRG4 levels between the two groups. In atopic COPD patients, the rate of leukocyte (rs = 0.63, P < 0.001) and neutrophil (rs = 0.54, P < 0.05) were positively correlated with MMP8 levels, while lymphocyte rate was negatively correlated with MMP8 (rs = −0.70, P < 0.001) and MMP9 levels (rs = −0.54, P < 0.05). Optimal scale analysis showed that NE was most closely related to the basophil rate from induced sputum and FeNO levels (Cronbach’s alpha = 85.1%). Interestingly, all atopic COPD patients with mMRC ≥2, CAT ≥ 10, and CCQ ≥16 exhibited MMP8 levels >1000 ng/mL. Conclusion In general, tIgE and MMP8 levels were higher in atopic COPD patients than in non-atopic patients. NE levels were closely correlated with the basophil rate of induced sputum and FeNO levels, which may play an important role in the pathogenesis and development of atopic COPD.
Collapse
Affiliation(s)
- Haisheng Hu
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, Guangdong, People's Republic of China
| | - Chuanxu Cai
- Department of Laboratory Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, People's Republic of China
| | - Mingshan Xue
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, Guangdong, People's Republic of China
| | - Jiaying Luo
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, Guangdong, People's Republic of China
| | - Chenxi Liao
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, Guangdong, People's Republic of China
| | - Huimin Huang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, Guangdong, People's Republic of China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Xue T, Chun-Li A. Role of Pneumocystis jirovecii infection in chronic obstructive pulmonary disease progression in an immunosuppressed rat Pneumocystis pneumonia model. Exp Ther Med 2020; 19:3133-3142. [PMID: 32256801 DOI: 10.3892/etm.2020.8545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/09/2019] [Indexed: 11/05/2022] Open
Abstract
Pneumocystis jirovecii (P. jirovecii), an opportunistic fungal pathogen, is the primary cause of Pneumocystis pneumonia (PCP), which affects immunocompromised individuals and leads to high morbidity and mortality. P. jirovecii colonization is associated with development of chronic obstructive pulmonary disease (COPD) in patients with HIV infection, and also non-sufferers, and in primate models of HIV infection. However, the mechanisms underlying P. jirovecii infection in the pathogenesis of COPD have yet to be fully elucidated. To investigate the pathogenicity of P. jirovecii infection and its role in COPD development, the present study established a PCP rat model induced by dexamethasone sodium phosphate injection. Expression of COPD-related biomarkers, including matrix metalloproteinases (MMPs) MMP-2, MMP-8, MMP-9, and MMP-12, and heat shock protein-27 (HSP-27), were quantified in the rat PCP model using reverse transcription-quantitative polymerase chain reaction, ELISA, western blot analysis, immunohistochemistry and gelatin zymography. Body weight, COPD symptoms, and pulmonary histopathology were assessed. Inflammatory cell counts in splenic tissues were measured using flow cytometry. It was identified that MMP and HSP-27 expression increased in the PCP rats, which was in agreement with previous literature. Therefore, it was hypothesized that P. jirovecii infection may have an important role in COPD development.
Collapse
Affiliation(s)
- Ting Xue
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - An Chun-Li
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
4
|
Norman KC, Freeman CM, Bidthanapally NS, Han MK, Martinez FJ, Curtis JL, Arnold KB. Inference of Cellular Immune Environments in Sputum and Peripheral Blood Associated with Acute Exacerbations of COPD. Cell Mol Bioeng 2019; 12:165-177. [PMID: 31719907 DOI: 10.1007/s12195-019-00567-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death in the United States, with high associated costs. Most of the cost burden results from acute exacerbations of COPD (AE-COPD), events associated with heightened symptoms and mortality. Cellular mechanisms underlying AE-COPD are poorly understood, likely because they arise from dysregulation of complex immune networks across multiple tissue compartments. Methods To gain systems-level insight into cellular environments relevant to exacerbation, we applied data-driven modeling approaches to measurements of immune factors (cytokines and flow cytometry) measured previously in two different human tissue environments (sputum and peripheral blood) during the stable and exacerbated state. Results Using partial least squares discriminant analysis, we identified a unique signature of cytokines in serum that differentiated stable and AE-COPD better than individual measurements. Furthermore, we found that models integrating data across tissue compartments (serum and sputum) trended towards being more accurate. The resulting paracrine signature defining AE-COPD events combined elevations of proteins associated with cell adhesion (sVCAM-1, sICAM-1) and increased levels of neutrophils and dendritic cells in blood with elevated chemoattractants (IP-10 and MCP-2) in sputum. Conclusions Our results supported a new hypothesis that AE-COPD is driven by immune cell trafficking into the lung, which requires expression of cell adhesion molecules and raised levels of innate immune cells in blood, with parallel upregulated expression of specific chemokines in pulmonary tissue. Overall, this work serves as a proof-of-concept for using data-driven modeling approaches to generate new insights into cellular processes involved in complex pulmonary diseases.
