1
|
Rana SVS. Mechanistic paradigms of immunotoxicity, triggered by nanoparticles - a review. Toxicol Mech Methods 2024:1-17. [PMID: 39585654 DOI: 10.1080/15376516.2024.2431687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Nanoparticles (NPs) possess the ability to penetrate cells and elicit a rapid and targeted immune response, influenced by their distinct physicochemical properties. These particles can engage with both micro and macromolecules, thereby impacting various downstream signaling pathways that may lead to cell death. This review provides a comprehensive overview of the primary mechanisms contributing to the immunotoxicity of both organic and inorganic nanoparticles. The effects of carbon-based nanomaterials (CNMs), including single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, and metal oxide nanoparticles, on various immune cell types such as macrophages, neutrophils, monocytes, dendritic cells (DCs), antigen-presenting cells (APCs), and RAW 264.7 cells are examined. The immune responses discussed encompass inflammation, oxidative stress, autophagy, and apoptosis. Additionally, the roles of pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α, and IFN-γ, along with JAK/STAT signaling pathways, are highlighted. The interaction of NPs with oxidative stress pathways, including MAPK signaling and Nrf2/ARE signaling, is also explored. Furthermore, the mechanisms by which nanoparticles induce damage to organelles such as lysosomes, the endoplasmic reticulum, exosomes, and Golgi bodies within the immune system are addressed. The review also emphasizes the genotoxic and epigenetic mechanisms associated with the immunotoxicity of NPs. Recent advancements regarding the immunotherapeutic potential of engineered NPs are reported. The roles of autophagy and apoptosis in the immunotoxicity of NPs merit further investigation. In conclusion, understanding how engineered nanoparticles modulate immune responses may facilitate the prevention and treatment of human diseases, including cancer and autoimmune disorders.
Collapse
Affiliation(s)
- S V S Rana
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, India
| |
Collapse
|
2
|
Bi J, Mo C, Li S, Huang M, Lin Y, Yuan P, Liu Z, Jia B, Xu S. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes. Biomater Sci 2023. [PMID: 37161951 DOI: 10.1039/d3bm00271c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The influence of metal and metal oxide nanomaterials on various fields since their discovery has been remarkable. They have unique properties, and therefore, have been employed in specific applications, including biomedicine. However, their potential health risks cannot be ignored. Several studies have shown that exposure to metal and metal oxide nanoparticles can lead to immunotoxicity. Different types of metals and metal oxide nanoparticles may have a negative impact on the immune system through various mechanisms, such as inflammation, oxidative stress, autophagy, and apoptosis. As an essential factor in determining the function and fate of immune cells, immunometabolism may also be an essential target for these nanoparticles to exert immunotoxic effects in vivo. In addition, the biodegradation and metabolic outcomes of metal and metal oxide nanoparticles are also important considerations in assessing their immunotoxic effects. Herein, we focus on the cellular mechanism of the immunotoxic effects and toxic effects of different types of metal and metal oxide nanoparticles, as well as the metabolism and outcomes of these nanoparticles in vivo. Also, we discuss the relationship between the possible regulatory effect of nanoparticles on immunometabolism and their immunotoxic effects. Finally, we present perspectives on the future research and development direction of metal and metal oxide nanomaterials to promote scientific research on the health risks of nanomaterials and reduce their adverse effects on human health.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Ballesteros S, Domenech J, Velázquez A, Marcos R, Hernández A. Ex vivo exposure to different types of graphene-based nanomaterials consistently alters human blood secretome. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125471. [PMID: 33647622 DOI: 10.1016/j.jhazmat.2021.125471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/16/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The biomedical applications of graphene-based nanomaterials (GBN) have significantly grown in the last years. Many of these applications suppose their intravenous exposure and, in this way, GBN could encounter blood cells triggering an immunological response of unknown effects. Consequently, understanding the relationships between GBN and the immune system response should be a prerequisite for its adequate use in biomedicine. In the present study, we have conducted a little explored ex vivo exposure method in order to study the complexity of the secretome given by the interactions between GBN and blood cells. Blood samples from different healthy donors were exposed to three different types of GBN widely used in the biomedical field. In this sense, graphene oxide (GO), graphene nanoplatelets (GNPs), graphene nanoribbons (GNRs) and a panel of 105 proteins representatives of the blood secretome were evaluated. The results show broad changes in both the cytokines number and the expression levels, with important changes in inflammatory response markers. Furthermore, the indirect soft-agar assay was used as a tool to unravel the global functional impact of the found secretome changes. Our results indicate that the GBN-induced altered secretome can modify the natural anchorage-independent growth capacity of HeLa cells, used as a model. As a conclusion, this study describes an innovative approach to study the potential harmful effects of GBN, providing relevant data to be considered in the biomedical context when GBN are planned to be used in patients.
