1
|
Berchio C, Kumar SS, Micali N. EEG Spatial-temporal Dynamics of Resting-state Activity in Young Women with Anorexia Nervosa: Preliminary Evidence. Brain Topogr 2024; 37:447-460. [PMID: 37615798 DOI: 10.1007/s10548-023-01001-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
The aim of this study was to provide preliminary evidence on temporal dynamics of resting-state brain networks in youth with anorexia nervosa (AN) using electroencephalography (EEG). Resting-state EEG data were collected in 18 young women with AN and 18 healthy controls (HC). Between-group differences in brain networks were assessed using microstates analyses. Five microstates were identified across all subjects (A, B, C, D, E). Using a single set of maps representative of the whole dataset, group differences were identified for microstates A, C, and E. A common-for-all template revealed a relatively high degree of consistency in results for reduced time coverage of microstate C, but also an increased presence of microstate class E. AN and HC had different microstate transition probabilities, largely involving microstate A. Using LORETA, for microstate D, we found that those with AN had augmented activations in the left frontal inferior operculum, left insula, and bilateral paracentral lobule, compared with HC. For microstate E, AN had augmented activations in the para-hippocampal gyrus, caudate, pallidum, cerebellum, and cerebellar vermis. Our findings suggest altered microstates in young women with AN associated with integration of sensory and bodily signals, monitoring of internal/external mental states, and self-referential processes. Future research should examine how EEG-derived microstates could be applied to develop diagnostic and prognostic models of AN.
Collapse
Affiliation(s)
- Cristina Berchio
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70121, Bari, Italy.
| | - Samika S Kumar
- Department of Psychology, University of Cambridge, Cambridge, UK
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Nadia Micali
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Mental Health Services in the Capital Region of Denmark, Eating Disorders Research Unit, Psychiatric Centre Ballerup, Ballerup, Denmark
- Institute of biological Psychiatry, Psykiatrisk Center Sct. Hans, Region Hovedstaden, Denmark
| |
Collapse
|
2
|
Cheng CH, Hsu SC, Liu CY. Dysfunctional frontal activation of mismatch negativity in panic disorder: A magnetoencephalographic study. J Affect Disord 2021; 280:211-218. [PMID: 33220556 DOI: 10.1016/j.jad.2020.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/13/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mismatch negativity (MMN) or its magnetic counterpart (MMNm) is a neurophysiological signal to reflect the automatic change-detection ability. However, MMN studies in patients with panic disorder (PD) showed contrasting results using electroencephalographic (EEG) recordings. The present study attempted to overcome the limitations of EEG methodology by means of a whole-head magnetoencephalography (MEG) combined with the depth-weighted minimum norm estimate method to conduct an in-depth investigation on the MMNm at the cortical level in patients with PD. METHODS We recruited 22 healthy controls (HC) and 20 patients with PD to perform auditory oddball paradigm during MEG recordings. The cortical MMNm amplitudes and latencies in the superior temporal gyrus, inferior parietal lobule, and inferior frontal gyrus (IFG) were compared between the HC and PD groups. The correlations between MMNm responses and clinical measurement were also examined. RESULTS Compared with the HC group, the PD group demonstrated significantly reduced MMNm amplitudes in the IFG. Furthermore, higher trait scores of the State-Trait Anxiety Inventory were associated with lower MMNm amplitudes of the right IFG among patients with PD. LIMITATIONS Generalization of the current results to other settings or samples should be made cautiously due to the use of different medication regimens and presence of comorbidities in our patients. CONCLUSIONS Our data suggest dysfunctional pre-attentive change-detection ability in patients with PD, particularly in the IFG.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Shih-Chieh Hsu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), Taiwan
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
3
|
Lai CH. Biomarkers in Panic Disorder. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2021. [DOI: 10.2174/2666082216999200918163245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Panic disorder (PD) is a kind of anxiety disorder that impacts the life quality
and functional perspectives in patients. However, the pathophysiological study of PD seems still
inadequate and many unresolved issues need to be clarified.