Collapse
Affiliation(s)
- Katy C Norman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Christine M Freeman
- Division of Pulmonary & Critical Care, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA.,Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105 USA.,Graduate Program in Immunology, Rackham Graduate School, University of Michigan, Ann Arbor, MI 48109 USA
| | - Neha S Bidthanapally
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - MeiLan K Han
- Division of Pulmonary & Critical Care, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Fernando J Martinez
- Joan & Sanford I. Weill Department of Medicine, Division of Pulmonary & Critical Care Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Jeffrey L Curtis
- Division of Pulmonary & Critical Care, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA.,Graduate Program in Immunology, Rackham Graduate School, University of Michigan, Ann Arbor, MI 48109 USA.,Medicine Service, Pulmonary & Critical Care Section, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105 USA
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
5
|
Aydindogan E, Penque D, Zoidakis J. Systematic review on recent potential biomarkers of chronic obstructive pulmonary disease. Expert Rev Mol Diagn 2018; 19:37-45. [DOI: 10.1080/14737159.2018.1559054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eda Aydindogan
- Department of Biochemistry, Institute of Natural Sciences, Ege University, Izmir, Turkey
| | - Deborah Penque
- Laboratory of Proteomics, Human Genetics Department, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisboa, Portugal
- ToxOmics- Centre of Toxicogenomics and Human Health, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
6
|
Wells JM, Parker MM, Oster RA, Bowler RP, Dransfield MT, Bhatt SP, Cho MH, Kim V, Curtis JL, Martinez FJ, Paine R, O'Neal W, Labaki WW, Kaner RJ, Barjaktarevic I, Han MK, Silverman EK, Crapo JD, Barr RG, Woodruff P, Castaldi PJ, Gaggar A. Elevated circulating MMP-9 is linked to increased COPD exacerbation risk in SPIROMICS and COPDGene. JCI Insight 2018; 3:123614. [PMID: 30429371 DOI: 10.1172/jci.insight.123614] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/04/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Matrix metalloprotease 9 (MMP-9) is associated with inflammation and lung remodeling in chronic obstructive pulmonary disease (COPD). We hypothesized that elevated circulating MMP-9 represents a potentially novel biomarker that identifies a subset of individuals with COPD with an inflammatory phenotype who are at increased risk for acute exacerbation (AECOPD). METHODS We analyzed Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) and Genetic Epidemiology of COPD (COPDGene) cohorts for which baseline and prospective data were available. Elevated MMP-9 was defined based on >95th percentile plasma values from control (non-COPD) sample in SPIROMICS. COPD subjects were classified as having elevated or nonelevated MMP-9. Logistic, Poisson, and Kaplan-Meier analyses were used to identify associations with prospective AECOPD in both cohorts. RESULTS Elevated MMP-9 was present in 95/1,053 (9%) of SPIROMICS and 41/140 (29%) of COPDGene participants with COPD. COPD subjects with elevated MMP-9 had a 13%-16% increased absolute risk for AECOPD and a higher median (interquartile range; IQR) annual AECOPD rate (0.33 [0-0.74] versus 0 [0-0.80] events/year and 0.9 [0.5-2] versus 0.5 [0-1.4] events/year for SPIROMICS and COPDGene, respectively). In adjusted models within each cohort, elevated MMP-9 was associated with increased odds (odds ratio [OR], 1.71; 95%CI, 1.00-2.90; and OR, 3.03; 95%CI, 1.02-9.01), frequency (incidence rate ratio [IRR], 1.45; 95%CI, 1.23-1.7; and IRR, 1.24; 95%CI, 1.03-1.49), and shorter time-to-first AECOPD (21.7 versus 31.7 months and 14 versus 21 months) in SPIROMICS and COPDGene, respectively. CONCLUSIONS Elevated MMP-9 was independently associated with AECOPD risk in 2 well-characterized COPD cohorts. These findings provide evidence for MMP-9 as a prognostic biomarker and potential therapeutic target in COPD. TRIAL REGISTRATION ClinicalTrials.gov: NCT01969344 (SPIROMICS) and NCT00608764 (COPDGene). FUNDING This work was funded by K08 HL123940 to JMW; R01HL124233 to PJC; Merit Review I01 CX000911 to JLC; R01 (R01HL102371, R01HL126596) and VA Merit (I01BX001756) to AG. SPIROMICS (Subpopulations and Intermediate Outcomes in COPD Study) is funded by contracts from the NHLBI (HHSN268200900013C, HHSN268200900014C,HHSN268200900015C