1
|
Dam T, Chouliara M, Junghans V, Jönsson P. Supported Lipid Bilayers and the Study of Two-Dimensional Binding Kinetics. Front Mol Biosci 2022; 9:833123. [PMID: 35252352 PMCID: PMC8896763 DOI: 10.3389/fmolb.2022.833123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Binding between protein molecules on contacting cells is essential in initiating and regulating several key biological processes. In contrast to interactions between molecules in solution, these events are restricted to the two-dimensional (2D) plane of the meeting cell surfaces. However, converting between the more commonly available binding kinetics measured in solution and the so-called 2D binding kinetics has proven a complicated task since for the latter several factors other than the protein-protein interaction per se have an impact. A few important examples of these are: protein density, membrane fluctuations, force on the bond and the use of auxiliary binding molecules. The development of model membranes, and in particular supported lipid bilayers (SLBs), has made it possible to simplify the studied contact to analyze these effects and to measure 2D binding kinetics of individual protein-protein interactions. We will in this review give an overview of, and discuss, how different SLB systems have been used for this and compare different methods to measure binding kinetics in cell-SLB contacts. Typically, the SLB is functionalized with fluorescently labelled ligands whose interaction with the corresponding receptor on a binding cell can be detected. This interaction can either be studied 1) by an accumulation of ligands in the cell-SLB contact, whose magnitude depends on the density of the proteins and binding affinity of the interaction, or 2) by tracking single ligands in the SLB, which upon interaction with a receptor result in a change of motion of the diffusing ligand. The advantages and disadvantages of other methods measuring 2D binding kinetics will also be discussed and compared to the fluorescence-based methods. Although binding kinetic measurements in cell-SLB contacts have provided novel information on how ligands interact with receptors in vivo the number of these measurements is still limited. This is influenced by the complexity of the system as well as the required experimental time. Moreover, the outcome can vary significantly between studies, highlighting the necessity for continued development of methods to study 2D binding kinetics with higher precision and ease.
Collapse
Affiliation(s)
- Tommy Dam
- Department of Chemistry, Lund University, Lund, Sweden
| | | | - Victoria Junghans
- Nuffield Department of Medicine, CAMS Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Peter Jönsson
- Department of Chemistry, Lund University, Lund, Sweden
- *Correspondence: Peter Jönsson,
| |
Collapse
|
2
|
Bongrand P. Is There a Need for a More Precise Description of Biomolecule Interactions to Understand Cell Function? Curr Issues Mol Biol 2022; 44:505-525. [PMID: 35723321 PMCID: PMC8929073 DOI: 10.3390/cimb44020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
An important goal of biological research is to explain and hopefully predict cell behavior from the molecular properties of cellular components. Accordingly, much work was done to build extensive “omic” datasets and develop theoretical methods, including computer simulation and network analysis to process as quantitatively as possible the parameters contained in these resources. Furthermore, substantial effort was made to standardize data presentation and make experimental results accessible to data scientists. However, the power and complexity of current experimental and theoretical tools make it more and more difficult to assess the capacity of gathered parameters to support optimal progress in our understanding of cell function. The purpose of this review is to focus on biomolecule interactions, the interactome, as a specific and important example, and examine the limitations of the explanatory and predictive power of parameters that are considered as suitable descriptors of molecular interactions. Recent experimental studies on important cell functions, such as adhesion and processing of environmental cues for decision-making, support the suggestion that it should be rewarding to complement standard binding properties such as affinity and kinetic constants, or even force dependence, with less frequently used parameters such as conformational flexibility or size of binding molecules.