Objectives:
In this review article of biomarkers in PD, the investigator will focus on the findings of
magnetic resonance imaging (MRI) of the brain in the pathophysiology study. The MRI biomarkers
would be divided into several categories, on the basis of structural and functional perspectives.
Methods:
The structural category would include the gray matter and white matter tract studies. The
functional category would consist of functional MRI (fMRI), resting-state fMRI (Rs-fMRI), and
magnetic resonance spectroscopy (MRS). The PD biomarkers revealed by the above methodologies
would be discussed in this article.
Results:
For the gray matter perspectives, the PD patients would have alterations in the volumes of
fear network structures, such as the amygdala, parahippocampal gyrus, thalamus, anterior cingulate
cortex, insula, and frontal regions. For the white matter tract studies, the PD patients seemed to have
alterations in the fasciculus linking the fear network regions, such as the anterior thalamic radiation,
uncinate fasciculus, fronto-occipital fasciculus, and superior longitudinal fasciculus. For the fMRI
studies in PD, the significant results also focused on the fear network regions, such as the amygdala,
hippocampus, thalamus, insula, and frontal regions. For the Rs-fMRI studies, PD patients seemed to
have alterations in the regions of the default mode network and fear network model. At last, the
MRS results showed alterations in neuron metabolites of the hippocampus, amygdala, occipital
cortex, and frontal regions.
Conclusion:
The MRI biomarkers in PD might be compatible with the extended fear network model
hypothesis in PD, which included the amygdala, hippocampus, thalamus, insula, frontal regions, and
sensory-related cortex.
Collapse
Affiliation(s)
- Chien-Han Lai
- Department of Psychiatry, Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
4
|
Zhang J, Huang S, Nan W, Zhou H, Wang J, Wang H, Salvi R, Yin S. Switching Tinnitus-On: Maps and source localization of spontaneous EEG. Clin Neurophysiol 2020; 132:345-357. [PMID: 33450557 DOI: 10.1016/j.clinph.2020.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/05/2020] [Accepted: 10/11/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To identify the spectrotemporal changes and sources in patients that could "turn on" tinnitus with multichannel electroencephalography (EEG) system. METHODS Multichannel EEG was recorded from six patients during the Tinnitus-On and Tinnitus-Off states. The EEG power spectrum and eLORETA-based sources were measured. RESULTS There was a global increase in delta and theta during Tinnitus-On plus large changes in alpha 1 and alpha 2. During the Tinnitus-On state, many new sources in delta, theta, alpha 1 and gamma bands emerged in the opposite hemisphere in the inferior temporal gyrus (Brodmann area, BA 20), middle temporal gyrus (BA 21), lateral perirhinal cortex (BA 36), ventral entorhinal cortex (BA 28) and anterior pole of the temporal gyrus (BA 38). CONCLUSIONS The emergence of new delta, theta and gamma band sources in the inferior temporal gyrus (BA 20), middle temporal gyrus (BA 21) and lateral perirhinal cortex (BA 36) plus the appearance of new delta and theta sources in the ventral entorhinal cortex (BA28) and anterior pole of the temporal lobe (BA 38) may comprise a network capable of evoking the phantom sound of tinnitus by simultaneously engaging brain regions involved in memory, sound recognition, and distress which together contribute to tinnitus severity. SIGNIFICANCE The sudden appearance of new sources of activity in the opposite hemisphere within the inferior temporal gyrus, middle temporal gyrus and perirhinal cortex may initiate the perception of tinnitus perception.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Shujian Huang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Wenya Nan
- Department of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Huiqun Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China.
| | - Jian Wang
- School of Communication Science and Disorders, Dalhousie University, Halifax, Canada
| | - Hui Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China.
