1
|
Laycock A, Kirjakulov A, Wright MD, Bourdakos KN, Mahajan S, Clark H, Griffiths M, Sørensen GL, Holmskov U, Guo C, Leonard MO, Smith R, Madsen J. Knock-out mouse models and single particle ICP-MS reveal that SP-D and SP-A deficiency reduces agglomeration of inhaled gold nanoparticles in vivo without significant changes to overall lung clearance. Nanotoxicology 2025:1-22. [PMID: 39868723 DOI: 10.1080/17435390.2025.2454969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 01/28/2025]
Abstract
The role of surfactant proteins A and D (SP-A and SP-D) in lung clearance and translocation to secondary organs of inhaled nanoparticles was investigated by exposing SP-A and SP-D knockout (AKO and DKO) and wild type (WT) mice nose-only for 3 hours to an aerosol of 20 nm gold nanoparticles (AuNPs). Animals were euthanised at 0-, 1-, 7- and 28-days post-exposure. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) of the liver and kidneys showed that extrapulmonary translocation was below the limits of detection. Imaging of the lungs by laser ablation ICP-MS confirmed the homogenous distribution of AuNPs. Coherent anti-Stokes Raman Scattering, Second Harmonic Generation and Two-Photon Fluorescence imaging were applied for semi-quantitative analysis of the uptake of AuNPs by alveolar macrophages and found uptake increased with time post-exposure, peaking after 7 days, and with the largest increase in uptake being in WT mice. Single particle ICP-MS allowed particle counting and sizing of AuNPs in the lungs showing that particle agglomeration following deposition within the lung was greater for the wildtype than the knockout models, indicating a role for SP-A and SP-D in agglomeration, however, any effect of this on overall lung clearance was minimal. For all groups, the Au (mass) lung burden initial clearance half-time was approximately 20-25 d, however, the AuNP (particle number) lung burden clearance half-time was shorter at approximately 10 days. In general terms, differences between the results for the three models were limited, indicating the preferential clearance of smaller particles from the lung.
Collapse
Affiliation(s)
- Adam Laycock
- Toxicology Department, UK Health Security Agency, Harwell Campus, Oxfordshire, UK
| | - Artur Kirjakulov
- Infection, Inflammation and Repair, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Konstantinos Nikolaos Bourdakos
- Institute for Life Sciences, University of Southampton, Highfield, UK
- Department of Chemistry, University of Southampton, Highfield, UK
| | - Sumeet Mahajan
- Institute for Life Sciences, University of Southampton, Highfield, UK
- Department of Chemistry, University of Southampton, Highfield, UK
| | - Howard Clark
- Infection, Inflammation and Repair, Faculty of Medicine, University of Southampton, Southampton, UK
- Targeted Lung Immunotherapy, Neonatology, Institute for Women's Health, University College London, London, UK
| | - Mark Griffiths
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, UK
| | - Grith Lykke Sørensen
- Cancer and Inflammation Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Uffe Holmskov
- Cancer and Inflammation Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Chang Guo
- Toxicology Department, UK Health Security Agency, Harwell Campus, Oxfordshire, UK
| | - Martin O Leonard
- Toxicology Department, UK Health Security Agency, Harwell Campus, Oxfordshire, UK
| | - Rachel Smith
- Toxicology Department, UK Health Security Agency, Harwell Campus, Oxfordshire, UK
| | - Jens Madsen
- Infection, Inflammation and Repair, Faculty of Medicine, University of Southampton, Southampton, UK
- Targeted Lung Immunotherapy, Neonatology, Institute for Women's Health, University College London, London, UK
| |
Collapse
|
2
|
Peng J, Wang Q, Sun R, Zhang K, Chen Y, Gong Z. Phospholipids of inhaled liposomes determine the in vivo fate and therapeutic effects of salvianolic acid B on idiopathic pulmonary fibrosis. J Control Release 2024; 371:1-15. [PMID: 38761856 DOI: 10.1016/j.jconrel.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/18/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Since phospholipids have an important effect on the size, surface potential and hardness of liposomes that decide their in vivo fate after inhalation, this research has systematically evaluated the effect of phospholipids on pulmonary drug delivery by liposomes. In this study, liposomes composed of neutral saturated/unsaturated phospholipids, anionic and cationic phospholipids were constructed to investigate how surface potential and the degree of saturation of fatty acid chains determined their mucus and epithelium permeability both in vitro and in vivo. Our results clearly indicated that liposomes composed of saturated neutral and anionic phospholipids possessed high stability and permeability, compared to that of liposomes composed of unsaturated phospholipids and cationic phospholipids. Furthermore, both in vivo imaging of fluorescence-labeled liposomes and biodistribution of salvianolic acid B (SAB) that encapsulated in liposomes were performed to estimate the effect of phospholipids on the lung exposure and retention of inhaled liposomes. Finally, inhaled SAB-loaded liposomes exhibited enhanced therapeutic effects in a bleomycin-induced idiopathic pulmonary fibrosis mice model via inhibition of inflammation and regulation on coagulation-fibrinolytic system. Such findings will be beneficial to the development of inhalable lipid-based nanodrug delivery systems for the treatment of respiratory diseases where inhalation is the preferred route of administration.