Collapse
Affiliation(s)
- Pierre Bongrand
- Lab Adhesion and Inflammation (LAI), Inserm UMR 1067, Cnrs UMR 7333, Aix-Marseille Université UM 61, Marseille 13009, France
| |
Collapse
|
3
|
Lim YB, Thingna J, Kong F, Dao M, Cao J, Lim CT. Temperature-Induced Catch-Slip to Slip Bond Transit in Plasmodium falciparum-Infected Erythrocytes. Biophys J 2019; 118:105-116. [PMID: 31813540 DOI: 10.1016/j.bpj.2019.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/26/2019] [Accepted: 11/12/2019] [Indexed: 11/28/2022] Open
Abstract
Plasmodium falciparum malaria-infected red blood cells (IRBCs), or erythrocytes, avoid splenic clearance by adhering to host endothelium. Upregulation of endothelial receptors intercellular adhesion molecule-1 (ICAM-1) and cluster of differentiation 36 (CD36) are associated with severe disease pathology. Most in vitro studies of IRBCs interacting with these molecules were conducted at room temperature. However, as IRBCs are exposed to temperature variations between 37°C (body temperature) and 41°C (febrile temperature) in the host, it is important to understand IRBC-receptor interactions at these physiologically relevant temperatures. Here, we probe IRBC interactions against ICAM-1 and CD36 at 37 and 41°C. Single bond force-clamp spectroscopy is used to determine the bond dissociation rates and hence, unravel the nature of the IRBC-receptor interaction. The association rates are also extracted from a multiple bond flow assay using a cellular stochastic model. Surprisingly, IRBC-ICAM-1 bond transits from a catch-slip bond at 37°C toward a slip bond at 41°C. Moreover, binding affinities of both IRBC-ICAM-1 and IRBC-CD36 decrease as the temperature rises from 37 to 41°C. This study highlights the significance of examining receptor-ligand interactions at physiologically relevant temperatures and reveals biophysical insight into the temperature dependence of P. falciparum malaria cytoadherent bonds.
Collapse
Affiliation(s)
- Ying Bena Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore; Singapore-Massachusetts Institute of Technology Alliance for Research and Technology Centre, Infectious Diseases IRG, Singapore
| | - Juzar Thingna
- Singapore-Massachusetts Institute of Technology Alliance for Research and Technology Centre, Infectious Diseases IRG, Singapore; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts; Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon, Republic of Korea
| | - Fang Kong
- Singapore-Massachusetts Institute of Technology Alliance for Research and Technology Centre, Infectious Diseases IRG, Singapore; School of Biological Science, Nanyang Technological University, Singapore
| | - Ming Dao
- Singapore-Massachusetts Institute of Technology Alliance for Research and Technology Centre, Infectious Diseases IRG, Singapore; School of Biological Science, Nanyang Technological University, Singapore; Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jianshu Cao
- Singapore-Massachusetts Institute of Technology Alliance for Research and Technology Centre, Infectious Diseases IRG, Singapore; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore; Singapore-Massachusetts Institute of Technology Alliance for Research and Technology Centre, Infectious Diseases IRG, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore.
| |
Collapse
|
4
|
van Es M, Tang J, Preiner J, Hinterdorfer P, Oosterkamp T. Single molecule binding dynamics measured with atomic force microscopy. Ultramicroscopy 2014; 140:32-6. [DOI: 10.1016/j.ultramic.2014.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 02/06/2014] [Accepted: 02/25/2014] [Indexed: 01/09/2023]
|
5
|
PIERRES ANNE, VITTE JOANA, BENOLIEL ANNEMARIE, BONGRAND PIERRE. DISSECTING INDIVIDUAL LIGAND–RECEPTOR BONDS WITH A LAMINAR FLOW CHAMBER. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048006000161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The most important function of proteins may well be to bind to other biomolecules. It has long been felt that kinetic rates of bond formation and dissociation between soluble receptors and ligands might account for most features of the binding process. Only theoretical considerations allowed to predict the behaviour of surface-attached receptors from the properties of soluble forms. During the last decade, experimental progress essentially based on flow chambers, atomic force microscopes or biomembrane force probes allowed direct analysis of biomolecule interaction at the single bond level and gave new insight into previously ignored features such as bond mechanical properties or energy landscapes. The aim of this review is (i) to describe the main advances brought by laminar flow chambers, including information on bond response to forces, multiplicity of binding states, kinetics of bond formation between attached structures, effect of molecular environment on receptor efficiency and behaviour of multivalent attachment, (ii) to compare results obtain by this and other techniques on a few well defined molecular systems, and (iii) to discuss the limitations of the flow chamber method. It is concluded that a new framework may be needed to account for the effective behaviour of biomolecule association.
