1
|
Williams ZJ, Payne LB, Wu X, Gourdie RG. New focus on cardiac voltage-gated sodium channel β1 and β1B: Novel targets for treating and understanding arrhythmias? Heart Rhythm 2024:S1547-5271(24)02742-5. [PMID: 38908461 DOI: 10.1016/j.hrthm.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Voltage-gated sodium channels (VGSCs) are transmembrane protein complexes that are vital to the generation and propagation of action potentials in nerve and muscle fibers. The canonical VGSC is generally conceived as a heterotrimeric complex formed by 2 classes of membrane-spanning subunit: an α-subunit (pore forming) and 2 β-subunits (non-pore forming). NaV1.5 is the main sodium channel α-subunit of mammalian ventricle, with lower amounts of other α-subunits, including NaV1.6, being present. There are 4 β-subunits (β1-β4) encoded by 4 genes (SCN1B-SCN4B), each of which is expressed in cardiac tissues. Recent studies suggest that in addition to assignments in channel gating and trafficking, products of Scn1b may have novel roles in conduction of action potential in the heart and intracellular signaling. This includes evidence that the β-subunit extracellular amino-terminal domain facilitates adhesive interactions in intercalated discs and that its carboxyl-terminal region is a substrate for a regulated intramembrane proteolysis (RIP) signaling pathway, with a carboxyl-terminal peptide generated by β1 RIP trafficked to the nucleus and altering transcription of various genes, including NaV1.5. In addition to β1, the Scn1b gene encodes for an alternative splice variant, β1B, which contains an identical extracellular adhesion domain to β1 but has a unique carboxyl-terminus. Although β1B is generally understood to be a secreted variant, evidence indicates that when co-expressed with NaV1.5, it is maintained at the cell membrane, suggesting potential unique roles for this understudied protein. In this review, we focus on what is known of the 2 β-subunit variants encoded by Scn1b in heart, with particular focus on recent findings and the questions raised by this new information. We also explore data that indicate β1 and β1B may be attractive targets for novel antiarrhythmic therapeutics.
Collapse
Affiliation(s)
- Zachary J Williams
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Laura Beth Payne
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Xiaobo Wu
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Robert G Gourdie
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia; School of Medicine, Virgina Polytechnic University, Roanoke, Virginia; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Blacksburg, Virginia.
| |
Collapse
|
2
|
Struckman HL, Moise N, King DR, Soltisz A, Buxton A, Dunlap I, Chen Z, Radwański PB, Weinberg SH, Veeraraghavan R. Unraveling Impacts of Chamber-Specific Differences in Intercalated Disc Ultrastructure and Molecular Organization on Cardiac Conduction. JACC Clin Electrophysiol 2023; 9:2425-2443. [PMID: 37498248 PMCID: PMC11102000 DOI: 10.1016/j.jacep.2023.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Propagation of action potentials through the heart coordinates the heartbeat. Thus, intercalated discs, specialized cell-cell contact sites that provide electrical and mechanical coupling between cardiomyocytes, are an important target for study. Impaired propagation leads to arrhythmias in many pathologies, where intercalated disc remodeling is a common finding, hence the importance and urgency of understanding propagation dependence on intercalated disc structure. Conventional modeling approaches cannot predict changes in propagation elicited by perturbations that alter intercalated disc ultrastructure or molecular organization, because of lack of quantitative structural data at subcellular through nano scales. OBJECTIVES This study sought to quantify intercalated disc structure at these spatial scales in the healthy adult mouse heart and relate them to chamber-specific properties of propagation as a precursor to understanding the effects of pathological intercalated disc remodeling. METHODS Using super-resolution light microscopy, electron microscopy, and computational image analysis, we provide here the first ever systematic, multiscale quantification of intercalated disc ultrastructure and molecular organization. RESULTS By incorporating these data into a rule-based model of cardiac tissue with realistic intercalated disc structure, and comparing model predictions of electrical propagation with experimental measures of conduction velocity, we reveal that atrial intercalated discs can support faster conduction than their ventricular counterparts, which is normally masked by interchamber differences in myocyte geometry. Further, we identify key ultrastructural and molecular organization features underpinning the ability of atrial intercalated discs to support faster conduction. CONCLUSIONS These data provide the first stepping stone to elucidating chamber-specific effects of pathological intercalated disc remodeling, as occurs in many arrhythmic diseases.