Collapse
Affiliation(s)
- Jianqing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Qin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Runbin Sun
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ke Zhang
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China.
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China; Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China.
| |
Collapse
|
3
|
Wang S, Zhang J, Zhou H, Lu YC, Jin X, Luo L, You J. The role of protein corona on nanodrugs for organ-targeting and its prospects of application. J Control Release 2023; 360:15-43. [PMID: 37328008 DOI: 10.1016/j.jconrel.2023.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, nanodrugs become a hotspot in the high-end medical field. They have the ability to deliver drugs to reach their destination more effectively due to their unique properties and flexible functionalization. However, the fate of nanodrugs in vivo is not the same as those presented in vitro, which indeed influenced their therapeutic efficacy in vivo. When entering the biological organism, nanodrugs will first come into contact with biological fluids and then be covered by some biomacromolecules, especially proteins. The proteins adsorbed on the surface of nanodrugs are known as protein corona (PC), which causes the loss of prospective organ-targeting abilities. Fortunately, the reasonable utilization of PC may determine the organ-targeting efficiency of systemically administered nanodrugs based on the diverse expression of receptors on cells in different organs. In addition, the nanodrugs for local administration targeting diverse lesion sites will also form unique PC, which plays an important role in the therapeutic effect of nanodrugs. This article introduced the formation of PC on the surface of nanodrugs and summarized the recent studies about the roles of diversified proteins adsorbed on nanodrugs and relevant protein for organ-targeting receptor through different administration pathways, which may deepen our understanding of the role that PC played on organ-targeting and improve the therapeutic efficacy of nanodrugs to promote their clinical translation.
Collapse
Affiliation(s)
- Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yi Chao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xizhi Jin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| |
Collapse
|
4
|
Xu Y, Parra-Ortiz E, Wan F, Cañadas O, Garcia-Alvarez B, Thakur A, Franzyk H, Pérez-Gil J, Malmsten M, Foged C. Insights into the mechanisms of interaction between inhalable lipid-polymer hybrid nanoparticles and pulmonary surfactant. J Colloid Interface Sci 2023; 633:511-525. [PMID: 36463820 DOI: 10.1016/j.jcis.2022.11.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/15/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Pulmonary delivery of small interfering RNA (siRNA) using nanoparticle-based delivery systems is promising for local treatment of respiratory diseases. We designed dry powder inhaler formulations of siRNA-loaded lipid-polymer hybrid nanoparticles (LPNs) with aerosolization properties optimized for inhalation therapy. Interactions between LPNs and pulmonary surfactant (PS) determine the fate of inhaled LPNs, but interaction mechanisms are unknown. Here we used surface-sensitive techniques to study how physicochemical properties and pathological microenvironments influence interactions between siRNA-loaded LPNs and supported PS layers. PS was deposited on SiO2 surfaces as single bilayer or multilayers and characterized using quartz crystal microbalance with dissipation monitoring and Fourier-transform infrared spectroscopy with attenuated total reflection. Immobilization of PS as multilayers, resembling the structural PS organization in the alveolar subphase, effectively reduced the relative importance of interactions between PS and the underlying surface. However, the binding affinity between PS and LPNs was identical in the two models. The physicochemical LPN properties influenced the translocation pathways and retention time of LPNs. Membrane fluidity and electrostatic interactions were decisive for the interaction strength between LPNs and PS. Experimental conditions reflecting pathological microenvironments promoted LPN deposition. Hence, these results shed new light on design criteria for LPN transport through the air-blood barrier.