Collapse
Affiliation(s)
- ANNE PIERRES
- Aix Marseille Université, Faculté de Médecine Timone, Faculté des Sciences de Luminy, Marseille, Laboratoire Adhésion et Inflammation, F-13009, France
- INSERM U600, Marseille, F-13009, France
- CNRS U6212, Marseille, F-13009, France
| | - JOANA VITTE
- Aix Marseille Université, Faculté de Médecine Timone, Faculté des Sciences de Luminy, Marseille, Laboratoire Adhésion et Inflammation, F-13009, France
- INSERM U600, Marseille, F-13009, France
- CNRS U6212, Marseille, F-13009, France
- Assistance Publique — Hôpitaux de Marseille, Hôpital de Ste-Marguerite, Laboratoire d'Immunologie, Marseille, F-13009, France
| | - ANNE-MARIE BENOLIEL
- Aix Marseille Université, Faculté de Médecine Timone, Faculté des Sciences de Luminy, Marseille, Laboratoire Adhésion et Inflammation, F-13009, France
- INSERM U600, Marseille, F-13009, France
- CNRS U6212, Marseille, F-13009, France
| | - PIERRE BONGRAND
- Aix Marseille Université, Faculté de Médecine Timone, Faculté des Sciences de Luminy, Marseille, Laboratoire Adhésion et Inflammation, F-13009, France
- INSERM U600, Marseille, F-13009, France
- CNRS U6212, Marseille, F-13009, France
- Assistance Publique — Hôpitaux de Marseille, Hôpital de Ste-Marguerite, Laboratoire d'Immunologie, Marseille, F-13009, France
| |
Collapse
|
6
|
Synchronization of Dictyostelium discoideum adhesion and spreading using electrostatic forces. Bioelectrochemistry 2010; 79:198-210. [PMID: 20472511 DOI: 10.1016/j.bioelechem.2010.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 11/21/2022]
Abstract
Synchronization of cell spreading is valuable for the study of molecular events involved in the formation of adhesive contacts with the substrate. At a low ionic concentration (0.17 mM) Dictyostelium discoideum cells levitate over negatively charged surfaces due to electrostatic repulsion. First, a two-chamber device, divided by a porous membrane, allows to quickly increase the ionic concentration around the levitating cells. In this way, a good synchronization was obtained, the onsets of cell spreading being separated by less than 5 s. Secondly applying a high potential pulse (2.5 V/Ref, 0.1s) to an Indium Tin Oxide surface attracts the cells toward the surface where they synchronously spread as monitored by LimE(Deltacoil)-GFP. During spreading, actin polymerizes in series of active spots. On average, the first spot appears 8-11s after the electric pulse and the next ones appear regularly, separated by about 10s. Synchronized actin-polymerization activity continues for 40s. Using an electric pulse to control the exact time point at which cells contact the surface has allowed for the first time to quantify the cellular response time for actin polymerization. Electrochemical synchronization is therefore a valuable tool to study intracellular responses to contact.
Collapse
|
7
|
Robert P, Limozin L, Pierres A, Bongrand P. Biomolecule association rates do not provide a complete description of bond formation. Biophys J 2009; 96:4642-50. [PMID: 19486686 DOI: 10.1016/j.bpj.2009.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/19/2009] [Accepted: 03/23/2009] [Indexed: 02/03/2023] Open
Abstract
The efficiency of many cell-surface receptors is dependent on the rate of binding soluble or surface-attached ligands. Much effort was exerted to measure association rates between soluble molecules (three-dimensional k(on)) and, more recently, between surface-attached molecules (two-dimensional [2D] k(on)). According to a generally accepted assumption, the probability of bond formation between receptors and ligands is proportional to the first power of encounter duration. Here we provide new experimental evidence and review published data demonstrating that this simple assumption is not always warranted. Using as a model system the (2D) interaction between ICAM-1-coated surfaces and flowing microspheres coated with specific anti-ICAM-1 antibodies, we show that the probability of bond formation may scale as a power of encounter duration that is significantly higher than 1. Further, we show that experimental data may be accounted for by modeling ligand-receptor interaction as a displacement along a single path of a rough energy landscape. Under a wide range of conditions, the probability that an encounter of duration t resulted in bond formation varied as erfc[(t(0)/t)(1/2)], where t(0) was on the order of 10 ms. We conclude that the minimum contact time for bond formation may be a useful parameter to describe a ligand-receptor interaction, in addition to conventional association rates.