HHSN268200900016C, HHSN268200900017C, HHSN268200900018C, HHSN268200900019C, and HHSN268200900020C) and a grant from the NIH/NHLBI (U01 HL137880), and supplemented by contributions made through the Foundation for the NIH and the COPD Foundation from AstraZeneca/MedImmune; Bayer; Bellerophon Therapeutics; Boehringer-Ingelheim Pharmaceuticals Inc.; Chiesi Farmaceutici; Forest Research Institute Inc.; GlaxoSmithKline; Grifols Therapeutics Inc.; Ikaria Inc.; Novartis Pharmaceuticals Corporation; Nycomed GmbH; ProterixBio; Regeneron Pharmaceuticals Inc.; Sanofi; Sunovion; Takeda Pharmaceutical Company; and Theravance Biopharma and Mylan. COPDGene is funded by the NHLBI (R01 HL089897 and R01 HL089856) and by the COPD Foundation through contributions made to an Industry Advisory Board composed of AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Novartis, Pfizer, Siemens, and Sunovion.
Collapse
Affiliation(s)
- J Michael Wells
- Division of Pulmonary and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Lung Health Center, Birmingham, Alabama, USA.,Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Margaret M Parker
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Robert A Oster
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Russ P Bowler
- Division of Pulmonary, Critical Care Medicine, National Jewish Health, Denver, Colorado, USA
| | - Mark T Dransfield
- Division of Pulmonary and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Lung Health Center, Birmingham, Alabama, USA.,Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Surya P Bhatt
- Division of Pulmonary and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Lung Health Center, Birmingham, Alabama, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Victor Kim
- Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Fernando J Martinez
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Robert Paine
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA.,Medical Service, Salt Lake City VA Medical Center, Salt Lake City, Utah, USA
| | - Wanda O'Neal
- Marsico Lung Institute/Cystic Fibrosis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert J Kaner
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, UCLA, Los Angeles, California, USA
| | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - James D Crapo
- Division of Pulmonary, Critical Care Medicine, National Jewish Health, Denver, Colorado, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Prescott Woodruff
- Division of Pulmonary and Critical Care Medicine, UCSF, School of Medicine, San Francisco, California, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Amit Gaggar
- Division of Pulmonary and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Lung Health Center, Birmingham, Alabama, USA.,Birmingham VA Medical Center, Birmingham, Alabama, USA
| | -
- The SPIROMICS and COPDGene groups are detailed in the Supplemental Acknowledgments
| |
Collapse
|
7
|
Moon JY, Leitao Filho FS, Shahangian K, Takiguchi H, Sin DD. Blood and sputum protein biomarkers for chronic obstructive pulmonary disease (COPD). Expert Rev Proteomics 2018; 15:923-935. [PMID: 30362838 DOI: 10.1080/14789450.2018.1539670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a heterogeneous set of disorders, characterized by airflow limitation, and reduced lung function. Despite increasing knowledge regarding its pathophysiology, there has been limited advancement in therapeutics and the current treatment strategy is symptom management and prevention of exacerbations. Areas covered: Biomarkers represent important tools for the implementation of precision medicine. As fundamental molecules of all living processes, proteins could provide crucial information about how genes interact with the environment. Proteomics studies could act as important tools in identifying reliable biomarkers to enable a more precise therapeutic approach. In this review, we will explore the most promising blood and sputum protein biomarkers in COPD that have been consistently reported in the literature. Expert commentary: Given the complexity of COPD, no single protein biomarker has been able to improve the outcomes of COPD patients. According to preliminary studies, precision medicine in COPD will likely require a combination of different proteins in a biomarker panel for clinical translation. With advancements in current mass spectrometry techniques, an enhancement in the identification of new biomarkers will be observed, and improvements in sequence database search can fill in potential gaps between biomarker discovery and patient care.