Collapse
Affiliation(s)
- Heather L Struckman
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nicolae Moise
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - D Ryan King
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Andrew Soltisz
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Andrew Buxton
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Izabella Dunlap
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Zhenhui Chen
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Przemysław B Radwański
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Seth H Weinberg
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
3
|
Struckman HL, Moise N, King DR, Soltisz A, Buxton A, Dunlap I, Chen Z, Radwański PB, Weinberg SH, Veeraraghavan R. Unraveling Chamber-specific Differences in Intercalated Disc Ultrastructure and Molecular Organization and Their Impact on Cardiac Conduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528369. [PMID: 36824727 PMCID: PMC9949041 DOI: 10.1101/2023.02.13.528369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
During each heartbeat, the propagation of action potentials through the heart coordinates the contraction of billions of individual cardiomyocytes and is thus, a critical life process. Unsurprisingly, intercalated discs, which are cell-cell contact sites specialized to provide electrical and mechanical coupling between adjacent cardiomyocytes, have been the focus of much investigation. Slowed or disrupted propagation leads to potentially life-threatening arrhythmias in a wide range of pathologies, where intercalated disc remodeling is a common finding. Hence, the importance and urgency of understanding intercalated disc structure and its influence on action potential propagation. Surprisingly, however, conventional modeling approaches cannot predict changes in propagation elicited by perturbations that alter intercalated disc ultrastructure or molecular organization, owing to lack of quantitative structural data at subcellular through nano scales. In order to address this critical gap in knowledge, we sought to quantify intercalated disc structure at these finer spatial scales in the healthy adult mouse heart and relate them to function in a chamber-specific manner as a precursor to understanding the impacts of pathological intercalated disc remodeling. Using super-resolution light microscopy, electron microscopy, and computational image analysis, we provide here the first ever systematic, multiscale quantification of intercalated disc ultrastructure and molecular organization. By incorporating these data into a rule-based model of cardiac tissue with realistic intercalated disc structure, and comparing model predictions of electrical propagation with experimental measures of conduction velocity, we reveal that atrial intercalated discs can support faster conduction than their ventricular counterparts, which is normally masked by inter-chamber differences in myocyte geometry. Further, we identify key ultrastructural and molecular organization features underpinning the ability of atrial intercalated discs to support faster conduction. These data provide the first stepping stone to elucidating chamber-specific impacts of pathological intercalated disc remodeling, as occurs in many arrhythmic diseases.
Collapse
|
4
|
De Bortoli M, Meraviglia V, Mackova K, Frommelt LS, König E, Rainer J, Volani C, Benzoni P, Schlittler M, Cattelan G, Motta BM, Volpato C, Rauhe W, Barbuti A, Zacchigna S, Pramstaller PP, Rossini A. Modeling incomplete penetrance in arrhythmogenic cardiomyopathy by human induced pluripotent stem cell derived cardiomyocytes. Comput Struct Biotechnol J 2023; 21:1759-1773. [PMID: 36915380 PMCID: PMC10006475 DOI: 10.1016/j.csbj.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are commonly used to model arrhythmogenic cardiomyopathy (ACM), a heritable cardiac disease characterized by severe ventricular arrhythmias, fibrofatty myocardial replacement and progressive ventricular dysfunction. Although ACM is inherited as an autosomal dominant disease, incomplete penetrance and variable expressivity are extremely common, resulting in different clinical manifestations. Here, we propose hiPSC-CMs as a powerful in vitro model to study incomplete penetrance in ACM. Six hiPSC lines were generated from blood samples of three ACM patients carrying a heterozygous deletion of exon 4 in the PKP2 gene, two asymptomatic (ASY) carriers of the same mutation and one healthy control (CTR), all belonging to the same family. Whole exome sequencing was performed in all family members and hiPSC-CMs were examined by ddPCR, western blot, Wes™ immunoassay system, patch clamp, immunofluorescence and RNASeq. Our results show molecular and functional differences between ACM and ASY hiPSC-CMs, including a higher amount of mutated PKP2 mRNA, a lower expression of the connexin-43 protein, a lower overall density of sodium current, a higher intracellular lipid accumulation and sarcomere disorganization in ACM compared to ASY hiPSC-CMs. Differentially expressed genes were also found, supporting a predisposition for a fatty phenotype in ACM hiPSC-CMs. These data indicate that hiPSC-CMs are a suitable model to study incomplete penetrance in ACM.