Collapse
Affiliation(s)
- You Xu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Elisa Parra-Ortiz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Feng Wan
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Olga Cañadas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain
| | - Begoña Garcia-Alvarez
- Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain; Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen Ø, Denmark
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain
| | - Martin Malmsten
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
5
|
Zhang M, Jiang H, Wu L, Lu H, Bera H, Zhao X, Guo X, Liu X, Cun D, Yang M. Airway epithelial cell-specific delivery of lipid nanoparticles loading siRNA for asthma treatment. J Control Release 2022; 352:422-437. [PMID: 36265740 DOI: 10.1016/j.jconrel.2022.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
With specific and inherent mRNA cleaving activity, small interfering RNA (siRNA) has been deemed promising therapeutics to reduce the exacerbation rate of asthma by inhibiting the expression and release of proinflammatory cytokines from airway epithelial cells (AECs). To exert the therapeutic effects of siRNA drugs, nano-formulations with high efficiency and safety are required to deliver these nucleic acids to the target cells. Herein, we exploited novel inhaled lipid nanoparticles (LNPs) targeting intercellular adhesion molecule-1 (ICAM-1) receptors on the apical side of AECs. This delivery system is meant to enhance the specific delivery efficiency of siRNA in AECs to prevent the expression of proinflammatory cytokines in AECs and the concomitant symptoms in parallel. A cyclic peptide that resembles part of the capsid protein of rhinovirus and binds to ICAM-1 receptors was initially conjugated with cholesterol and subsequently assembled with ionizable cationic lipids to form the LNPs (Pep-LNPs) loaded with siRNA against thymic stromal lymphopoietin (TSLP siRNA). The obtained Pep-LNPs were subjected to thorough characterization and evaluations in vitro and in vivo. Pep-LNPs significantly enhanced cellular uptake and gene silencing efficiency in human epithelial cells expressing ICAM-1 in vitro, exhibited AEC-specific delivery and improved the gene silencing effect in ovalbumin-challenged asthmatic mice after pulmonary administration. More importantly, Pep-LNPs remarkably downregulated the expression of TSLP in AECs, effectively alleviated inflammatory cell infiltration, and reduced the secretion of other proinflammatory cytokines, including IL-4 and IL-13, as well as mucus production in asthmatic mice. This study demonstrates that Pep-LNPs are safe and efficient to deliver siRNA drugs to asthmatic AECs and could potentially alleviate allergic asthma by inhibiting the overexpression of proinflammatory cytokines in the airway.
Collapse
Affiliation(s)
- Mengjun Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Huiyang Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Haoyu Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China; Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, West Bengal, 713212, India
| | - Xing Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Xulu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China.
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
6
|
Panico S, Capolla S, Bozzer S, Toffoli G, Dal Bo M, Macor P. Biological Features of Nanoparticles: Protein Corona Formation and Interaction with the Immune System. Pharmaceutics 2022; 14:pharmaceutics14122605. [PMID: 36559099 PMCID: PMC9781747 DOI: 10.3390/pharmaceutics14122605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Nanoparticles (NPs) are versatile candidates for nanomedical applications due to their unique physicochemical properties. However, their clinical applicability is hindered by their undesirable recognition by the immune system and the consequent immunotoxicity, as well as their rapid clearance in vivo. After injection, NPs are usually covered with layers of proteins, called protein coronas (PCs), which alter their identity, biodistribution, half-life, and efficacy. Therefore, the characterization of the PC is for in predicting the fate of NPs in vivo. The aim of this review was to summarize the state of the art regarding the intrinsic factors closely related to the NP structure, and extrinsic factors that govern PC formation in vitro. In addition, well-known opsonins, including complement, immunoglobulins, fibrinogen, and dysopsonins, such as histidine-rich glycoprotein, apolipoproteins, and albumin, are described in relation to their role in NP detection by immune cells. Particular emphasis is placed on their role in mediating the interaction of NPs with innate and adaptive immune cells. Finally, strategies to reduce PC formation are discussed in detail.