| | - Richard Salvi
- SUNY Distinguished Professor Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, USA
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| |
Collapse
|
5
|
Review: Exteroceptive Sensory Abnormalities in Childhood and Adolescent Anxiety and Obsessive-Compulsive Disorder: A Critical Review. J Am Acad Child Adolesc Psychiatry 2020; 59:78-87. [PMID: 31265873 DOI: 10.1016/j.jaac.2019.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/20/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Childhood anxiety and obsessive-compulsive disorder (OCD) are defined by fear, worry, and uncertainty, but there is also evidence that affected children possess exteroceptive sensory abnormalities. These sensory features may often instigate symptoms and cause significant distress and functional impairment. In addition, a purported class of conditions known as "sensory processing disorders" may significantly overlap with childhood anxiety and OCD, which provides further support for a connection between abnormal sensation and fear-based psychopathology. METHOD The current review was conducted to synthesize and to critically evaluate the existing research on exteroceptive sensory abnormalities in childhood anxiety and OCD. Because of the paucity of research in this area, studies with adult populations were also briefly reviewed. RESULTS The review found significant support for the notion that sensory abnormalities are common in children with anxiety disorders and OCD, but there are significant limitations to research in this area that prevent firm conclusions. CONCLUSION Potential avenues for future research on sensory features of pediatric anxiety and OCD are discussed.
Collapse
|
6
|
Cheng CH, Chan PYS, Hsu SC, Liu CY. Abnormal frontal generator during auditory sensory gating in panic disorder: An MEG study. Psychiatry Res Neuroimaging 2019; 288:60-66. [PMID: 31014913 DOI: 10.1016/j.pscychresns.2019.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 01/08/2023]
Abstract
Patients with panic disorder (PD) exhibit abnormalities in early-stage information processing, even for the nonthreatening stimuli. A previous event-related potential study reported that PD patients show a deficit in sensory gating (SG), a protective mechanism of the brain to filter out irrelevant sensory inputs. However, there is no clear understanding about the neural correlates of SG deficits in PD. Moreover, whether SG deficits, if any, are associated with clinical manifestations remain unknown. In this study, 18 patients with PD and 20 age- and gender-matched healthy controls were recruited to perform auditory paired-stimulus paradigm using magnetoencephalographic (MEG) recordings. Results showed that PD patients demonstrated significantly higher M50 SG ratios in the right inferior frontal gyrus (RIFG) and higher M100 SG ratios in both RIFG and right superior temporal gyrus (RSTG) than those of the control group. It was important to note that in the RIFG, the M50 SG ratios correlated significantly with the scores of Body Sensation Questionnaire (BSQ) and Distractibility scale of Sensory Gating Inventory among patients with PD. In conclusion, this study suggests that PD patients exhibited a deficient ability to filter out irrelevant information, and such a defect might lead to cognitive misinterpretation of somatic sensations and distractibility.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.
| | - Pei-Ying S Chan
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Shih-Chieh Hsu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Sobanski T, Wagner G. Functional neuroanatomy in panic disorder: Status quo of the research. World J Psychiatry 2017; 7:12-33. [PMID: 28401046 PMCID: PMC5371170 DOI: 10.5498/wjp.v7.i1.12] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/16/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To provide an overview of the current research in the functional neuroanatomy of panic disorder.
METHODS Panic disorder (PD) is a frequent psychiatric disease. Gorman et al (1989; 2000) proposed a comprehensive neuroanatomical model of PD, which suggested that fear- and anxiety-related responses are mediated by a so-called “fear network” which is centered in the amygdala and includes the hippocampus, thalamus, hypothalamus, periaqueductal gray region, locus coeruleus and other brainstem sites. We performed a systematic search by the electronic database PubMed. Thereby, the main focus was laid on recent neurofunctional, neurostructural, and neurochemical studies (from the period between January 2012 and April 2016). Within this frame, special attention was given to the emerging field of imaging genetics.