Collapse
Affiliation(s)
- Philippe Robert
- Laboratory Adhesion et Inflammation, Institut national de santé et de recherche medicale (INSERM) UMR600, Parc Scientifique de Luminy, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
8
|
Robert P, Benoliel AM, Pierres A, Bongrand P. What is the biological relevance of the specific bond properties revealed by single-molecule studies? J Mol Recognit 2008; 20:432-47. [PMID: 17724759 DOI: 10.1002/jmr.827] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
During the last decade, many authors took advantage of new methodologies based on atomic force microscopy (AFM), biomembrane force probes (BFPs), laminar flow chambers or optical traps to study at the single-molecule level the formation and dissociation of bonds between receptors and ligands attached to surfaces. Experiments provided a wealth of data revealing the complexity of bond response to mechanical forces and the dependence of bond rupture on bond history. These results supported the existence of multiple binding states and/or reaction pathways. Also, single bond studies allowed us to monitor attachments mediated by a few bonds. The aim of this review is to discuss the impact of this new information on our understanding of biological molecules and phenomena. The following points are discussed: (i) which parameters do we need to know in order to predict the behaviour of an encounter between receptors and ligands, (ii) which information is actually yielded by single-molecule studies and (iii) is it possible to relate this information to molecular structure?
Collapse
|
9
|
Thormann E, Simonsen AC, Nielsen LK, Mouritsen OG. Ligand–receptor interactions and membrane structure investigated by AFM and time-resolved fluorescence microscopy. J Mol Recognit 2007; 20:554-60. [PMID: 17907279 DOI: 10.1002/jmr.850] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The atomic force microscope (AFM) and the associated dynamic force spectroscopy technique have been exploited to quantitatively assess the interaction between proteins and their binding to specific ligands and membrane surfaces. In particular, we have studied the specific interaction between lung surfactant protein D and various carbohydrates. In addition, we have used scanning AFM and time-resolved fluorescence microscopy to image the lateral structure of different lipid bilayers and their morphological changes as a function of time. The various systems studied illustrate the potential of modern AFM techniques for application to biomedical research, specifically within immunology and liposome-based drug delivery.
Collapse
Affiliation(s)
- Esben Thormann
- MEMPHYS-Center for Biomembrane Physics, Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
10
|
Thoumine O, Lambert M, Mège RM, Choquet D. Regulation of N-cadherin dynamics at neuronal contacts by ligand binding and cytoskeletal coupling. Mol Biol Cell 2005; 17:862-75. [PMID: 16319177 PMCID: PMC1356595 DOI: 10.1091/mbc.e05-04-0335] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
N-cadherin plays a key role in axonal outgrowth and synaptogenesis, but how neurons initiate and remodel N-cadherin-based adhesions remains unclear. We addressed this issue with a semiartificial system consisting of N-cadherin coated microspheres adhering to cultured neurons transfected for N-cadherin-GFP. Using optical tweezers, we show that growth cones are particularly reactive to N-cadherin coated microspheres, which they capture in a few seconds and drag rearward. Such strong coupling requires an intact connection between N-cadherin receptors and catenins. As they move to the basis of growth cones, microspheres slow down while gradually accumulating N-cadherin-GFP, demonstrating a clear delay between bead coupling to the actin flow and receptor recruitment. Using FRAP and photoactivation, N-cadherin receptors at bead-to-cell contacts were found to continuously recycle, consistently with a model of ligand-receptor reaction not limited by membrane diffusion. The use of N-cadherin-GFP receptors truncated or mutated in specific cytoplasmic regions show that N-cadherin turnover is exquisitely regulated by catenin partners. Turnover rates are considerably lower than those obtained previously in single molecule studies, demonstrating an active regulation of cadherin bond kinetics in intact cells. Finally, spontaneous neuronal contacts enriched in N-cadherin exhibited similar turnover rates, suggesting that such dynamics of N-cadherin may represent an intrinsic mechanism underlying the plasticity of neuronal adhesions.