Collapse
Affiliation(s)
- Sandra Ballesteros
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain
| | - Josefa Domenech
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain
| | - Antonia Velázquez
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
4
|
Kuchur OA, Tsymbal SA, Shestovskaya MV, Serov NS, Dukhinova MS, Shtil AA. Metal-derived nanoparticles in tumor theranostics: Potential and limitations. J Inorg Biochem 2020; 209:111117. [PMID: 32473483 DOI: 10.1016/j.jinorgbio.2020.111117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Abstract
Initially, metal derived nanoparticles have been used exclusively as contrasting agents in magnetic resonance imaging. Today, green routes of chemical synthesis together with numerous modifications of the core and surface gave rise to a plethora of biomedical applications of metal derived nanoparticles including tumor imaging, diagnostics, and therapy. These materials are an emerging class of tools for tumor theranostics. Nevertheless, the spectrum of clinically approved metal nanoparticles remains narrow, as the safety, specificity and efficiency still have to be improved. In this review we summarize the major directions for development and biomedical applications of metal based nanoparticles and analyze their effects on tumor cells and microenvironment. We discuss the advantages and possible limitations of metal nanoparticle-based tumor theranostics, as well as the potential strategies to improve the in vivo performance of these unique materials.
Collapse
Affiliation(s)
- O A Kuchur
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - S A Tsymbal
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - M V Shestovskaya
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - N S Serov
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - M S Dukhinova
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia.
| | - A A Shtil
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia; Institute of Gene Biology, Russian Academy of Science, 119334 Moscow, Russia
| |
Collapse
|
5
|
Kermanizadeh A, Powell LG, Stone V. A review of hepatic nanotoxicology - summation of recent findings and considerations for the next generation of study designs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:137-176. [PMID: 32321383 DOI: 10.1080/10937404.2020.1751756] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The liver is one of the most important multi-functional organs in the human body. Amongst various crucial functions, it is the main detoxification center and predominantly implicated in the clearance of xenobiotics potentially including particulates that reach this organ. It is now well established that a significant quantity of injected, ingested or inhaled nanomaterials (NMs) translocate from primary exposure sites and accumulate in liver. This review aimed to summarize and discuss the progress made in the field of hepatic nanotoxicology, and crucially highlight knowledge gaps that still exist.Key considerations include In vivo studies clearly demonstrate that low-solubility NMs predominantly accumulate in the liver macrophages the Kupffer cells (KC), rather than hepatocytes.KCs lining the liver sinusoids are the first cell type that comes in contact with NMs in vivo. Further, these macrophages govern overall inflammatory responses in a healthy liver. Therefore, interaction with of NM with KCs in vitro appears to be very important.Many acute in vivo studies demonstrated signs of toxicity induced by a variety of NMs. However, acute studies may not be that meaningful due to liver's unique and unparalleled ability to regenerate. In almost all investigations where a recovery period was included, the healthy liver was able to recover from NM challenge. This organ's ability to regenerate cannot be reproduced in vitro. However, recommendations and evidence is offered for the design of more physiologically relevant in vitro models.Models of hepatic disease enhance the NM-induced hepatotoxicity.The review offers a number of important suggestions for the future of hepatic nanotoxicology study design. This is of great significance as its findings are highly relevant due to the development of more advanced in vitro, and in silico models aiming to improve physiologically relevant toxicological testing strategies and bridging the gap between in vitro and in vivo experimentation.