Collapse
Affiliation(s)
- Ji-Yong Moon
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , Canada.,b Department of Internal Medicine , Hanyang University College of Medicine , Seoul , Korea
| | - Fernando Sergio Leitao Filho
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , Canada.,c Division of Pulmonary Medicine, Department of Medicine , Tokai University School of Medicine , Kanagawa , Japan
| | - Kimeya Shahangian
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , Canada
| | - Hiroto Takiguchi
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , Canada.,d Division of Respiratory Medicine (Department of Medicine) , University of British Columbia , Vancouver , Canada
| | - Don D Sin
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , Canada.,d Division of Respiratory Medicine (Department of Medicine) , University of British Columbia , Vancouver , Canada
| |
Collapse
|
8
|
Mallia-Milanes B, Dufour A, Philp C, Solis N, Klein T, Fischer M, Bolton CE, Shapiro S, Overall CM, Johnson SR. TAILS proteomics reveals dynamic changes in airway proteolysis controlling protease activity and innate immunity during COPD exacerbations. Am J Physiol Lung Cell Mol Physiol 2018; 315:L1003-L1014. [PMID: 30284925 DOI: 10.1152/ajplung.00175.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dysregulated protease activity is thought to cause parenchymal and airway damage in chronic obstructive pulmonary disease (COPD). Multiple proteases have been implicated in COPD, and identifying their substrates may reveal new disease mechanisms and treatments. However, as proteases interact with many substrates that may be protease inhibitors or proteases themselves, these webs of protease interactions make the wider consequences of therapeutically targeting proteases difficult to predict. We therefore used a systems approach to determine protease substrates and protease activity in COPD airways. Protease substrates were determined by proteomics using the terminal amine isotopic labeling of substrates (TAILS) methodology in paired sputum samples during stable COPD and exacerbations. Protease activity and specific protein degradation in airway samples were assessed using Western blotting, substrate assays, and ex vivo cleavage assays. Two hundred ninety-nine proteins were identified in human COPD sputum, 125 of which were proteolytically processed, including proteases, protease inhibitors, mucins, defensins, and complement and other innate immune proteins. During exacerbations, airway neutrophils and neutrophil proteases increased and more proteins were cleaved, particularly at multiple sites, consistent with degradation and inactivation. During exacerbations, different substrates were processed, including protease inhibitors, mucins, and complement proteins. Exacerbations were associated with increasing airway elastase activity and increased processing of specific elastase substrates, including secretory leukocyte protease inhibitor. Proteolysis regulates multiple processes including elastase activity and innate immune proteins in COPD airways and differs during stable disease and exacerbations. The complexity of protease, inhibitor, and substrate networks makes the effect of protease inhibitors hard to predict which should be used cautiously.
