1
|
Swint-Kruse L, Dougherty LL, Page B, Wu T, O’Neil PT, Prasannan CB, Timmons C, Tang Q, Parente DJ, Sreenivasan S, Holyoak T, Fenton AW. PYK-SubstitutionOME: an integrated database containing allosteric coupling, ligand affinity and mutational, structural, pathological, bioinformatic and computational information about pyruvate kinase isozymes. Database (Oxford) 2023; 2023:baad030. [PMID: 37171062 PMCID: PMC10176505 DOI: 10.1093/database/baad030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Interpreting changes in patient genomes, understanding how viruses evolve and engineering novel protein function all depend on accurately predicting the functional outcomes that arise from amino acid substitutions. To that end, the development of first-generation prediction algorithms was guided by historic experimental datasets. However, these datasets were heavily biased toward substitutions at positions that have not changed much throughout evolution (i.e. conserved). Although newer datasets include substitutions at positions that span a range of evolutionary conservation scores, these data are largely derived from assays that agglomerate multiple aspects of function. To facilitate predictions from the foundational chemical properties of proteins, large substitution databases with biochemical characterizations of function are needed. We report here a database derived from mutational, biochemical, bioinformatic, structural, pathological and computational studies of a highly studied protein family-pyruvate kinase (PYK). A centerpiece of this database is the biochemical characterization-including quantitative evaluation of allosteric regulation-of the changes that accompany substitutions at positions that sample the full conservation range observed in the PYK family. We have used these data to facilitate critical advances in the foundational studies of allosteric regulation and protein evolution and as rigorous benchmarks for testing protein predictions. We trust that the collected dataset will be useful for the broader scientific community in the further development of prediction algorithms. Database URL https://github.com/djparente/PYK-DB.
Collapse
Affiliation(s)
- Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Larissa L Dougherty
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Braelyn Page
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Tiffany Wu
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Pierce T O’Neil
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Charulata B Prasannan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Cody Timmons
- Chemistry Department, Southwestern Oklahoma State University, 100 Campus Dr., Weatherford, OK 73096, USA
| | - Qingling Tang
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Daniel J Parente
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
- Department of Family Medicine and Community Health, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Shwetha Sreenivasan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Todd Holyoak
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Liu PP, Ding HQ, Huang SZ, Yang SY, Liu T. Severe congenital hemolytic anemia caused by a novel compound heterozygous PKLR gene mutation in a Chinese boy. Chin Med J (Engl) 2019; 132:92-95. [PMID: 30628965 PMCID: PMC6629312 DOI: 10.1097/cm9.0000000000000027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Peng-Peng Liu
- Department of Hematology, Hematologic Research Laboratory, West China Hospital of Sichuan University. Chengdu, Sichuan 610041, China
| | - Hu-Qing Ding
- Sichuan Hua Xi Kindstar Medical Diagnostic Centre, Chengdu, Sichuan 610000, China
| | - Shen-Zhen Huang
- State Key Laboratory of Cancer Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Sheng-Yong Yang
- State Key Laboratory of Cancer Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ting Liu
- Department of Hematology, Hematologic Research Laboratory, West China Hospital of Sichuan University. Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
He Y, Luo J, Lei Y, Jia S, Liao N. A novel PKLR gene mutation identified using advanced molecular techniques. Pediatr Transplant 2018; 22. [PMID: 29349879 DOI: 10.1111/petr.13143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2017] [Indexed: 01/19/2023]
Abstract
This study's purposes were to diagnose intractable hemolytic anemia and to provide guiding treatment for the affected family members. We performed NGS in a panel of 600 genes for blood diseases on a patient with obscure hemolytic anemia and her parents. We confirmed the diagnosis of pyruvate kinase deficiency, identified a novel homozygous mutation of the PKLR gene (NM_000298: exon 6: c.T941C: p.I314T), and ruled out other blood diseases in the Chinese family. Furthermore, amniotic fluid was taken from the mother during the second trimester, and DNA was extracted to analyze the type of PKLR gene mutation. The proband received cord blood and bone marrow from the second child of the mother for hematopoietic stem cell transplantation and achieved normal hematopoiesis. The genetic characterization analysis and genotype-phenotype correlation study of PKLR gene suggested that NGS was an effective method to confirm the molecular diagnosis of intractable hemolytic anemia. The identification of the mutation aided in prenatal diagnosis in the second pregnancy and the effective clinical management of the affected family.