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
- School of Medical Sciences, Bangor University, Bangor, UK
| | - Leagh G Powell
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | - Vicki Stone
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| |
Collapse
|
6
|
Ke X, Howard GP, Tang H, Cheng B, Saung MT, Santos JL, Mao HQ. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv Drug Deliv Rev 2019; 151-152:72-93. [PMID: 31626825 DOI: 10.1016/j.addr.2019.09.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Abstract
Nanoparticles (NPs) have been gaining prominence as delivery vehicles for modulating immune responses to improve treatments against cancer and autoimmune diseases, enhancing tissue regeneration capacity, and potentiating vaccination efficacy. Various engineering approaches have been extensively explored to control the NP physical and chemical properties including particle size, shape, surface charge, hydrophobicity, rigidity and surface targeting ligands to modulate immune responses. This review examines a specific set of physical and chemical characteristics of NPs that enable efficient delivery targeted to secondary lymphoid tissues, specifically the lymph nodes and immune cells. A critical analysis of the structure-property-function relationship will facilitate further efforts to engineer new NPs with unique functionalities, identify novel utilities, and improve the clinical translation of NP formulations for immunotherapy.
Collapse
|
7
|
Kiratipaiboon C, Stueckle TA, Ghosh R, Rojanasakul LW, Chen YC, Dinu CZ, Rojanasakul Y. Acquisition of Cancer Stem Cell-like Properties in Human Small Airway Epithelial Cells after a Long-term Exposure to Carbon Nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2019; 6:2152-2170. [PMID: 31372228 PMCID: PMC6675031 DOI: 10.1039/c9en00183b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cancer stem cells (CSCs) are a key driver of tumor formation and metastasis, but how they are affected by nanomaterials is largely unknown. The present study investigated the effects of different carbon-based nanomaterials (CNMs) on neoplastic and CSC-like transformation of human small airway epithelial cells and determined the underlying mechanisms. Using a physiologically relevant exposure model (long-term/low-dose) with system validation using a human carcinogen, asbestos, we demonstrated that single-walled carbon nanotubes, multi-walled carbon nanotubes, ultrafine carbon black, and crocidolite asbestos induced particle-specific anchorage-independent colony formation, DNA-strand break, and p53 downregulation, indicating genotoxicity and carcinogenic potential of CNMs. The chronic CNM-exposed cells exhibited CSC-like properties as indicated by 3D spheroid formation, anoikis resistance, and CSC markers expression. Mechanistic studies revealed specific self-renewal and epithelial-mesenchymal transition (EMT)-related transcription factors that are involved in the cellular transformation process. Pathway analysis of gene signaling networks supports the role of SOX2 and SNAI1 signaling in CNM-mediated transformation. These findings support the potential carcinogenicity of high aspect ratio CNMs and identified molecular targets and signaling pathways that may contribute to the disease development.