RESULTS We noted that many neuroimaging studies have reinforced the role of the “fear network” regions in the pathophysiology of panic disorder. However, recent functional studies suggest abnormal activation mainly in an extended fear network comprising brainstem, anterior and midcingulate cortex (ACC and MCC), insula, and lateral as well as medial parts of the prefrontal cortex. Interestingly, differences in the amygdala activation were not as consistently reported as one would predict from the hypothesis of Gorman et al (2000). Indeed, amygdala hyperactivation seems to strongly depend on stimuli and experimental paradigms, sample heterogeneity and size, as well as on limitations of neuroimaging techniques. Advanced neurochemical studies have substantiated the major role of serotonergic, noradrenergic and glutamatergic neurotransmission in the pathophysiology of PD. However, alterations of GABAergic function in PD are still a matter of debate and also their specificity remains questionable. A promising new research approach is “imaging genetics”. Imaging genetic studies are designed to evaluate the impact of genetic variations (polymorphisms) on cerebral function in regions critical for PD. Most recently, imaging genetic studies have not only confirmed the importance of serotonergic and noradrenergic transmission in the etiology of PD but also indicated the significance of neuropeptide S receptor, CRH receptor, human TransMEMbrane protein (TMEM123D), and amiloride-sensitive cation channel 2 (ACCN2) genes.
CONCLUSION In light of these findings it is conceivable that in the near future this research will lead to the development of clinically useful tools like predictive biomarkers or novel treatment options.
Collapse
|
8
|
Goddard AW. The Neurobiology of Panic: A Chronic Stress Disorder. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2017; 1:2470547017736038. [PMID: 32440580 PMCID: PMC7219873 DOI: 10.1177/2470547017736038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
Abstract
Panic disorder is an often chronic and impairing human anxiety syndrome, which frequently results in serious psychiatric and medical comorbidities. Although, to date, there have been many advances in the diagnosis and treatment of panic disorder, its pathophysiology still remains to be elucidated. In this review, recent evidence for a neurobiological basis of panic disorder is reviewed with particular attention to risk factors such as genetic vulnerability, chronic stress, and temperament. In addition, neuroimaging data are reviewed which provides support for the concept of panic disorder as a fear network disorder. The potential impact of the National Institute of Mental Health Research Domain Criteria constructs of acute and chronic threats responses and their implications for the neurobiology of panic disorder are also discussed.
Collapse
Affiliation(s)
- Andrew W. Goddard
- UCSF Fresno Medical Education and
Research Program, University of California, San Francisco, USA
| |
Collapse
|
9
|
Engel KR, Obst K, Bandelow B, Dechent P, Gruber O, Zerr I, Ulrich K, Wedekind D. Functional MRI activation in response to panic-specific, non-panic aversive, and neutral pictures in patients with panic disorder and healthy controls. Eur Arch Psychiatry Clin Neurosci 2016; 266:557-66. [PMID: 26585457 DOI: 10.1007/s00406-015-0653-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 11/09/2015] [Indexed: 01/04/2023]
Abstract
There is evidence that besides limbic brain structures, prefrontal and insular cortical activations and deactivations are involved in the pathophysiology of panic disorder. This study investigated activation response patterns to stimulation with individually selected panic-specific pictures in patients with panic disorder with agoraphobia (PDA) and healthy control subjects using functional magnetic resonance imaging (fMRI). Structures of interest were the prefrontal, cingulate, and insular cortex, and the amygdalo-hippocampal complex. Nineteen PDA subjects (10 females, 9 males) and 21 healthy matched controls were investigated using a Siemens 3-Tesla scanner. First, PDA subjects gave Self-Assessment Manikin (SAM) ratings on 120 pictures showing characteristic panic/agoraphobia situations, of which 20 pictures with the individually highest SAM ratings were selected. Twenty matched pictures showing aversive but not panic-specific stimuli and 80 neutral pictures from the International Affective Picture System were chosen for each subject as controls. Each picture was shown twice in each of four subsequent blocks. Anxiety and depression ratings were recorded before and after the experiment. Group comparisons revealed a significantly greater activation in PDA patients than control subjects in the insular cortices, left inferior frontal gyrus, dorsomedial prefrontal cortex, the left hippocampal formation, and left caudatum, when PA and N responses were compared. Comparisons for stimulation with unspecific aversive pictures showed activation of similar brain regions in both groups. Results indicate region-specific activations to panic-specific picture stimulation in PDA patients. They also imply dysfunctionality in the processing of interoceptive cues in PDA and the regulation of negative emotionality. Therefore, differences in the functional networks between PDA patients and control subjects should be further investigated.