Collapse
Affiliation(s)
- Olivier Thoumine
- CNRS, UMR 5091, Institut Magendie de Neurosciences, Université Bordeaux 2, 33077 Bordeaux, France.
| | | | | | | |
Collapse
|
11
|
Trache A, Trzeciakowski JP, Gardiner L, Sun Z, Muthuchamy M, Guo M, Yuan SY, Meininger GA. Histamine effects on endothelial cell fibronectin interaction studied by atomic force microscopy. Biophys J 2005; 89:2888-98. [PMID: 16055535 PMCID: PMC1366785 DOI: 10.1529/biophysj.104.057026] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atomic force microscopy was used to investigate the cellular response to histamine, one of the major inflammatory mediators that cause endothelial hyperpermeability and vascular leakage. AFM probes were labeled with fibronectin and used to measure binding strength between alpha5beta1 integrin and fibronectin by quantifying the force required to break single fibronectin-integrin bonds. The cytoskeletal changes, binding probability, and adhesion force before and after histamine treatment on endothelial cells were monitored. Cell topography measurements indicated that histamine induces cell shrinkage. Local cell stiffness and binding probability increased twofold after histamine treatment. The force necessary to rupture single alpha5beta1-fibronectin bond increased from 34.0 +/- 0.5 pN in control cells to 39 +/- 1 pN after histamine treatment. Experiments were also conducted to confirm the specificity of the alpha5beta1-fibronectin interaction. In the presence of soluble GRGDdSP the probability of adhesion events decreased >50% whereas the adhesion force between alpha5beta1 and fibronectin remained unchanged. These data indicate that extracellular matrix-integrin interactions play an important role in the endothelial cell response to changes of external chemical mediators. These changes can be recorded as direct measurements on live endothelial cells by using atomic force microscopy.
Collapse
Affiliation(s)
- Andreea Trache
- Department of Medical Physiology, Cardiovascular Research Institute, Texas A&M University System, College Station, TX 77843-1114, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Vitte J, Benoliel AM, Eymeric P, Bongrand P, Pierres A. Beta-1 integrin-mediated adhesion may be initiated by multiple incomplete bonds, thus accounting for the functional importance of receptor clustering. Biophys J 2005; 86:4059-74. [PMID: 15189901 PMCID: PMC1304306 DOI: 10.1529/biophysj.103.038778] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulation of cell integrin receptors involves modulation of membrane expression, shift between different affinity states, and topographical redistribution on the cell membrane. Here we attempted to assess quantitatively the functional importance of receptor clustering. We studied beta-1 integrin-mediated attachment of THP-1 cells to fibronectin-coated surfaces under low shear flow. Cells displayed multiple binding events with a half-life of the order of 1 s. The duration of binding events after the first second after arrest was quantitatively accounted for by a model assuming the existence of a short-time intermediate binding state with 3.6 s(-1) dissociation rate and 1.3 s(-1) transition frequency toward a more stable state. Cell binding to surfaces coated with lower fibronectin densities was concluded to be mediated by single molecular interactions, whereas multiple bonds were formed <1 s after contact with higher fibronectin surface densities. Cell treatment with microfilament inhibitors or a neutral antiintegrin antibody decreased bond number without changing aforementioned kinetic parameters whereas a function enhancing antibody increased the rate of bond formation and/or the lifetime of intermediate state. Receptor aggregation was induced by treating cells with neutral antiintegrin antibody and antiimmunoglobulin antibodies. A semiquantitative confocal microscopy study suggested that this treatment increased between 40% and 100% the average number of integrin receptors located in a volume of approximately 0.045 microm(3) surrounding each integrin. This aggregation induced up to 2.7-fold increase of the average number of bonds. Flow cytometric analysis of fluorescent ligand binding showed that THP-1 cells displayed low-affinity beta-1 integrins with a dissociation constant in the micromolar range. It is concluded that the initial step of cell adhesion was mediated by multiple incomplete bonds rather than a single equilibrium-state ligand receptor association. This interpretation accounts for the functional importance of integrin clustering.