Collapse
Affiliation(s)
- Chayanin Kiratipaiboon
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, 26506, United States
| | - Todd A Stueckle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, 26505, United States
| | - Rajib Ghosh
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, 26506, United States
| | - Liying W Rojanasakul
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, 26505, United States
| | - Yi Charlie Chen
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, West Virginia, 26416, United States
| | - Cerasela Zoica Dinu
- Department of Chemical Engineering, West Virginia University, Morgantown, West Virginia, 26506, United States
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences and WVU Cancer Institute, West Virginia University, Morgantown, West Virginia, 26506, United States
| |
Collapse
|
8
|
Manshian BB, Poelmans J, Saini S, Pokhrel S, Grez JJ, Himmelreich U, Mädler L, Soenen SJ. Nanoparticle-induced inflammation can increase tumor malignancy. Acta Biomater 2018; 68:99-112. [PMID: 29274476 DOI: 10.1016/j.actbio.2017.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 11/15/2022]
Abstract
Nanomaterials, such as aluminum oxide, have been regarded with high biomedical promise as potential immune adjuvants in favor of their bulk counterparts. For pathophysiological conditions where elevated immune activity already occurs, the contribution of nanoparticle-activated immune reactions remains unclear. Here, we investigated the effect of spherical and wire-shaped aluminum oxide nanoparticles on primary splenocytes and observed a clear pro-inflammatory effect of both nanoparticles, mainly for the high aspect ratio nanowires. The nanoparticles resulted in a clear activation of NLRP3 inflammasome, and also secreted transforming growth factor β. When cancer cells were exposed to these cytokines, this resulted in an increased level of epithelial-to-mesenchymal-transition, a hallmark for cancer metastasis, which did not occur when the cancer cells were directly exposed to the nanoparticles themselves. Using a syngeneic tumor model, the level of inflammation and degree of lung metastasis were significantly increased when the animals were exposed to the nanoparticles, particularly for the nanowires. This effect could be abrogated by treating the animals with inflammatory inhibitors. Collectively, these data indicate that the interaction of nanoparticles with immune cells can have secondary effects that may aggravate pathophysiological conditions, such as cancer malignancy, and conditions must be carefully selected to finely tune the induced aspecific inflammation into cancer-specific antitumor immunity. STATEMENT OF SIGNIFICANCE Many different types of nanoparticles have been shown to possess immunomodulatory properties, depending on their physicochemical parameters. This can potentially be harnessed as a possible antitumor therapy. However, in the current work we show that inflammation elicited by nanomaterials can have grave effects in pathophysiological conditions, where non-specific inflammation was found to increase cancer cell mobility and tumor malignancy. These data show that immunomodulatory properties of nanomaterials must be carefully controlled to avoid any undesired side-effects.
Collapse
Affiliation(s)
- Bella B Manshian
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Jennifer Poelmans
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Shweta Saini
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Suman Pokhrel
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Bremen, Germany
| | - Julio Jiménez Grez
- Organ Systems, Department of Development and Regeneration, KU Leuven, Herestraat 49, B3000 Leuven, Belgium; Department of Obstetrics and Gynaecology, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Uwe Himmelreich
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Lutz Mädler
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Bremen, Germany
| | - Stefaan J Soenen
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| |
Collapse
|
9
|
Park EJ, Lee GH, Yoon C, Jeong U, Kim Y, Chang J, Kim DW. Tissue distribution following 28 day repeated oral administration of aluminum-based nanoparticles with different properties and the in vitro toxicity. J Appl Toxicol 2017; 37:1408-1419. [PMID: 28840595 DOI: 10.1002/jat.3509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/18/2017] [Accepted: 06/18/2017] [Indexed: 12/22/2022]
Abstract
The tissue distribution and toxicity of nanoparticles (NPs) depend on their physical and chemical properties both in the manufactured condition and within the biological system. We characterized three types of commercially available aluminum-based NPs (Al-NPs), two rod-type aluminum oxide NPs (Al2 O3 , AlONPs), with different aspect ratios (short [S]- and long [L]-AlONPs), and spherical aluminum cerium oxide NPs (AlCeO3 , AlCeONPs). The surface area was in order of the S-AlONPs > L-AlONPs > AlCeONPs. Very importantly, we found that AlCeONPs is Al2 O3 -coated CeO2 NPs, but not AlCeO3 NPs, and that the Al level in AlCeONPs is approximately 20% of those in S- and L-AlONPs. All three types of Al-NPs were slightly ionized in gastric fluid and rapidly particlized in the intestinal fluid. There were no significant differences in the body weight gain following 28 days of repeated oral administration of the three different types of Al-NPs. All Al-NPs elevated Al level in the heart, spleen, kidney and blood at 24 hours after the final dose, accompanied by the altered tissue level of redox reaction-related trace elements. Subsequently, in four types of cells derived from the organs which Al-NPs are accumulated, H9C2 (heart), HEK-293 (kidney), splenocytes and RAW264.7 (blood), S-AlONPs showed a very low uptake level and did not exert significant cytotoxicity. Meanwhile, cytotoxicity and uptake level were the most remarkable in cells treated with AlCeONPs. In conclusion, we suggest that the physicochemical properties of NPs should be examined in detail before the release into the market to prevent unexpected adverse health effects.