Collapse
Affiliation(s)
- K R Engel
- Department of Psychiatry and Psychotherapy, Anxiety Research Unit, University of Goettingen, Von-Siebold-Strasse 5, 37075, Goettingen, Germany
| | - K Obst
- University clinik Schleswig-Holstein, Institute of Social Medicine and Epidemiology, Ratzeburger Allee 160, 23538, Luebeck, Germany
| | - B Bandelow
- Department of Psychiatry and Psychotherapy, Anxiety Research Unit, University of Goettingen, Von-Siebold-Strasse 5, 37075, Goettingen, Germany
| | - P Dechent
- Core Facility MR-Research in Neurology and Psychiatry, Department of Cognitive Neurology, University of Goettingen, Robert-Koch-Strasse 40, Goettingen, Germany
| | - O Gruber
- Department of Psychiatry and Psychotherapy, Anxiety Research Unit, University of Goettingen, Von-Siebold-Strasse 5, 37075, Goettingen, Germany.,Department of Systemic Neurosciences, University of Goettingen, von-Siebold-Strasse 5, Goettingen, Germany
| | - I Zerr
- Department of Neurology, University of Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - K Ulrich
- Department of Neurology, University of Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - D Wedekind
- Department of Psychiatry and Psychotherapy, Anxiety Research Unit, University of Goettingen, Von-Siebold-Strasse 5, 37075, Goettingen, Germany.
| |
Collapse
|
10
|
Pfleiderer B, Berse T, Stroux D, Ewert A, Konrad C, Gerlach AL. Internal focus of attention in anxiety-sensitive females up-regulates amygdale activity: an fMRI study. J Neural Transm (Vienna) 2014; 121:1417-28. [PMID: 24898851 DOI: 10.1007/s00702-014-1248-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/19/2014] [Indexed: 12/19/2022]
Abstract
Cognitive behavioral models of panic disorder (PD) stress the importance of an increased attentional focus towards bodily symptoms in the onset and maintenance of this debilitating anxiety disorder. In this fMRI mental tracking paradigm, we looked at the effects of focusing one's attention internally (interoception) vs. externally (exteroception) in a well-studied group at risk for PD-that is anxiety-sensitive females (AS-high). We hypothesized that AS-high subjects compared to control subjects will present higher arousal and decreased valence scores during interoception and parallel higher activity in brain areas which are associated with fear and interoception. 24 healthy female students with high levels of anxiety sensitivity and 24 healthy female students with normal levels of anxiety sensitivity serving as control group were investigated by 3 T fMRI. Subjects either focused their attention on their heartbeats (internal condition) or on neutral tones (external condition). Task performance was monitored by reporting the number of heartbeats or tones after each block. State of arousal and emotional valence were also assessed. The high anxiety-sensitive group reported higher arousal scores compared to controls during the course of the experiment. Simultaneously, fMRI results indicated higher activation in anxiety-sensitive participants than in controls during interoception in a network of cortical and subcortical brain regions (thalamus, amygdala, parahippocampus) that overlaps with known fear circuitry structures. In particular, the activity of the right amygdala was up-regulated. Future prospective-longitudinal studies are needed to validate the role of the amygdala for transition to disorder. Attention to internal body functions up-regulates the activity of interoceptive and fear-relevant brain regions in anxiety-sensitive females, a high-risk group for the development of anxiety disorders.