Collapse
Affiliation(s)
- Joana Vitte
- Laboratoire d'Immunologie, Institut National de la Sante et de la Recherche Medicale U600, Centre National de la Recherche Scientifique FRE2059, Hopital de Ste-Marguerite, Marseille, France
| | | | | | | | | |
Collapse
|
13
|
Atkins AR, Gallin WJ, Owens GC, Edelman GM, Cunningham BA. Neural cell adhesion molecule (N-CAM) homophilic binding mediated by the two N-terminal Ig domains is influenced by intramolecular domain-domain interactions. J Biol Chem 2004; 279:49633-43. [PMID: 15381695 DOI: 10.1074/jbc.m409159200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which the neural cell adhesion molecule, N-CAM, mediates homophilic interactions between cells has been variously attributed to an isologous interaction of the third immunoglobulin (Ig) domain, to reciprocal binding of the two N-terminal Ig domains, or to reciprocal interactions of all five Ig domains. Here, we have used a panel of recombinant proteins in a bead binding assay, as well as transfected and primary cells, to clarify the molecular mechanism of N-CAM homophilic binding. The entire extracellular region of N-CAM mediated bead aggregation in a concentration- and temperature-dependent manner. Interactions of the N-terminal Ig domains, Ig1 and Ig2, were essential for bead binding, based on deletion and mutation experiments and on antibody inhibition studies. These findings were largely in accord with aggregation experiments using transfected L cells or primary chick brain cells. Additionally, maximal binding was dependent on the integrity of the intramolecular domain-domain interactions throughout the extracellular region. We propose that these interactions maintain the relative orientation of each domain in an optimal configuration for binding. Our results suggest that the role of Ig3 in homophilic binding is largely structural. Several Ig3-specific reagents failed to affect N-CAM binding on beads or on cells, while an inhibitory effect of an Ig3-specific monoclonal antibody is probably due to perturbations at the Ig2-Ig3 boundary. Thus, it appears that reciprocal interactions between Ig1 and Ig2 are necessary and sufficient for N-CAM homophilic binding, but that maximal binding requires the quaternary structure of the extracellular region defined by intramolecular domain-domain interactions.
Collapse
Affiliation(s)
- Annette R Atkins
- Department of Neurobiology, The Scripps Research Institute, La Jolla, Ca 92037, USA
| | | | | | | | | |
Collapse
|
14
|
Pierres A, Touchard D, Benoliel AM, Bongrand P. Dissecting streptavidin-biotin interaction with a laminar flow chamber. Biophys J 2002; 82:3214-23. [PMID: 12023246 PMCID: PMC1302111 DOI: 10.1016/s0006-3495(02)75664-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A laminar flow chamber was used to study single molecule interactions between biotinylated surfaces and streptavidin-coated spheres subjected to a hydrodynamic drag lower than a piconewton. Spheres were tracked with 20 ms and 40 nm resolution. They displayed multiple arrests lasting between a few tens of milliseconds and several minutes or more. Analysis of about 500,000 positions revealed that streptavidin-biotin interaction was multiphasic: transient bound states displayed a rupture frequency of 5.3 s(-1) and a rate of transition toward a more stable configuration of 1.3 s(-1). These parameters did not display any significant change when the force exerted on bonds varied between 3.5 and 11 pN. However, the apparent rate of streptavidin-biotin association exhibited about 10-fold decrease when the wall shear rate was increased from 7 to 22 s(-1), which supports the existence of an energy barrier opposing the formation of the transient binding state. It is concluded that a laminar flow chamber can yield new and useful information on the formation of molecular bonds, and especially on the structure of the external part of the energy landscape of ligand-receptor complexes.