Collapse
Key Words
- ABC, active ß-catenin
- ACM, arrhythmogenic cardiomyopathy
- ASY, asymptomatic
- Arrhythmogenic cardiomyopathy
- BBB, bundle-branch block
- CMs, cardiomyocytes
- CTR, control
- Cx43, connexin-43
- DEGs, differentially expressed genes
- GATK, Genome Analysis Toolkit
- Human induced pluripotent stem cell derived cardiomyocytes
- ICD, implantable cardioverter-defibrillator
- ID, intercalated disk
- Incomplete penetrance
- LBB, left bundle-branch block
- MRI, magnetic resonance imagingmut, mutated
- NSVT, non-sustained ventricular tachycardia
- RV, right ventricle
- hiPSC, human induced pluripotent stem cell
- wt, wild type
Collapse
Affiliation(s)
- Marzia De Bortoli
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Viviana Meraviglia
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy.,Department of Anatomy and Embryology, Leiden University Medical Center, 2316 Leiden, the Netherlands
| | - Katarina Mackova
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Laura S Frommelt
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Eva König
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Johannes Rainer
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Chiara Volani
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy.,Universita` degli Studi di Milano, The Cell Physiology MiLab, Department of Biosciences, Milano, Italy
| | - Patrizia Benzoni
- Universita` degli Studi di Milano, The Cell Physiology MiLab, Department of Biosciences, Milano, Italy
| | - Maja Schlittler
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Giada Cattelan
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Benedetta M Motta
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Claudia Volpato
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Werner Rauhe
- San Maurizio Hospital, Department of Cardiology, Bolzano, Italy
| | - Andrea Barbuti
- Universita` degli Studi di Milano, The Cell Physiology MiLab, Department of Biosciences, Milano, Italy
| | - Serena Zacchigna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cardiovascular Biology Laboratory, Trieste, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Alessandra Rossini
- Institute for Biomedicine (Affiliated to the University of Lübeck), Eurac Research, Bolzano, Italy
| |
Collapse
|
5
|
Balawender K, Kłosowicz M, Inglot J, Pliszka A, Wawrzyniak A, Olszewska A, Clarke E, Golberg M, Smędra A, Barszcz K, Żytkowski A. Anatomical variants and clinical significance of atrioventricular bundle of His: A narrative review. TRANSLATIONAL RESEARCH IN ANATOMY 2023. [DOI: 10.1016/j.tria.2023.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
6
|
Kopylov AT, Papysheva O, Gribova I, Kaysheva AL, Kotaysch G, Kharitonova L, Mayatskaya T, Nurbekov MK, Schipkova E, Terekhina O, Morozov SG. Severe types of fetopathy are associated with changes in the serological proteome of diabetic mothers. Medicine (Baltimore) 2021; 100:e27829. [PMID: 34766598 PMCID: PMC8589259 DOI: 10.1097/md.0000000000027829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/27/2022] Open
Abstract
ABSTRACT Pregestational or gestational diabetes are the main risk factors for diabetic fetopathy. There are no generalized signs of fetopathy before the late gestational age due to insufficient sensitivity of currently employed instrumental methods. In this cross-sectional observational study, we investigated several types of severe diabetic fetopathy (cardiomyopathy, central nervous system defects, and hepatomegaly) established in type 2 diabetic mothers during 30 to 35 gestational weeks and confirmed upon delivery. We examined peripheral blood plasma and determined a small proportion of proteins strongly associated with a specific type of fetopathy or anatomical malfunction. Most of the examined markers participate in critical processes at different stages of embryogenesis and regulate various phases of morphogenesis. Alterations in CDCL5 had a significant impact on mRNA splicing and DNA repair. Patients with central nervous system defects were characterized by the greatest depletion (ca. 7% of the basal level) of DFP3, a neurotrophic factor needed for the proper specialization of oligodendrocytes. Dysregulation of noncanonical wingless-related integration site signaling pathway (Wnt) signaling guided by pigment epithelium-derived factor (PEDF) and disheveled-associated activator of morphogenesis 2 (DAAM2) was also profound. In addition, deficiency in retinoic acid and thyroxine transport was exhibited by the dramatic increase of transthyretin (TTHY). The molecular interplay between the identified serological markers leads to pathologies in fetal development on the background of a diabetic condition. These warning serological markers can be quantitatively examined, and their profile may reflect different severe types of diabetic fetopathy, producing a beneficial effect on the current standard care for pregnant women and infants.