Collapse
Affiliation(s)
- Sonia Panico
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Sara Bozzer
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: ; Tel.: +39-0405588683
| |
Collapse
|
7
|
Hou X, Zhang X, Zhang Z. Role of surfactant protein-D in ocular bacterial infection. Int Ophthalmol 2022; 42:3611-3623. [PMID: 35639299 PMCID: PMC9151998 DOI: 10.1007/s10792-022-02354-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/18/2022] [Indexed: 02/07/2023]
Abstract
Purpose Our review explains the role of surfactant protein D (SP-D) in different kinds of bacterial infection based on its presence in different ocular surface tissues. We discuss the potential role of SP-D against invasion by pathogens, with the aim of identifying new prospects for the possible mechanism of SP-D-mediated immune processes, and the diagnosis, prognosis, or treatment of ocular bacterial infection. Methods We reviewed articles about the role of SP-D in various ocular bacterial infections or infection-related ocular diseases through PubMed, Google Scholar, and the Web of Science databases. Results SP-D acts as an important immune factor that can resemble molecules in different polymerization states and that defends against pathogen invasion. The increased SP-D production and secretion in tear fluid and the cornea after ocular bacterial infections such as Staphylococcus aureus, Pseudomonas aeruginosa keratitis, and infection-related ocular diseases, was shown to have potential anti-inflammatory effects. The mechanisms of SP-D’s action against ocular bacterial infections include presenting, aggregating, opsonizing, and phagocytizing antigens, as well as regulating anti-bacterial immunity processes, including toll-like receptor-5 (TLR-5) pathway and IL-8 effect, TLR-4 and TLR-2 pathways and other possible ways remained to be elucidated in more detail. The findings demonstrate the potential of SP-D as an important clinical diagnostic biomarker prognosis predictor, and target for ocular immunotherapy. Conclusion SP-D participates in invasion by different ocular bacteria and infection-related ocular diseases through multiple immune mechanisms. This finding provides new prospects for the diagnosis, prognosis and treatment of ocular bacterial infection.
Collapse
Affiliation(s)
- Xinzhu Hou
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Xin Zhang
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Zhiyong Zhang
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China. .,Eye Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People's Republic of China.
| |
Collapse
|
8
|
Liu Q, Xue J, Zhang X, Chai J, Qin L, Guan J, Zhang X, Mao S. Biomimetic pulmonary surfactant modification on the in vivo fate of nanoparticles in the lung. Acta Biomater 2022; 147:391-402. [PMID: 35643196 DOI: 10.1016/j.actbio.2022.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022]
Abstract
Direct biomimetic modification of nanoparticles (NPs) with endogenous surfactants is helpful to improve the biocompatibility of NPs and avoid damage to the physiological function of the lung. Therefore, the objective of this study is to investigate the influence of biomimetic endogenous pulmonary surfactant phospholipid modification on the in vivo fate of NPs after lung delivery. Here, two neutral phospholipids (dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylamine (DPPE)) and two negatively charged phospholipids (dipalmitoylphosphatidylglycerol (DPPG), dipalmitoylphosphatidylserine (DPPS)) were selected to modify paclitaxel (PTX)-loaded PLGA NPs with different molar ratio. DPPC, DPPE, and DPPG improved mucoadhesion, in contrast, DPPS improved the mucus permeability of the NPs. Neutral DPPC and DPPE reduced, but negatively charged DPPS and DPPG increased the uptake by alveolar macrophages, all types of phospholipid increased the uptake by lung epithelial cells and increased PTX retention in the whole lung. Whereas, DPPC, DPPE, and DPPG promoted PTX retention in bronchoalveolar lavage fluid (BALF), while DPPS promoted PTX absorption in the lung tissue. Only DPPS-PLGA (1:1) NPs remarkably increased PTX systemic exposure. A good correlation between PTX percentage in the supernatant of BALF and PTX concentration in plasma was established, implying PTX entered the system circulation mainly in molecular form. Phospholipid modification had no effect on extrapulmonary organ distribution of PTX. Taken together, our study disclosed that different phospholipid modification can endow the NPs mucoadhesive or mucus penetration and cellular uptake properties, with tunable retention in BALF and absorption in the lung tissue, providing the scientific background for translational nanocarrier design for inhalation as required. STATEMENT OF SIGNIFICANCE: Inhaled nanomedicines will inevitably interact with pulmonary surfactant and form "surfactant corona". However, the contribution of individual pulmonary surfactant phospholipid on the in vivo fate of nanomedicines is still unclear. In this regard, the most abundant pulmonary surfactant phospholipid dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylamine, and dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylserine were selected to modify the paclitaxel loaded PLGA nanoparticles and the effect of these pulmonary surfactant phospholipids on their in vivo fate was investigated. It was demonstrated that different phospholipid modification can endow the nanoparticles mucoadhesive or mucus penetration properties, with tunable retention in bronchoalveolar lavage fluid, alveolar macrophages uptake and absorption in the lung tissue. The present study provided a comprehensive understanding for the role of pulmonary surfactant phospholipid on inhaled nanomedicines.