Collapse
Affiliation(s)
- Brendan Mallia-Milanes
- Division of Respiratory Medicine and National Institute for Health Research Nottingham Biomedical Research Centre Respiratory Theme, University of Nottingham , Nottingham , United Kingdom
| | - Antoine Dufour
- Departments of Oral Biological and Medical Sciences, Biochemistry and Molecular Biology and Centre for Blood Research, Life Sciences Institute, Faculty of Dentistry, University of British Columbia , Vancouver, British Columbia , Canada
| | - Christopher Philp
- Division of Respiratory Medicine and National Institute for Health Research Nottingham Biomedical Research Centre Respiratory Theme, University of Nottingham , Nottingham , United Kingdom.,Nottingham Molecular Pathology Node, University of Nottingham , Nottingham , United Kingdom
| | - Nestor Solis
- Departments of Oral Biological and Medical Sciences, Biochemistry and Molecular Biology and Centre for Blood Research, Life Sciences Institute, Faculty of Dentistry, University of British Columbia , Vancouver, British Columbia , Canada
| | - Theo Klein
- Departments of Oral Biological and Medical Sciences, Biochemistry and Molecular Biology and Centre for Blood Research, Life Sciences Institute, Faculty of Dentistry, University of British Columbia , Vancouver, British Columbia , Canada
| | - Marlies Fischer
- Division of Respiratory Medicine and National Institute for Health Research Nottingham Biomedical Research Centre Respiratory Theme, University of Nottingham , Nottingham , United Kingdom.,Nottingham Molecular Pathology Node, University of Nottingham , Nottingham , United Kingdom
| | - Charlotte E Bolton
- Division of Respiratory Medicine and National Institute for Health Research Nottingham Biomedical Research Centre Respiratory Theme, University of Nottingham , Nottingham , United Kingdom
| | - Steven Shapiro
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Christopher M Overall
- Departments of Oral Biological and Medical Sciences, Biochemistry and Molecular Biology and Centre for Blood Research, Life Sciences Institute, Faculty of Dentistry, University of British Columbia , Vancouver, British Columbia , Canada
| | - Simon R Johnson
- Division of Respiratory Medicine and National Institute for Health Research Nottingham Biomedical Research Centre Respiratory Theme, University of Nottingham , Nottingham , United Kingdom.,Nottingham Molecular Pathology Node, University of Nottingham , Nottingham , United Kingdom
| |
Collapse
|
9
|
Schumann DM, Leeming D, Papakonstantinou E, Blasi F, Kostikas K, Boersma W, Louis R, Milenkovic B, Aerts J, Sand JM, Wouters EF, Rohde G, Prat C, Torres A, Welte T, Tamm M, Karsdal M, Stolz D. Collagen Degradation and Formation Are Elevated in Exacerbated COPD Compared With Stable Disease. Chest 2018; 154:798-807. [DOI: 10.1016/j.chest.2018.06.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/26/2018] [Accepted: 06/01/2018] [Indexed: 01/06/2023] Open
|
10
|
Shin NR, Kim C, Seo CS, Ko JW, Cho YK, Kim JC, Kim JS, Shin IS. So-Cheong-Ryoung-Tang Attenuates Pulmonary Inflammation Induced by Cigarette Smoke in Bronchial Epithelial Cells and Experimental Mice. Front Pharmacol 2018; 9:1064. [PMID: 30298007 PMCID: PMC6160558 DOI: 10.3389/fphar.2018.01064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/03/2018] [Indexed: 12/31/2022] Open
Abstract
So-Cheong-Ryoung-Tang is a traditionally used herbal formula for the treatment of pulmonary diseases in China, Korea, and Japan. We investigated the protective effects of So-Cheong-Ryong-Tang water extract (SCWE) in cigarette smoke concentrate (CSC) stimulated human airway epithelial cell line NCI-H292 and mice exposed cigarette smoke (CS) and lipopolysaccharide (LPS). In the CSC-stimulated NCI-H292 cells, SCWE inhibited proinflammatory cytokines in a concentration-dependent manner, as evidenced by a reduction in their mRNA levels. Also, SCWE significant reduced inducible nitric oxide synthase (iNOS) expression and nuclear factor kappa B (NF-κB) phosphorylation in CSC-stimulated cells. The mice were exposed to CS for 1 h per day (a total of eight cigarettes per day) for 7 days and received LPS intranasally on day 5. The mice were administered a dose of SCWE (100 and 200 mg/kg) 1 h before CS exposure. In in vivo, SCWE decreased the inflammatory cell count and reduced the expression of the proinflammatory cytokines in the broncho-alveolar lavage fluid (BALF) compared with CS and LPS exposed mice. SCWE attenuated inflammatory cell infiltration in airway induced by CS and LPS exposure, and this decrease was accompanied by a reduction in the expression levels of iNOS and MMP-9 in lung tissue. The extract also inhibited the phosphorylation of inhibitor of kappa B alpha (IκBα) and NF-κB induced by CS and LPS exposure in lung tissue. These results suggest that SCWE may effectively inhibit airway inflammatory responses induced by CS and LPS exposure via the NF-κB pathway. Therefore, SCWE may be a potential treatment for airway inflammatory diseases, such as chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Na-Rae Shin