Collapse
Affiliation(s)
- Arthur T. Kopylov
- Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, Russia
| | - Olga Papysheva
- S.S. Yudin 7th State Clinical Hospital, 4 Kolomenskaya str., Moscow, Russia
| | - Iveta Gribova
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., Moscow, Russia
| | - Anna L. Kaysheva
- Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, Russia
| | - Galina Kotaysch
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., Moscow, Russia
| | - Lubov Kharitonova
- N.I. Pirogov Medical University, 1 Ostrovityanova st., Moscow, Russia
| | | | - Malik K. Nurbekov
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| | - Ekaterina Schipkova
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| | - Olga Terekhina
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| | - Sergey G. Morozov
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., Moscow, Russia
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| |
Collapse
|
7
|
Zhang J, Liang Y, Bradford WH, Sheikh F. Desmosomes: emerging pathways and non-canonical functions in cardiac arrhythmias and disease. Biophys Rev 2021; 13:697-706. [PMID: 34765046 PMCID: PMC8555023 DOI: 10.1007/s12551-021-00829-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Desmosomes are critical adhesion structures in cardiomyocytes, with mutation/loss linked to the heritable cardiac disease, arrhythmogenic right ventricular cardiomyopathy (ARVC). Early studies revealed the ability of desmosomal protein loss to trigger ARVC disease features including structural remodeling, arrhythmias, and inflammation; however, the precise mechanisms contributing to diverse disease presentations are not fully understood. Recent mechanistic studies demonstrated the protein degradation component CSN6 is a resident cardiac desmosomal protein which selectively restricts cardiomyocyte desmosomal degradation and disease. This suggests defects in protein degradation can trigger the structural remodeling underlying ARVC. Additionally, a subset of ARVC-related mutations show enhanced vulnerability to calpain-mediated degradation, further supporting the relevance of these mechanisms in disease. Desmosomal gene mutations/loss has been shown to impact arrhythmogenic pathways in the absence of structural disease within ARVC patients and model systems. Studies have shown the involvement of connexins, calcium handling machinery, and sodium channels as early drivers of arrhythmias, suggesting these may be distinct pathways regulating electrical function from the desmosome. Emerging evidence has suggested inflammation may be an early mechanism in disease pathogenesis, as clinical reports have shown an overlap between myocarditis and ARVC. Recent studies focus on the association between desmosomal mutations/loss and inflammatory processes including autoantibodies and signaling pathways as a way to understand the involvement of inflammation in ARVC pathogenesis. A specific focus will be to dissect ongoing fields of investigation to highlight diverse pathogenic pathways associated with desmosomal mutations/loss.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Yan Liang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - William H. Bradford
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Farah Sheikh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| |
Collapse
|
8
|
Wang L, Bhakta M, Fernandez-Perez A, Munshi NV. Inducible cardiomyocyte injury within the atrioventricular conduction system uncovers latent regenerative capacity in mice. J Clin Invest 2021; 131:138637. [PMID: 34596051 DOI: 10.1172/jci138637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
The cardiac conduction system (CCS) ensures regular contractile function, and injury to any of its components can cause cardiac dysrhythmia. Although all cardiomyocytes (CMs) originate from common progenitors, the CCS is composed of biologically distinct cell types with unique functional and developmental characteristics. In contrast to ventricular cardiomyocytes, which continue to proliferate after birth, most CCS cells terminally exit the cell cycle during fetal development. Although the CCS should thus provide a poor substrate for postnatal injury repair, its regenerative capacity remains untested. Here, we describe a genetic system for ablating CMs that reside within the atrioventricular conduction system (AVCS). Adult mouse AVCS ablation resulted in regenerative failure characterized by persistent atrioventricular conduction defects and contractile dysfunction. In contrast, AVCS injury in neonatal mice led to recovery in a subset of these mice, thus providing evidence for CCS plasticity. Furthermore, CM proliferation did not appear to completely account for the observed functional recovery, suggesting that mechanisms regulating recovery from dysrhythmia are likely to be distinct from cardiac regeneration associated with ventricular injury. Taken together, we anticipate that our results will motivate further mechanistic studies of CCS plasticity and enable the exploration of rhythm restoration as an alternative therapeutic strategy.