Collapse
Affiliation(s)
- Yunyan He
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi Province, China
| | - Jianming Luo
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi Province, China
| | - Yonghong Lei
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi Province, China
| | - Siyuan Jia
- Guangxi Medical University, Nanning, Guangxi Province, China
| | - Ning Liao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi Province, China
| |
Collapse
|
4
|
Unal S, Gumruk F. Molecular Analyses of Pyruvate Kinase Deficient Turkish Patients from a Single Center. Pediatr Hematol Oncol 2016; 32:354-61. [PMID: 25941984 DOI: 10.3109/08880018.2015.1010671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Erythrocyte pyruvate kinase deficiency is one of the most common causes of hereditary non-spherocytic hemolytic anemias. We investigated molecular alterations responsible for erythrocyte pyruvate kinase enzyme deficiency in four patients of the three unrelated Turkish families available from the pool of 12 patients diagnosed as having pyruvate kinase deficiency in one center. One novel missense mutation located at cDNA nt 1623 G→C (Lys541Asn), and three previously described mutations at 1456 C→T (Arg486Trp), 1528 C→T (Arg510End), and 1675 C→G (Arg559Gly) were found to be associated with erythrocyte pyruvate kinase deficiency. All four mutations affect the C-domain of the protein. The three missense mutations result in amino acid changes, which cause an alteration in interaction between subunits by changing the local distribution of charges or by local conformational change on protein structure. The Arg510End mutation causes a deletion of terminal residues of the pyruvate kinase affecting the integrity of protein. This study presents the results of first molecular study on pyruvate kinase deficiency in Turkey.
Collapse
Affiliation(s)
- Sule Unal
- Division of Pediatric Hematology, Department of Pediatrics, Hacettepe University , Ankara , Turkey
| | | |
Collapse
|
5
|
Canu G, De Bonis M, Minucci A, Capoluongo E. Red blood cell PK deficiency: An update of PK-LR gene mutation database. Blood Cells Mol Dis 2016; 57:100-9. [PMID: 26832193 DOI: 10.1016/j.bcmd.2015.12.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 11/16/2022]
Abstract
Pyruvate kinase (PK) deficiency is known as being the most common cause of chronic nonspherocytic hemolytic anemia (CNSHA). Clinical PK deficiency is transmitted as an autosomal recessive trait, that can segregate neither in homozygous or in a compound heterozygous modality, respectively. Two PK genes are present in mammals: the pyruvate kinase liver and red blood cells (PK-LR) and the pyruvate kinase muscle (PK-M), of which only the first encodes for the isoenzymes normally expressed in the red blood cells (R-type) and in the liver (L-type). Several reports have been published describing a large variety of genetic defects in PK-LR gene associated to CNSHA. Herein, we present a review of about 250 published mutations and six polymorphisms in PK-LR gene with the corresponding clinical and molecular data. We consulted the PubMed website for searching mutations and papers, along with two main databases: the Leiden Open Variation Database (LOVD, https://grenada.lumc.nl/LOVD2/mendelian_genes/home.php?select_db=PKLR) and Human Gene Mutation Database (HGMD, http://www.hgmd.cf.ac.uk/ac/gene.php?gene=PKLR) for selecting, reviewing and listing the annotated PK-LR gene mutations present in literature. This paper is aimed to provide useful information to clinicians and laboratory professionals regarding overall reported PK-LR gene mutations, also giving the opportunity to harmonize data regarding PK-deficient individuals.
Collapse
Affiliation(s)
- Giulia Canu
- Laboratory of Clinical Molecular and Personalized Diagnostics, Department of Laboratory Medicine, "A Gemelli" Hospital, Catholic University, Largo Agostino Gemelli 8, Roma, Italy.
| | - Maria De Bonis
- Laboratory of Clinical Molecular and Personalized Diagnostics, Department of Laboratory Medicine, "A Gemelli" Hospital, Catholic University, Largo Agostino Gemelli 8, Roma, Italy
| | - Angelo Minucci
- Laboratory of Clinical Molecular and Personalized Diagnostics, Department of Laboratory Medicine, "A Gemelli" Hospital, Catholic University, Largo Agostino Gemelli 8, Roma, Italy.
| | - Ettore Capoluongo
- Laboratory of Clinical Molecular and Personalized Diagnostics, Department of Laboratory Medicine, "A Gemelli" Hospital, Catholic University, Largo Agostino Gemelli 8, Roma, Italy
| |
Collapse
|