- BK21 Plus Project Team, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Chul Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Chang-Seob Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Je-Won Ko
- BK21 Plus Project Team, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, Cheongju, South Korea
| | - Jong-Choon Kim
- BK21 Plus Project Team, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Joong-Sun Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - In-Sik Shin
- BK21 Plus Project Team, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
11
|
Progesterone attenuates airway remodeling and glucocorticoid resistance in a murine model of exposing to ozone. Mol Immunol 2018; 96:69-77. [PMID: 29501934 DOI: 10.1016/j.molimm.2018.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/26/2018] [Accepted: 02/09/2018] [Indexed: 12/20/2022]
Abstract
Airway remodeling is a vital component of chronic obstructive pulmonary disease (COPD). Despite the broad anti-inflammation effects of glucocorticoids, they exhibit relatively little therapeutic benefit in COPD, indicating the accelerating demands of new agents for COPD. We aim to explore the effect of progesterone on airway remodeling in a murine modeling of exposing to ozone and to further examine the potential effect of progesterone on glucocorticoid insensitivity. C57/BL6 mice were exposed to ozone for 12 times over 6 weeks, and were administered with progesterone alone or combined with budesonide (BUD) after each exposure until the 10th week. The peribronchial collagen deposition was measured. The protein levels of MMP8 and MMP9 in bronchoalveolar lavage fluid (BALF) and lungs were assessed. Western blot analysis was used to detect the levels of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), a-smooth muscle actin (α-SMA), glycogen synthase kinase-3β (GSK-3β). The expression of VEGF and histone deacetylase 2 (HDAC2) in the lung were determined by Immunohistochemical analyses. We observe that progesterone attenuates the peribronchial collagen deposition, as well as the expression of MMP8, MMP9, HIF-1α, VEGF, α-SMA, and GSK-3β in BALF or lung tissues. Progesterone or BUD monotherapy has no effect on HDAC2 production. Progesterone combines with BUD induce dramatically enhanced effects. Thus, these results demonstrate novel roles of progesterone for the pathogenesis and airway remodeling in COPD. Progesterone plus BUD administration exerts more significant inhibition on airway remodeling with dose-independent. Additionally, progesterone may, to some extent, improve the glucocorticoid insensitivity.
Collapse
|
12
|
Liang S, Meng X, Wang Z, Liu J, Kuang H, Wang Q. Polysaccharide from Ephedra sinica Stapf inhibits inflammation expression by regulating Factor-β1/Smad2 signaling. Int J Biol Macromol 2018; 106:947-954. [DOI: 10.1016/j.ijbiomac.2017.08.096] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 12/24/2022]
|
13
|
Leeming DJ, Byrjalsen I, Sand JMB, Bihlet AR, Lange P, Thal-Singer R, Miller BE, Karsdal MA, Vestbo J. Biomarkers of collagen turnover are related to annual change in FEV 1 in patients with chronic obstructive pulmonary disease within the ECLIPSE study. BMC Pulm Med 2017; 17:164. [PMID: 29202744 PMCID: PMC5716018 DOI: 10.1186/s12890-017-0505-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 11/16/2017] [Indexed: 01/06/2023] Open
Abstract