Collapse
Affiliation(s)
- Bettina Pfleiderer
- Department of Clinical Radiology, University of Münster, Albert-Schweitzer-Campus 1, Building A1, 48129, Münster, Germany,
| | | | | | | | | | | |
Collapse
|
11
|
Kim JE, Dager SR, Lyoo IK. The role of the amygdala in the pathophysiology of panic disorder: evidence from neuroimaging studies. BIOLOGY OF MOOD & ANXIETY DISORDERS 2012; 2:20. [PMID: 23168129 PMCID: PMC3598964 DOI: 10.1186/2045-5380-2-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 09/19/2012] [Indexed: 01/04/2023]
Abstract
Although the neurobiological mechanisms underlying panic disorder (PD) are not yet clearly understood, increasing amount of evidence from animal and human studies suggests that the amygdala, which plays a pivotal role in neural network of fear and anxiety, has an important role in the pathogenesis of PD. This article aims to (1) review the findings of structural, chemical, and functional neuroimaging studies on PD, (2) relate the amygdala to panic attacks and PD development, (3) discuss the possible causes of amygdalar abnormalities in PD, (4) and suggest directions for future research.
Collapse
Affiliation(s)
- Jieun E Kim
- Department of Radiology, School of Medicine, University of Washington, 1100 NE 45th St, Ste 555, WA 98105, Seattle, USA.
| | | | | |
Collapse
|
12
|
Zwanzger P, Zavorotnyy M, Diemer J, Ruland T, Domschke K, Christ M, Michael N, Pfleiderer B. Auditory processing in remitted major depression: a long-term follow-up investigation using 3T-fMRI. J Neural Transm (Vienna) 2012; 119:1565-73. [DOI: 10.1007/s00702-012-0871-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 07/20/2012] [Indexed: 11/24/2022]
|
13
|
Revise the revised? New dimensions of the neuroanatomical hypothesis of panic disorder. J Neural Transm (Vienna) 2012; 120:3-29. [PMID: 22692647 DOI: 10.1007/s00702-012-0811-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 04/16/2012] [Indexed: 12/14/2022]
Abstract
In 2000, Gorman et al. published a widely acknowledged revised version of their 1989 neuroanatomical hypothesis of panic disorder (PD). Herein, a 'fear network' was suggested to mediate fear- and anxiety-related responses: panic attacks result from a dysfunctional coordination of 'upstream' (cortical) and 'downstream' (brainstem) sensory information leading to heightened amygdala activity with subsequent behavioral, autonomic and neuroendocrine activation. Given the emergence of novel imaging methods such as fMRI and the publication of numerous neuroimaging studies regarding PD since 2000, a comprehensive literature search was performed regarding structural (CT, MRI), metabolic (PET, SPECT, MRS) and functional (fMRI, NIRS, EEG) studies on PD, which will be reviewed and critically discussed in relation to the neuroanatomical hypothesis of PD. Recent findings support structural and functional alterations in limbic and cortical structures in PD. Novel insights regarding structural volume increase or reduction, hyper- or hypoactivity, laterality and task-specificity of neural activation patterns emerged. The assumption of a generally hyperactive amygdala in PD seems to apply more to state than trait characteristics of PD, and involvement of further areas in the fear circuit, such as anterior cingulate and insula, is suggested. Furthermore, genetic risk variants have been proposed to partly drive fear network activity. Thus, the present state of knowledge generally supports limbic and cortical prefrontal involvement as originally proposed in the neuroanatomical hypothesis. Some modifications might be suggested regarding a potential extension of the fear circuit, genetic factors shaping neural network activity and neuroanatomically informed clinical subtypes of PD potentially guiding future treatment decisions.