Collapse
Affiliation(s)
- Lin Wang
- Department of Internal Medicine (Cardiology Division)
| | - Minoti Bhakta
- Department of Internal Medicine (Cardiology Division)
| | | | - Nikhil V Munshi
- Department of Internal Medicine (Cardiology Division).,Department of Molecular Biology.,McDermott Center for Human Growth and Development, and.,Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Sudden Unexpected Death Associated with Arrhythmogenic Cardiomyopathy: Study of the Cardiac Conduction System. Diagnostics (Basel) 2021; 11:diagnostics11081323. [PMID: 34441258 PMCID: PMC8392334 DOI: 10.3390/diagnostics11081323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
A retrospective study was conducted on pathologically diagnosed arrhythmogenic cardiomyopathy (ACM) from consecutive cases over the past 34 years (n = 1109). The anatomo-pathological analyses were performed on 23 hearts diagnosed as ACM (2.07%) from a series of 1109 suspected cases, while histopathological data of cardiac conduction system (CCS) were available for 15 out of 23 cases. The CCS was removed in two blocks, containing the following structures: Sino-atrial node (SAN), atrio-ventricular junction (AVJ) including the atrio-ventricular node (AVN), the His bundle (HB), the bifurcation (BIF), the left bundle branch (LBB) and the right bundle branch (RBB). The ACM cases consisted of 20 (86.96%) sudden unexpected cardiac death (SUCD) and 3 (13.04%) native explanted hearts; 16 (69.56%) were males and 7 (30.44%) were females, ranging in age from 5 to 65 (mean age ± SD, 36.13 ± 16.06) years. The following anomalies of the CCS, displayed as percentages of the 15 ACM SUCD cases in which the CCS has been fully analyzed, have been detected: Hypoplasia of SAN (80%) and/or AVJ (86.67%) due to fatty-fibrous involvement, AVJ dispersion and/or septation (46.67%), central fibrous body (CFB) hypoplasia (33.33%), fibromuscular dysplasia of SAN (20%) and/or AVN (26.67%) arteries, hemorrhage and infarct-like lesions of CCS (13.33%), islands of conduction tissue in CFB (13.33%), Mahaim fibers (13.33%), LBB block by fibrosis (13.33%), AVN tongue (13.33%), HB duplicity (6.67%%), CFB cartilaginous meta-hyperplasia (6.67%), and right sided HB (6.67%). Arrhythmias are the hallmark of ACM, not only from the fatty-fibrous disruption of the ventricular myocardium that accounts for reentrant ventricular tachycardia, but also from the fatty-fibrous involvement of CCS itself. Future research should focus on application of these knowledge on CCS anomalies to be added to diagnostic criteria or at least to be useful to detect the patients with higher sudden death risks.
Collapse
|
10
|
Abreu Velez AM, Howard MS, Velazquez-Velez JE. Cardiac rhythm and pacemaking abnormalities in patients affected by endemic pemphigus in Colombia may be the result of deposition of autoantibodies, complement, fibrinogen, and other molecules. Heart Rhythm 2017; 15:725-731. [PMID: 29277685 DOI: 10.1016/j.hrthm.2017.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND We previously showed that one-third of patients affected by endemic pemphigus foliaceus in El Bagre, Colombia (El Bagre-EPF), display autoreactivity to the heart. OBJECTIVE The purpose of this study was to investigate rhythm disturbances with the presence of autoantibodies and correlate them with ECG changes in these patients. METHODS We performed a study comparing 30 patients and 30 controls from the endemic area, matched by demographics, including age, sex, weight, work activities, and comorbidities. ECG as well as direct and indirect immunofluorescence, immunohistochemistry, and confocal microscopic studies focusing on cardiac node abnormalities were performed. Autopsies of 7 patients also were reviewed. RESULTS The main ECG abnormalities seen in the El Bagre-EPF patients were sinus bradycardia (in one-half), followed by left bundle branch block, left posterior fascicular block, and left anterior fascicular block compared with the controls. One-third of the patients displayed polyclonal autoantibodies against the sinoatrial and/or AV nodes and the His bundle correlating with rhythm anomalies and delays in the cardiac conduction system (P <.01). The patient antibodies colocalized with commercial antibodies to desmoplakins I and II, p0071, armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF), and myocardium-enriched zonula occludens-1-associated protein (MYZAP; Progen Biotechnik) (P <.01). CONCLUSION One-third of the patients affected by El Bagre-EPF have rhythm abnormalities that slow the conduction of impulses in cardiac nodes and the cardiac conduction system. These abnormalities likely occur as a result of deposition of autoantibodies, complement, and other inflammatory molecules. We show for the first time that MYZAP is present in cardiac nodes.