Background Change in forced expiratory volume in one second (FEV1) is important for defining severity of chronic obstructive pulmonary disease (COPD). Serological neoepitope markers of collagen turnover may predict rate of change in FEV1. Methods One thousand COPD subjects from the observational, multicentre, three-year ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) study (NCT00292552, trial registration in February 2006) were included. Matrix metalloproteinase (MMP)-generated fragments of collagen type I, and type VI (C1M and C6M) were assessed in month six serum samples. A random-coefficient model with both a random intercept and a random slope was used to test the ability of the markers to predict post-dose bronchodilator FEV1 (PD-FEV1) change over two years adjusting for sex, age, BMI, smoking, bronchodilator reversibility, prior exacerbations, emphysema and chronic bronchitis status at baseline. Results Annual change of PD-FEV1 was estimated from a linear model for the two-year study period. Serum C1M and C6M were independent predictors of lung function change (p = 0.007/0.005). Smoking, bronchodilator reversibility, plasma hsCRP and emphysema were also significant predictors. The effect estimate between annual change in PD-FEV1 per one standard deviation (1SD) increase of C1M and C6M was +10.4 mL/yr. and +8.6 mL/yr. C1M, and C6M, had a significant association with baseline FEV1. Conclusion We demonstrated that markers of tissue turnover were significantly associated with lung function change. These markers may function as prognostic biomarkers and possibly as efficacy biomarkers in clinical trials focusing on lung function change in COPD. Trial registration NCT00292552, Retrospectively registered, trial registration in February 2006. Electronic supplementary material The online version of this article (10.1186/s12890-017-0505-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diana J Leeming
- Nordic Bioscience, Fibrosis Biology and Biomarkers, Herlev Hovedgade 207, DK-2730, Herlev, Denmark.
| | - Inger Byrjalsen
- Nordic Bioscience, Fibrosis Biology and Biomarkers, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | - Jannie M B Sand
- Nordic Bioscience, Fibrosis Biology and Biomarkers, Herlev Hovedgade 207, DK-2730, Herlev, Denmark.,Section of Social Medicine, Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Asger R Bihlet
- Nordic Bioscience, Fibrosis Biology and Biomarkers, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | - Peter Lange
- Section of Social Medicine, Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Ruth Thal-Singer
- GlaxoSmithKline Research and Development, King of Prussia, PA, United States.
| | - Bruce E Miller
- GlaxoSmithKline Research and Development, King of Prussia, PA, United States.
| | - Morten A Karsdal
- Nordic Bioscience, Fibrosis Biology and Biomarkers, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | - Jørgen Vestbo
- Centre for Respiratory Medicine and Allergy, Manchester Academic Science Centre, The University of Manchester and University Hospital South Manchester NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
14
|
Lee JW, Park JW, Kwon OK, Lee HJ, Jeong HG, Kim JH, Oh SR, Ahn KS. NPS2143 Inhibits MUC5AC and Proinflammatory Mediators in Cigarette Smoke Extract (CSE)-Stimulated Human Airway Epithelial Cells. Inflammation 2017; 40:184-194. [PMID: 27866297 DOI: 10.1007/s10753-016-0468-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mucus overproduction is a fundamental hallmark of COPD that is caused by exposure to cigarette smoke. MUC5AC is one of the main mucin genes expressed in the respiratory epithelium, and its transcriptional upregulation often correlates with increased mucus secretion. Calcium-sensing receptor (CaSR) antagonists have been reported to possess anti-inflammatory effects. The purpose of the present study was to investigate the protective role of NPS2143, a selective CaSR antagonist on cigarette smoke extract (CSE)-stimulated NCI-H292 mucoepidermoid human lung cells. Treatment of NPS2143 significantly inhibited the expression of MUC5AC in CSE-stimulated H292 cells. NPS2143 reduced the expression of MMP-9 in CSE-stimulated H292 cells. NPS2143 also decreased the release of proinflammatory cytokines such as IL-6 and TNF-α in CSE-stimulated H292 cells. Furthermore, NPS2143 attenuated the activation of MAPKs (JNK, p38, and ERK) and inhibited the nuclear translocation of NF-κB in CSE-stimulated H292 cells. These results indicate that NPS2143 had a therapeutic potential in COPD.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Kangwon, 200-701, Republic of Korea
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Jae-Hong Kim
- Department of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul, 136-701, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea.
| | - Kyoung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea.
