1
|
Malhotra P, Gupta AK, Singh D, Mishra S, Singh SK, Kumar R. Protection to immune system of mice by N-acetyl tryptophan glucoside (NATG) against gamma radiation induced immune suppression. Mol Immunol 2019; 114:578-590. [PMID: 31526941 DOI: 10.1016/j.molimm.2019.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/07/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
Immune system is a critical modulator of radiation-induced biological effects. In this study, we have assessed protective potential of N-acetyl tryptophan glucoside (NATG) pre-treatment in bone marrow of gamma radiation challenged mice. Isolated bone marrow cells were analysed for cell cycle progression by flow cytometry, while various pro-/anti-inflammatory cytokine profiles were performed by ELISA method. Overall radioprotective ability of NATG in ensuring protection against gamma radiation-induced damage was assessed by evaluating whole body survival analysis and haematological studies on 9 Gy irradiated mice with/without NATG pre-treatment. Results exhibited pre-treatment with 150 mg/kg b.wt oral administration of NATG as most effective against 9 Gy radiation exposure. Moreover, NATG showed non-interfering effect on cell cycle progression in pre-treated irradiated mice group when compared to radiation alone group. In addition, cytokine expression analysis indicated significant (p > 0.05) elevation in levels of IFN-γ, IL-2, IL-12, IL-13 and IL-17 in NATG pre-treated irradiated mice in comparison to radiation alone group. On the contrary, NATG pre-treatment was observed to alleviate levels of TNF-α and IL-10 significantly (p < 0.05) in radiated group as compared to only irradiated mice group. Furthermore, NATG pre-treatment to 9 Gy radiation exposed mice aided in restoring their haematological parameters in terms of haemoglobin counts, RBC counts, WBC counts, hematocrit levels, platelets and granulocyte levels in comparison to irradiated alone mice, thus enhancing their immune system and contributing towards a better survival against gamma radiation-induced deleterious effects. Conclusively, this study highlights the potential of NATG as a prospective radiation countermeasure agent against ionizing radiation-induced assaults to the immune system.
Collapse
Affiliation(s)
- Poonam Malhotra
- Department of Radiation Biotechnology, Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Ashutosh K Gupta
- Department of Radiation Biotechnology, Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Darshana Singh
- Department of Radiation Biotechnology, Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Saurabh Mishra
- Department of Radiation Biotechnology, Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Shravan K Singh
- Department of Radiation Biotechnology, Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Raj Kumar
- Department of Radiation Biotechnology, Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India.
| |
Collapse
|
2
|
Malhotra P, Singh D, Kumar R. In vitro stimulatory effect of N-acetyl tryptophan-glucopyranoside against gamma radiation induced immunosuppression. ENVIRONMENTAL TOXICOLOGY 2018; 33:305-314. [PMID: 29205752 DOI: 10.1002/tox.22517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Radiation-induced manifestations like free radical burst, oxidative damage and apoptosis leading to cell death. In present study, N-acetyl tryptophan glucopyranoside (NATG) was assessed for its immune-radioprotective activities using J774A.1 cells. Clonogenic cell survival, cell cycle progression and cytokines i.e. IFN-γ, TNF-α, IL-2, IL-10, IL-12, IL-13 and IL-17A expression were evaluated in irradiated and NATG pretreated cells using clonogenic formation ability, flow cytometry and ELISA assay. Results indicated that 0.25μg/ml NATG exhibited maximum radioprotection against gamma-radiation (2Gy) without intervening in cell cycle progression. NATG pretreated (-2 h) plus irradiated cells showed significant elevation in IFN-γ (∼38.2%), IL-17A (∼53.7%) and IL-12 (∼58.8%) expression as compared to only irradiated cells. Conversely, significant decrease in TNF-α (∼21.6%), IL-10 (∼31.2%), IL-2 (∼23.7%) and IL-13 expression (∼17.8%) were observed in NATG pretreated plus irradiated cells as compared to irradiated cells. Conclusively, NATG pretreatment to irradiated J774A.1 cells, stimulate Th1 while diminish Th2 cytokines that contributes to radioprotection.