Collapse
|
11
|
Cai J, Culley MK, Zhao Y, Zhao J. The role of ubiquitination and deubiquitination in the regulation of cell junctions. Protein Cell 2017; 9:754-769. [PMID: 29080116 PMCID: PMC6107491 DOI: 10.1007/s13238-017-0486-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Maintenance of cell junctions plays a crucial role in the regulation of cellular functions including cell proliferation, permeability, and cell death. Disruption of cell junctions is implicated in a variety of human disorders, such as inflammatory diseases and cancers. Understanding molecular regulation of cell junctions is important for development of therapeutic strategies for intervention of human diseases. Ubiquitination is an important type of post-translational modification that primarily regulates endogenous protein stability, receptor internalization, enzyme activity, and protein-protein interactions. Ubiquitination is tightly regulated by ubiquitin E3 ligases and can be reversed by deubiquitinating enzymes. Recent studies have been focusing on investigating the effect of protein stability in the regulation of cell-cell junctions. Ubiquitination and degradation of cadherins, claudins, and their interacting proteins are implicated in epithelial and endothelial barrier disruption. Recent studies have revealed that ubiquitination is involved in regulation of Rho GTPases’ biological activities. Taken together these studies, ubiquitination plays a critical role in modulating cell junctions and motility. In this review, we will discuss the effects of ubiquitination and deubiquitination on protein stability and expression of key proteins in the cell-cell junctions, including junction proteins, their interacting proteins, and small Rho GTPases. We provide an overview of protein stability in modulation of epithelial and endothelial barrier integrity and introduce potential future search directions to better understand the effects of ubiquitination on human disorders caused by dysfunction of cell junctions.
Collapse
Affiliation(s)
- Junting Cai
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Miranda K Culley
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yutong Zhao
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jing Zhao
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
12
|
Mou Y, Lv S, Xiong F, Han Y, Zhao Y, Li J, Gu N, Zhou J. Effects of different doses of 2,3-dimercaptosuccinic acid-modified Fe 2 O 3 nanoparticles on intercalated discs in engineered cardiac tissues. J Biomed Mater Res B Appl Biomater 2016; 106:121-130. [PMID: 27889952 DOI: 10.1002/jbm.b.33757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022]
Abstract
Although iron oxide nanoparticles (IRONs) were applied in clinical magnetic resonance imaging in vivo and magnetic tissue engineering in vitro widely, the underlying effects of IRONs on the development of cardiomyocytes especially the intercellular junctions, intercalated discs (IDs), remain an unknown issue. Given the critical role of three-dimensional (3D) engineered cardiac tissues (ECTs) in evaluation of nanoparticles toxicology, it remained necessary to understand the effects of IRONs on IDs assembly of cardiomyocytes in 3D environment. In this study, we first reconstituted collagen/Matrigel based ECTs in vitro and prepared IRONs with 2,3-dimercaptosuccinic acid (DMSA-IRONs). We found that the internalization of DMSA-IRONs by cardiac cells in dose-dependent manner was not associated with the cell distribution in 3D environment by determination of Prussian blue staining and transmission electronic microscopy. Significantly, through determination of western blotting and immunofluorescence of connexin 43, N-cadherin, desmoplakin, and plakoglobin, DMSA-IRONs enhanced the assembly of gap junctions, decreased mechanical junctions (adherens junctions and desmosomes) of cardiac cells but not in dose-dependent manner in ECTs at seventh day. In addition, DMSA-IRONs increased the vesicles secretion of cardiac cells in ECTs apparently compared to control groups. Overall, we conclude that the internalization of DMSA-IRONs by cardiac cells in dose-dependent manner enhanced the assembly of electrochemical junctions and decreased the mechanical related microstructures. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 121-130, 2018.
Collapse
Affiliation(s)
- Yongchao Mou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Shuanghong Lv
- Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 People's Republic of China
| | - Yao Han
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Yuwei Zhao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Junjie Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Ning Gu
- Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Jin Zhou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
13
|
Mangoni ME. Desmosomes and sino-atrial dysfunction. Cardiovasc Res 2016; 111:167-8. [PMID: 27325669 DOI: 10.1093/cvr/cvw171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matteo E Mangoni
- Département de Physiologie, Institut de Genomique Fonctionnelle, LabEx ICST, UMR-5203, Centre national de la recherche scientifique, 141, rue de la cardonille, Montpellier F-34094, France INSERM U1191, Montpellier F-34094, France Université de Montpellier, Montpellier F-34094, France