Collapse
|
14
|
Donner NC, Johnson PL, Fitz SD, Kellen KE, Shekhar A, Lowry CA. Elevated tph2 mRNA expression in a rat model of chronic anxiety. Depress Anxiety 2012; 29:307-19. [PMID: 22511363 PMCID: PMC4414333 DOI: 10.1002/da.21925] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Allelic variations in TPH2, the gene encoding tryptophan hydroxylase 2, the rate-limiting enzyme for brain serotonin (5-HT) biosynthesis, may be genetic predictors of panic disorder and panic responses to panicogenic challenges in healthy volunteers. To test the hypothesis that tph2 mRNA is altered in chronic anxiety states, we measured tph2 expression in an established rat model of panic disorder. METHODS We implanted 16 adult, male rats with bilateral guide cannulae and then primed them with daily injections of the corticotropin-releasing factor (CRF) receptor agonist, urocortin 1 (UCN1, 6 fmoles/100 nl per side, n = 8) or vehicle (n = 8) into the basolateral amygdaloid complex (BL) for 5 consecutive days. Anxiety-like behavior was assessed, 24 hr prior to and 48 hr following priming, in the social interaction (SI) test. A third group (n = 7) served as undisturbed home cage controls. All rats were killed 3 days after the last intra-BL injection to analyze tph2 and slc6a4 (gene encoding the serotonin transporter, SERT) mRNA expression in the dorsal raphe nucleus (DR), the main source of serotonergic projections to anxiety-related brain regions, using in situ hybridization histochemistry. RESULTS UCN1 priming increased anxiety-related behavior in the SI test compared to vehicle-injected controls and elevated tph2, but not slc6a4, mRNA expression in DR subregions, including the ventrolateral DR/ventrolateral periaqueductal gray (DRVL/VLPAG), a subregion previously implicated in control of panic-related physiologic responses. Tph2 mRNA expression in the DRVL/VLPAG was correlated with increased anxiety-related behavior. CONCLUSION Our data support the hypothesis that chronic anxiety states are associated with dysregulated tph2 expression.
Collapse
Affiliation(s)
- Nina C. Donner
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado,Correspondence to: Nina C. Donner, Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant St, 114 Clare Small, Boulder, CO 80309–0354,
| | - Philip L. Johnson
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stephanie D. Fitz
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Karen E. Kellen
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christopher A. Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
15
|
Abstract
Whole organism-based small-molecule screens have proven powerful in identifying novel therapeutic chemicals, yet this approach has not been exploited to identify new cognitive enhancers. Here we present an automated high-throughput system for measuring nonassociative learning behaviors in larval zebrafish. Using this system, we report that spaced training blocks of repetitive visual stimuli elicit protein synthesis-dependent long-term habituation in larval zebrafish, lasting up to 24 h. Moreover, repetitive acoustic stimulation induces robust short-term habituation that can be modulated by stimulation frequency and instantaneously dishabituated through cross-modal stimulation. To characterize the neurochemical pathways underlying short-term habituation, we screened 1,760 bioactive compounds with known targets. Although we found extensive functional conservation of short-term learning between larval zebrafish and mammalian models, we also discovered several compounds with previously unknown roles in learning. These compounds included a myristic acid analog known to interact with Src family kinases and an inhibitor of cyclin dependent kinase 2, demonstrating that high-throughput chemical screens combined with high-resolution behavioral assays provide a powerful approach for the discovery of novel cognitive modulators.
Collapse
|
16
|
Kikuchi M, Koenig T, Munesue T, Hanaoka A, Strik W, Dierks T, Koshino Y, Minabe Y. EEG microstate analysis in drug-naive patients with panic disorder. PLoS One 2011; 6:e22912. [PMID: 21829554 PMCID: PMC3146502 DOI: 10.1371/journal.pone.0022912] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 06/30/2011] [Indexed: 11/19/2022] Open
Abstract
Patients with panic disorder (PD) have a bias to respond to normal stimuli in a fearful way. This may be due to the preactivation of fear-associated networks prior to stimulus perception. Based on EEG, we investigated the difference between patients with PD and normal controls in resting state activity using features of transiently stable brain states (microstates). EEGs from 18 drug-naive patients and 18 healthy controls were analyzed. Microstate analysis showed that one class of microstates (with a right-anterior to left-posterior orientation of the mapped field) displayed longer durations and covered more of the total time in the patients than controls. Another microstate class (with a symmetric, anterior-posterior orientation) was observed less frequently in the patients compared to controls. The observation that selected microstate classes differ between patients with PD and controls suggests that specific brain functions are altered already during resting condition. The altered resting state may be the starting point of the observed dysfunctional processing of phobic stimuli.
Collapse
Affiliation(s)
- Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|