Collapse
Affiliation(s)
- Anne Pierres
- Laboratoire d'Immunologie, INSERM U 387, Hôpital Ste-Marguerite, BP 29, 13274 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
15
|
Litvinov RI, Shuman H, Bennett JS, Weisel JW. Binding strength and activation state of single fibrinogen-integrin pairs on living cells. Proc Natl Acad Sci U S A 2002; 99:7426-31. [PMID: 12032299 PMCID: PMC124247 DOI: 10.1073/pnas.112194999] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2001] [Accepted: 04/03/2002] [Indexed: 11/18/2022] Open
Abstract
Integrin activation states determine the ability of these receptors to mediate cell-matrix and cell-cell interactions. The prototypic example of this phenomenon is the platelet integrin, alphaIIbbeta3. In unstimulated platelets, alphaIIbbeta3 is inactive, whereas exposing platelets to an agonist such as ADP or thrombin enables alphaIIbbeta3 to bind ligands such as fibrinogen and von Willebrand factor. To study the regulation of integrin activation states at the level of single molecules, we developed a model system based on laser tweezers, enabling us to determine the rupture forces required to separate single ligand-receptor pairs by using either purified proteins or intact living cells. Here, we show that rupture forces of individual fibrinogen molecules and either purified alphaIIbbeta3 or alphaIIbbeta3 on the surface of living platelets were 60 to 150 pN with a peak yield strength of 80-100 pN. Platelet stimulation using either ADP or the thrombin receptor-activating peptide enhanced the accessibility but not the adhesion strength of single alphaIIbbeta3 molecules, indicating that there are only two states of alphaIIbbeta3 activation. Thus, we found it possible to use laser tweezers to measure the regulation of forces between individual ligand-receptor pairs on living cells. This methodology can be applied to the study of other regulated cell membrane receptors using the ligand-receptor yield strength as a direct measure of receptor activation/inactivation state.
Collapse
Affiliation(s)
- Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | | | |
Collapse
|
16
|
Pierres A, Benoliel AM, Zhu C, Bongrand P. Diffusion of microspheres in shear flow near a wall: use to measure binding rates between attached molecules. Biophys J 2001; 81:25-42. [PMID: 11423392 PMCID: PMC1301489 DOI: 10.1016/s0006-3495(01)75677-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The rate and distance-dependence of association between surface-attached molecules may be determined by monitoring the motion of receptor-bearing spheres along ligand-coated surfaces in a flow chamber (Pierres et al., Proc. Natl. Acad. Sci. U.S.A. 95:9256-9261, 1998). Particle arrests reveal bond formation, and the particle-to-surface distance may be estimated from the ratio between the velocity and the wall shear rate. However, several problems are raised. First, data interpretation requires extensive computer simulations. Second, the relevance of standard results from fluid mechanics to micrometer-size particles separated from surfaces by nanometer distances is not fully demonstrated. Third, the wall shear rate must be known with high accuracy. Here we present a simple derivation of an algorithm permitting one to simulate the motion of spheres near a plane in shear flow. We check that theoretical predictions are consistent with the experimental dependence of motion on medium viscosity or particle size, and the requirement for equilibrium particle height distribution to follow Boltzman's law. The determination of the statistical relationship between particle velocity and acceleration allows one to derive the wall shear rate with 1-s(-1) accuracy and the Hamaker constant of interaction between the particle and the wall with a sensitivity better than 10(-21) J. It is demonstrated that the correlation between particle height and mean velocity during a time interval Deltat is maximal when Deltat is about 0.1-0.2 s for a particle of 1.4-microm radius. When the particle-to-surface distance ranges between 10 and 40 nm, the particle height distribution may be obtained with a standard deviation ranging between 8 and 25 nm, provided the average velocity during a 160-ms period of time is determined with 10% accuracy. It is concluded that the flow chamber allows one to detect the formation of individual bonds with a minimal lifetime of 40 ms in presence of a disruptive force of approximately 5 pN and to assess the distance dependence within the tens of nanometer range.