Collapse
Affiliation(s)
- Poonam Malhotra
- Division of Radioprotective Drug Development and Research, Radiation Biotechnology Group, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Darshana Singh
- Division of Radioprotective Drug Development and Research, Radiation Biotechnology Group, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Raj Kumar
- Division of Radioprotective Drug Development and Research, Radiation Biotechnology Group, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| |
Collapse
|
3
|
Malhotra P, Gupta AK, Singh D, Mishra S, Singh SK, Kumar R. N-Acetyl-tryptophan glucoside (NATG) protects J774A.1 murine macrophages against gamma radiation-induced cell death by modulating oxidative stress. Mol Cell Biochem 2018; 447:9-19. [PMID: 29372532 DOI: 10.1007/s11010-018-3289-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/18/2018] [Indexed: 12/18/2022]
Abstract
Immune system is amongst the most radiosensitive system to radiation-induced cellular and molecular damage. Present study was focused on the evaluation of radioprotective efficacy of a novel secondary metabolite, N-acetyl tryptophan glucoside (NATG), isolated from a radioresistant bacterium Bacillus sp. INM-1 using murine macrophage J774A.1 cells experimental model. Radioprotective efficacy of NATG against radiation-induced DNA damage and apoptosis was estimated using phosphatidyl-serine-externalization Annexin V-PI and Comet assay analysis. Radiation-induced cell death is the outcome of oxidative stress caused by free radicals. Therefore, perturbations in antioxidant enzymes i.e., superoxide dismutase (SOD), catalase, glutathione-s-transferase (GST) and GSH activities in irradiated and NATG pre-treated irradiated J774A.1 cells were studied. Results of the present study demonstrated that NATG pre-treated (0.25 µg/ml) irradiated (20 Gy) cells showed significant (p < 0.05) reduction in apoptotic cells index at 4-48 h as compared to radiation alone cells. Comet assay exhibited significant protection to radiation-induced DNA damage in J774A.1 cells. Significantly shortened DNA tail length, increased % Head DNA contents and lower olive tail moment was observed in NATG pre-treated irradiated cells as compared to radiation alone cells. Further, significant increase in catalase (~ 3.9 fold), SOD (67.52%), GST (~ 1.9 fold), and GSH (~ 2.5 fold) levels was observed in irradiated cells pre-treated with NATG as compared to radiation-alone cells. In conclusion, current study suggested that NATG pre-treatment to irradiated cells enhanced antioxidant enzymes in cellular milieu that may contribute to reduce oxidative stress and decrease DNA damage which resulted to significant reduction in the cell death of irradiated macrophages.
Collapse
Affiliation(s)
- Poonam Malhotra
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Ashutosh K Gupta
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Darshana Singh
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Saurabh Mishra
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Shravan K Singh
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Raj Kumar
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India. .,Radiation Biotechnology Group, Radiation Biosciences Division, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi, 110054, India.
| |
Collapse
|
4
|
Malhotra P, Adhikari M, Mishra S, Singh S, Kumar P, Singh SK, Kumar R. N-acetyl tryptophan glucopyranoside (NATG) as a countermeasure against gamma radiation-induced immunosuppression in murine macrophage J774A.1 cells. Free Radic Res 2016; 50:1265-1278. [DOI: 10.1080/10715762.2016.1235788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Poonam Malhotra
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Manish Adhikari
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Saurabh Mishra
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Sumit Singh
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Piyush Kumar
- School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Buddh Nagar, Uttar Pradesh, India
| | - Shravan Kumar Singh
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Raj Kumar
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
5
|
Mishra S, Patel DD, Bansal DD, Kumar R. Semiquinone glucoside derivative provides protection against γ-radiation by modulation of immune response in murine model. ENVIRONMENTAL TOXICOLOGY 2016; 31:478-488. [PMID: 25361477 DOI: 10.1002/tox.22061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 09/23/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