| |
Collapse
|
14
|
Mezzano V, Liang Y, Wright AT, Lyon RC, Pfeiffer E, Song MY, Gu Y, Dalton ND, Scheinman M, Peterson KL, Evans SM, Fowler S, Cerrone M, McCulloch AD, Sheikh F. Desmosomal junctions are necessary for adult sinus node function. Cardiovasc Res 2016; 111:274-86. [PMID: 27097650 DOI: 10.1093/cvr/cvw083] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 04/08/2016] [Indexed: 12/20/2022] Open
Abstract
AIMS Current mechanisms driving cardiac pacemaker function have focused on ion channel and gap junction channel function, which are essential for action potential generation and propagation between pacemaker cells. However, pacemaker cells also harbour desmosomes that structurally anchor pacemaker cells to each other in tissue, but their role in pacemaker function remains unknown. METHODS AND RESULTS To determine the role of desmosomes in pacemaker function, we generated a novel mouse model harbouring cardiac conduction-specific ablation (csKO) of the central desmosomal protein, desmoplakin (DSP) using the Hcn4-Cre-ERT2 mouse line. Hcn4-Cre targets cells of the adult mouse sinoatrial node (SAN) and can ablate DSP expression in the adult DSP csKO SAN resulting in specific loss of desmosomal proteins and structures. Dysregulation of DSP via loss-of-function (adult DSP csKO mice) and mutation (clinical case of a patient harbouring a pathogenic DSP variant) in mice and man, respectively, revealed that desmosomal dysregulation is associated with a primary phenotype of increased sinus pauses/dysfunction in the absence of cardiomyopathy. Underlying defects in beat-to-beat regulation were also observed in DSP csKO mice in vivo and intact atria ex vivo. DSP csKO SAN exhibited migrating lead pacemaker sites associated with connexin 45 loss. In vitro studies exploiting ventricular cardiomyocytes that harbour DSP loss and concurrent early connexin loss phenocopied the loss of beat-to-beat regulation observed in DSP csKO mice and atria, extending the importance of DSP-associated mechanisms in driving beat-to-beat regulation of working cardiomyocytes. CONCLUSION We provide evidence of a mechanism that implicates an essential role for desmosomes in cardiac pacemaker function, which has broad implications in better understanding mechanisms underlying beat-to-beat regulation as well as sinus node disease and dysfunction.
Collapse
Affiliation(s)
- Valeria Mezzano
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA
| | - Yan Liang
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA
| | - Adam T Wright
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA
| | - Robert C Lyon
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA
| | - Emily Pfeiffer
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA
| | - Michael Y Song
- Scripps Translational Science Institute, Department of Medicine, Scripps Green Hospital, La Jolla, CA 92037, USA
| | - Yusu Gu
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA
| | - Nancy D Dalton
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA
| | - Melvin Scheinman
- Department of Cardiac Electrophysiology, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Kirk L Peterson
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA
| | - Sylvia M Evans
- Skaggs School of Pharmacy, University of California-San Diego, La Jolla, CA 92093, USA
| | - Steven Fowler
- Cardiovascular Genetics Program, New York University School of Medicine, New York, NY 10016, USA
| | - Marina Cerrone
- Cardiovascular Genetics Program, New York University School of Medicine, New York, NY 10016, USA
| | - Andrew D McCulloch
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA
| | - Farah Sheikh
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA
| |
Collapse
|
15
|
van Putten S, Shafieyan Y, Hinz B. Mechanical control of cardiac myofibroblasts. J Mol Cell Cardiol 2015; 93:133-42. [PMID: 26620422 DOI: 10.1016/j.yjmcc.2015.11.025] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022]
Abstract
Fibroblasts produce and turn over collagenous extracellular matrix as part of the normal adaptive response to increased mechanical load in the heart, e.g. during prolonged exercise. However, chronic overload as a consequence of hypertension or myocardial injury trigger a repair program that culminates in the formation of myofibroblasts. Myofibroblasts are opportunistically activated from various precursor cells that all acquire a phenotype promoting excessive collagen secretion and contraction of the neo-matrix into stiff scar tissue. Stiff fibrotic tissue reduces heart distensibility, impedes pumping and valve function, contributes to diastolic and systolic dysfunction, and affects myocardial electrical transmission, potentially leading to arrhythmia and heart failure. Here, we discuss how mechanical factors, such as matrix stiffness and strain, are feeding back and cooperate with cytokine signals to drive myofibroblast activation. We elaborate on the importance of considering the mechanical boundary conditions in the heart to generate better cell culture models for mechanistic studies of cardiac fibroblast function. Elements of the force transmission and mechanoperception apparatus acting in myofibroblasts are presented as potential therapeutic targets to treat fibrosis.