Collapse
Affiliation(s)
- A Pierres
- Laboratoire d'Immunologie, Hôpital de Sainte-Marguerite, 13274 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
17
|
Sabri S, Soler M, Foa C, Pierres A, Benoliel A, Bongrand P. Glycocalyx modulation is a physiological means of regulating cell adhesion. J Cell Sci 2000; 113 ( Pt 9):1589-600. [PMID: 10751150 DOI: 10.1242/jcs.113.9.1589] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Here we present experimental evidence that phagocytic cells use modulation of specific components of their glycocalyx to regulate their binding capacity. Particles coated with antibodies specific for the CD32 medium affinity IgG receptor were driven along human monocytic THP-1 cells (expressing CD32) in a flow chamber operated at low shear rate. Surprisingly, only minimal adhesion was observed. However, when cells were activated by exposure to fibronectin-coated surfaces and/or soluble γ interferon, adhesion efficiency was dramatically increased, whereas the apparent glycocalyx thickness displayed 20% decrease, and the surface density of CD43/leukosialin carbohydrate epitopes displayed 30–40% decrease on activated cells. The existence of a causal link between adhesion increase and glycocalyx alteration was strongly supported by the finding that (i) both phenomena displayed similar kinetics, (ii) an inverse relationship between THP-1 cell binding capacity and glycocalyx density was demonstrated at the individual cell level, and (iii) adhesion enhancement could not be ascribed to an increased binding site density or improved functional capacity of activated cells. Additional experiments revealed that cell-to-particle adhesion resulted in delayed (i.e. more than a few minutes) egress of CD43/leukosialin from contact areas. Since the time scale of particle attachment was less than a second, surface mobility should not affect the potential of CD43 to impair the initial step of adhesion. Finally, studies performed with fluorescent lectins suggested that THP-1 cell activation and increased adhesive potential were related to a decrease of O-glysosylation rather than N-glycosylation of surface glycoproteins.
Collapse
Affiliation(s)
- S Sabri
- Laboratoire d'Immunologie, INSERM U 387, Hôpital de Sainte-Marguerite, BP 29, France
| | | | | | | | | | | |
Collapse
|
18
|
Masson-Gadais B, Pierres A, Benoliel AM, Bongrand P, Lissitzky JC. Integrin (alpha) and beta subunit contribution to the kinetic properties of (alpha)2beta1 collagen receptors on human keratinocytes analyzed under hydrodynamic conditions. J Cell Sci 1999; 112 ( Pt 14):2335-45. [PMID: 10381389 DOI: 10.1242/jcs.112.14.2335] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adhesion of keratinocytes to type I collagen or laminin 5 was studied in a laminar flow chamber. These experiments provided an insight into the binding kinetics of integrins in their natural environment and the effects of monoclonal antibodies specific for (alpha) and beta chains. Cells driven by a force too low to alter the natural lifetime of a single bond displayed multiple arrests. Studying the frequency and duration of these arrests yielded fairly direct information on the rate of bond formation (on-rate) and dissociation (off-rate). Off-rate values obtained on collagen or laminin 5 (0.06 seconds-1) were tenfold lower than values determined on selectins. Bond stability was strongly regulated by anti-beta1 chain antibodies since the off-rate was decreased sixfold by activating antibody TS2/16 and increased fivefold by inhibitory antibodies Lia1/2 or P4C10, whereas neutral antibody K20 had no effect on this parameter. Binding frequencies were not significantly changed by all these antibodies. In contrast, both binding frequency and off-rate were altered by antibodies specific for the (alpha)2 chain, suggesting that these antibodies interfered with ligand recognition and also with the ligand-beta1 chain interactions responsible for bond stabilization. The latter hypothesis was supported by the finding that the partial alteration of (alpha)2 chain function by inhibiting antibodies was corrected by anti-beta1 chain antibody TS2/16. These results could not be ascribed to allosteric changes of the functional region of beta1 integrin subunits regulated by TS2/16 since there was no competition between the binding of TS2/16 and anti-(alpha)2 chain antibodies. Interpreted within the framework of current concepts of integrin-ligand binding topology, these data suggest that ligand-alpha chain interactions may be qualitatively important in ligand recognition and also influence the formation of the ligand-beta1 subunit bonding involved in stabilization of the ligand-integrin complex by regulating its dissociation rate.
Collapse
Affiliation(s)
- B Masson-Gadais
- Laboratoire d'Immunologie, INSERM U 387, Hôpital de Sainte-Marguerite, BP 29, France
| | | | | | | | | |
Collapse
|
19
|
Pierres A, Benoliel AM, Bongrand P. Interactions between biological surfaces. Curr Opin Colloid Interface Sci 1998. [DOI: 10.1016/s1359-0294(98)80028-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|