| |
Collapse
|
15
|
Shin NR, Ko JW, Park SH, Cho YK, Oh SR, Ahn KS, Ryu JM, Kim JC, Seo CS, Shin IS. Protective effect of HwangRyunHaeDok-Tang water extract against chronic obstructive pulmonary disease induced by cigarette smoke and lipopolysaccharide in a mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2017; 200:60-65. [PMID: 28216440 DOI: 10.1016/j.jep.2017.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 02/02/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hwangryunhaedok-tang is an oriental herbal formula treated to cure inflammation and gastric disorders in China, Japan, and Korea. We explored the protective effects of Hwangryunhaedok-tang water extract (HRWE) against airway pathophysiological changes caused by cigarette smoke (CS) and lipopolysaccharide (LPS) in a mouse. MATERIALS AND METHODS We performed quantitative analyses of five marker components, namely geniposide, baicalin, coptisine, plamatine, and berberine, using high-performance liquid chromatography. Animals were received CS exposure (1h per day) for 7 days. LPS was administered intranasally on day 4. Mice were received HRWE at dose of 100 or 200mg/kg for 1h before CS exposure. RESULTS Treatment with HRWE significantly suppressed the increased inflammatory cell count induced by CS and LPS exposure. In addition, reduction in IL-6, TNF-α and IL-1β in broncho-alveolar lavage fluid (BALF) was observed after HRWE treatment. HRWE not only decreased inflammatory cell infiltration in lung, but also decreased the expression of iNOS, NF-κB and matrix metallopeptidase (MMP)-9 in lung tissues. CONCLUSION This study showed that HRWE can attenuate respiratory inflammation caused by CS and LPS exposure. Therefore, HRWE has potential for treating airway inflammatory disease.
Collapse
Affiliation(s)
- Na-Rae Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Sung-Hyeuk Park
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, 298 Daesung-ro, Sangdang-gu, Cheongju-si, Chungbuk 360-764, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Kyung-Seob Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Jung-Min Ryu
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Chang-Seob Seo
- K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - In-Sik Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
16
|
Carleo A, Chorostowska-Wynimko J, Koeck T, Mischak H, Czajkowska-Malinowska M, Rozy A, Welte T, Janciauskiene S. Does urinary peptide content differ between COPD patients with and without inherited alpha-1 antitrypsin deficiency? Int J Chron Obstruct Pulmon Dis 2017; 12:829-837. [PMID: 28331304 PMCID: PMC5352160 DOI: 10.2147/copd.s125240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Differentiating between chronic obstructive pulmonary disease (COPD) patients with normal (PiMM) or deficient (PiZZ) genetic variants of alpha-1 antitrypsin (A1AT) is important not only for understanding the pathobiology of disease progression but also for improving personalized therapies. This pilot study aimed to investigate whether urinary peptides reflect the A1AT-related phenotypes of COPD. Urine samples from 19 clinically stable COPD cases (7 PiMM and 12 PiZZ A1AT) were analyzed by capillary electrophoresis coupled to mass spectrometry. We identified 66 peptides (corresponding to 36 unique proteins) that differed between PiZZ and PiMM COPD. Among these, peptides from the collagen family were the most abundant and divergent. A logistic regression model based on COL1A1 or COL5A3 peptides enabled differentiation between PiMM and PiZZ groups, with a sensitivity of 100% and specificity of 85.71% for COL1A1 and a sensitivity of 91.67% and specificity of 85.71% for COL5A3. Furthermore, patients with PiZZ presented low levels of urinary peptides involved in lipoproteins/lipids and retinoic acid metabolism, such as apolipoprotein A-I and C4, retinol-binding protein 4 and prostaglandin-H2 D-isomerase. However, peptides of MDS1 and EVII complex locus, gelsolin and hemoglobin alpha were found in the urine of COPD cases with PiZZ, but not with PiMM. These capillary electrophoresis coupled to mass spectrometry-based results provide the first evidence that urinary peptide content differs between PiMM and PiZZ patients with COPD.
Collapse
Affiliation(s)
- Alfonso Carleo
- Department of Respiratory Medicine, Hannover Medical School; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), DZL Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Thomas Koeck
- Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany
| | - Harald Mischak
- Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany; Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Adriana Rozy
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), DZL Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), DZL Hannover, Germany
| |
Collapse
|