Present study was undertaken to evaluate radioprotective and immunomodulatory activities of a novel semiquinone glucoside derivative (SQGD) isolated from Bacillus sp. INM-1 in C57 BL/6 mice. Whole body survival study was performed to evaluate in vivo radioprotective efficacy of SQGD. To observe effect of SQGD on immunostimulation, Circulatory cytokine (i.e., interleukin-2 (IL-2), IFN-γ, IL-10, granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), and macrophage colony stimulating factor (M-CSF) expression was analyzed in serum of irradiated and SQGD treated mice at different time intervals using ELISA assay. Results of the present investigation indicated that SQGD pre-treatment (-2 h) to lethally irradiated mice provide ∼ 83% whole body survival compared with irradiated mice where no survival was observed at 30(th) post irradiation day. Significant (p < 0.05) induction in IL-2 and IFN-γ expression was observed at all tested time intervals with SQGD pre-treated irradiated mice as compared with irradiated mice alone. However, sharp increase in IL-10 expression was observed in irradiated mice which were found to be subsidized in irradiated mice pre-treated with SQGD. Similarly, significant (p < 0.05%) induction in G-CSF, M-CSF and GM-CSF expression was observed in irradiated mice treated with SQGD as compared with irradiated control mice at tested time intervals. In conclusion, SQGD pre-treatment to irradiated mice enhanced expression of IL-12 and IFN-γ while down-regulated IL-10 expression and thus modulates cytoprotective pro-inflammatory TH1 type immune response in irradiated mice. Further, SQGD pre-treatment to irradiated mice accelerate G-CSF, GM-CSF and M-CSF expression suggesting improved haematopoiesis and enhanced cellular immune response in immuno-compromised irradiated mice that may contribute to in vivo radiation protection.
Collapse
Affiliation(s)
- S Mishra
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - D D Patel
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - D D Bansal
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - R Kumar
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| |
Collapse
|
6
|
Kus T, Aktas G, Kalender ME, Sari I, Ulker E, Camci C. Collision tumor consisting of primary follicular lymphoma and adenocarcinoma in the cecum: A case report and literature review. Oncol Lett 2016; 11:2801-2805. [PMID: 27073555 PMCID: PMC4812099 DOI: 10.3892/ol.2016.4310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/04/2016] [Indexed: 12/18/2022] Open
Abstract
The present study reports the case of a collision tumor consisting of follicular lymphoma (FL) and adenocarcinoma in the cecum of a 73-year-old man. To the best of our knowledge, the present study is the 11th case of a collision tumor consisting of colon adenocarcinoma and lymphoma to be reported in the literature, and the first case of cecum adenocarcinoma with low grade FL in the same segment of the cecum and the same regional lymph node to be reported. The present study reviewed the literature to determine treatment options for patients with collision tumors. The present patient was administered with adjuvant chemotherapy for T3N1M0 colon cancer following surgery, due to the dominance of colon adenocarcinoma in the collision tumor. Following the completion of treatment, progression of the untreated FL was observed. In the literature, patients with collision tumors are administered with chemotherapy for stage IV FL, and following the completion of treatment patients have presented with a recurrence of early stage colon adenocarcinoma. The recommended treatment for collision tumors is dependent on the dominant tumor; however, the treatment options for collision tumors in the literature appeared to exacerbate the other tumor. The characteristics of the tumors altered following chemotherapy, and immunological alterations in the tumors due to chemotherapy appear to have contributed to the exacerbation of the tumors. Therefore, patients with early-stage tumors should be considered at risk of recurrence of other malignancies, which are present in collision tumors.
Collapse
Affiliation(s)
- Tulay Kus
- Division of Medical Oncology, Faculty of Medicine, Gaziantep University, Gaziantep, Anatolia 27310, Turkey
| | - Gokmen Aktas
- Division of Medical Oncology, Faculty of Medicine, Gaziantep University, Gaziantep, Anatolia 27310, Turkey
| | - Mehmet Emin Kalender
- Division of Medical Oncology, Faculty of Medicine, Gaziantep University, Gaziantep, Anatolia 27310, Turkey
| | - Ibrahim Sari
- Division of Pathology, Faculty of Medicine, Gaziantep University, Gaziantep, Anatolia 27310, Turkey
| | - Esra Ulker
- Division of Internal Medicine, Faculty of Medicine, Gaziantep University, Gaziantep, Anatolia 27310, Turkey
| | - Celaletdin Camci
- Division of Medical Oncology, Faculty of Medicine, Gaziantep University, Gaziantep, Anatolia 27310, Turkey
| |
Collapse
|