Collapse
Affiliation(s)
- Eun-Jung Park
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Gwang-Hee Lee
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, Republic of Korea
| | - Cheolho Yoon
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Uiseok Jeong
- Department of Chemical Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Jaerak Chang
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Dong-Wan Kim
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Poddighe D, Vadalà M, Laurino C, Palmieri B. Somatoform and neurocognitive syndromes after HPV immunization are not associated to cell-mediated hypersensitivity to aluminum. Toxicol In Vitro 2017; 43:58-61. [PMID: 28599844 DOI: 10.1016/j.tiv.2017.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/25/2017] [Accepted: 06/04/2017] [Indexed: 01/09/2023]
Abstract
Vaccines against human papilloma virus (HPV) have been demonstrated to be very effective to prevent infection-related neoplasms. However, several reports describing heterogeneous post-vaccination phenomena have been published in last few years. The spectrum of these disorders includes both immune-mediated neurological diseases and neuropsychiatric functional disorders. Some researchers speculated about a genetic predisposition, but others hypothesized a role of adjuvants, including some metals and, particularly, aluminum. Here, we tested sixteen young girls developing somatoform and neurocognitive syndromes after the HPV immunization, through MELISA® test, detecting cell-mediated hypersensitivity to several metals. We found no association between these neurocognitive disorders and the results provided by this test; importantly, no patients showed hypersensitivity to aluminum, which is the inorganic adjuvant included in HPV vaccines. Thus, if aluminum played a role in the pathophysiology of musculoskeletal and neurocognitive disturbances occurring in some young girls after HPV immunization, that should recognize other mechanisms than the activation of aluminum-specific lymphocytes.
Collapse
Affiliation(s)
- Dimitri Poddighe
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Maria Vadalà
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | - Carmen Laurino
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | - Beniaminoi Palmieri
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| |
Collapse
|
11
|
Ahmad F, Zhou Y. Pitfalls and Challenges in Nanotoxicology: A Case of Cobalt Ferrite (CoFe 2O 4) Nanocomposites. Chem Res Toxicol 2017; 30:492-507. [PMID: 28118545 DOI: 10.1021/acs.chemrestox.6b00377] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nanotechnology is developing at a rapid pace with promises of a brilliant socio-economic future. The apprehensions of vivid future involvement with nanotechnology make nanoobjects ubiquitous in the macroscopic world of humans. Nanotechnology helps us to visualize the new mysterious horizons in engineering, sophisticated electronics, environmental remediation, biosensing, and nanomedicine. In all these hotspots, cobalt ferrite (CoFe) nanoparticles (NPs) are outstanding contestants because of their astonishing controllable physicochemical and magnetic properties with ease of synthesis methods. The extensive use of CoFe NPs may result in CoFe NPs easily penetrating the human body unintentionally by ingestion, inhalation, adsorption, etc. and intentionally being instilled into the human body during biomedical diagnostics and treatment. After being housed in the human body, it might induce oxidative stress, cytotoxicity, genotoxicity, inflammation, apoptosis, and developmental, metabolic and hormonal abnormalities. In this review, we compiled the toxicity knowledge of CoFe NPs aimed to provide the safe usage of this breed of nanomaterials.
Collapse
Affiliation(s)
- Farooq Ahmad
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310032, China.,State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310032, China.,Research Center of Analysis and Measurement, Zhejiang University of Technology , 18 Chaowang Road, Hangzhou 310032, China
| |
Collapse
|