Collapse
Affiliation(s)
- Sander van Putten
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Yousef Shafieyan
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada.
| |
Collapse
|
16
|
Ajima R, Bisson JA, Helt JC, Nakaya MA, Habas R, Tessarollo L, He X, Morrisey EE, Yamaguchi TP, Cohen ED. DAAM1 and DAAM2 are co-required for myocardial maturation and sarcomere assembly. Dev Biol 2015; 408:126-39. [PMID: 26526197 DOI: 10.1016/j.ydbio.2015.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/25/2015] [Accepted: 10/02/2015] [Indexed: 11/29/2022]
Abstract
Wnt ligands regulate heart morphogenesis but the underlying mechanisms remain unclear. Two Formin-related proteins, DAAM1 and 2, were previously found to bind the Wnt effector Disheveled. Here, since DAAM1 and 2 nucleate actin and mediate Wnt-induced cytoskeletal changes, a floxed-allele of Daam1 was used to disrupt its function specifically in the myocardium and investigate Wnt-associated pathways. Homozygous Daam1 conditional knockout (CKO) mice were viable but had misshapen hearts and poor cardiac function. The defects in Daam1 CKO mice were observed by mid-gestation and were associated with a loss of protrusions from cardiomyocytes invading the outflow tract. Further, these mice exhibited noncompaction cardiomyopathy (NCM) and deranged cardiomyocyte polarity. Interestingly, Daam1 CKO mice that were also homozygous for an insertion disrupting Daam2 (DKO) had stronger NCM, severely reduced cardiac function, disrupted sarcomere structure, and increased myocardial proliferation, suggesting that DAAM1 and DAAM2 have redundant functions. While RhoA was unaffected in the hearts of Daam1/2 DKO mice, AKT activity was lower than in controls, raising the issue of whether DAAM1/2 are only mediating Wnt signaling. Daam1-floxed mice were thus bred to Wnt5a null mice to identify genetic interactions. The hearts of Daam1 CKO mice that were also heterozygous for the null allele of Wnt5a had stronger NCM and more severe loss of cardiac function than Daam1 CKO mice, consistent with DAAM1 and Wnt5a acting in a common pathway. However, deleting Daam1 further disrupted Wnt5a homozygous-null hearts, suggesting that DAAM1 also has Wnt5a-independent roles in cardiac development.
Collapse
Affiliation(s)
- Rieko Ajima
- Mammalian Development Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Joseph A Bisson
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jay-Christian Helt
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Masa-Aki Nakaya
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Raymond Habas
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Xi He
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Edward E Morrisey
- Department of Medicine and Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Terry P Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA.
| | - Ethan David Cohen
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
17
|
Franke WW, Rickelt S, Zimbelmann R, Dörflinger Y, Kuhn C, Frey N, Heid H, Rosin-Arbesfeld R. Striatins as plaque molecules of zonulae adhaerentes in simple epithelia, of tessellate junctions in stratified epithelia, of cardiac composite junctions and of various size classes of lateral adherens junctions in cultures of epithelia- and carcinoma-derived cells. Cell Tissue Res 2014; 359:779-97. [PMID: 25501894 PMCID: PMC4341017 DOI: 10.1007/s00441-014-2053-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/05/2014] [Indexed: 11/29/2022]
Abstract
Proteins of the striatin family (striatins 1–4; sizes ranging from 90 to 110 kDa on SDS-polyacrylamide gel electrophoresis) are highly homologous in their amino acid sequences but can differ in their cell-type-specific gene expression patterns and biological functions. In various cell types, we have found one, two or three polypeptides of this evolutionarily old and nearly ubiquitous family of proteins known to serve as scaffold proteins for diverse protein complexes. Light and electron microscopic immunolocalization methods have revealed striatins in mammalian cell-cell adherens junctions (AJs). In simple epithelia, we have localized striatins as constitutive components of the plaques of the subapical zonulae adhaerentes of cells, including intestinal, glandular, ductal and urothelial cells and hepatocytes. Striatins colocalize with E-cadherin or E–N-cadherin heterodimers and with the plaque proteins α- and β-catenin, p120 and p0071. In some epithelia and carcinomas and in cultured cells derived therefrom, striatins are also seen in lateral AJs. In stratified epithelia and in corresponding squamous cell carcinomas, striatins can be found in plaques of some forms of tessellate junctions. Moreover, striatins are major plaque proteins of composite junctions (CJs; areae compositae) in the intercalated disks connecting cardiomyocytes, colocalizing with other CJ molecules, including plectin and ankyrin-G. We discuss the “multimodulator” scaffold roles of striatins in the initiation and regulation of the formation of various complex particles and structures. We propose that striatins are included in the diagnostic candidate list of proteins that, in the CJs of human hearts, can occur in mutated forms in the pathogeneses of hereditary cardiomyopathies, as seen in some types of genetically determined heart damage in boxer dogs.
Collapse
Affiliation(s)
- Werner W Franke
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany,
| | | | | | | | | | | | | | | |
Collapse
|