Collapse
Affiliation(s)
- Qiaoyu Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jingwen Xue
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xinrui Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Juanjuan Chai
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Lu Qin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
9
|
Liu Q, Zhang X, Xue J, Chai J, Qin L, Guan J, Zhang X, Mao S. Exploring the intrinsic micro-/nanoparticle size on their in vivo fate after lung delivery. J Control Release 2022; 347:435-448. [PMID: 35537539 DOI: 10.1016/j.jconrel.2022.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 12/18/2022]
Abstract
Micro-/nanocarriers due to their significant advantages are widely investigated in pulmonary drug delivery. However, different size carriers have varied drug release rate, concealing the effect of particle size on the fate of drugs in vivo. Therefore, by keeping drug release rate comparable, the objective of this study is to elucidate the influence of particle size itself on drug in vivo fate after intratracheal instillation to mice. Here, using paclitaxel (PTX) as a drug model, 100 nm, 300 nm, 800 nm, and 2500 nm poly(lactide-co-glycolide) (PLGA) particles with the same release rate were prepared. It was demonstrated that the in vivo fate of particles after lung delivery was size-dependent. Consistent with most reports of model particles with neglected release kinetics, the mucus penetration capacity in airtifical mucus decreased with increasing particle size and there is no significant difference between 800 nm and 2500 nm particles. The in vivo airway distribution experiments confirmed the results of the in vitro mucus penetration study, that is, the smaller the particles, the more distributed in the airway. Both in vitro and in vivo macrophage uptake results confirmed that the larger particles were more readily taken up by macrophages. In contrast, the uptake of smaller particles in A549 cells was higher than that of larger particles. Some new findings were disclosed in lung retention, lung absorption and lung targeting. Different from previous reports, this study demonstrated that particles with smaller size had longer lung retention, AUC(0-t) in bronchoalveolar lavage fluid (BALF) of 100 nm particles was 1.6, 1.9, 2.5 times higher than that of 300 nm, 800 nm, and 2500 nm particles and 11.7 times of the PTX solution group. The same trend was observed in lung tissue absorption, the AUC(0-t) in the lavaged lung of 100 nm particles was 1.8, 2.2, 2.8, 8.6 times higher than that of 300 nm, 800 nm, 2500 nm particles and PTX solution groups, respectively. The lung targeting efficiency was particles size independent. In conclusion, the in vivo fate of particles with the same release kinetics after intratracheal instillation is size-dependent, smaller size particles are conducive for lung retention and lung absorption. Overall, our study provided scientific guidance for the rational design of particle based pulmonary drug delivery system.
Collapse
Affiliation(s)
- Qiaoyu Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinrui Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingwen Xue
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Juanjuan Chai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Qin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
10
|
Bahlool AZ, Grant C, Cryan SA, Keane J, O'Sullivan MP. All trans retinoic acid as a host-directed immunotherapy for tuberculosis. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:54-72. [PMID: 35496824 PMCID: PMC9040133 DOI: 10.1016/j.crimmu.2022.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) is the top bacterial infectious disease killer and one of the top ten causes of death worldwide. The emergence of strains of multiple drug-resistant tuberculosis (MDR-TB) has pushed our available stock of anti-TB agents to the limit of effectiveness. This has increased the urgent need to develop novel treatment strategies using currently available resources. An adjunctive, host-directed therapy (HDT) designed to act on the host, instead of the bacteria, by boosting the host immune response through activation of intracellular pathways could be the answer. The integration of multidisciplinary approaches of repurposing currently FDA-approved drugs, with a targeted drug-delivery platform is a very promising option to reduce the long timeline associated with the approval of new drugs - time that cannot be afforded given the current levels of morbidity and mortality associated with TB infection. The deficiency of vitamin A has been reported to be highly associated with the increased susceptibility of TB. All trans retinoic acid (ATRA), the active metabolite of vitamin A, has proven to be very efficacious against TB both in vitro and in vivo. In this review, we discuss and summarise the importance of vitamin A metabolites in the fight against TB and what is known regarding the molecular mechanisms of ATRA as a host-directed therapy for TB including its effect on macrophages cytokine profile and cellular pathways. Furthermore, we focus on the issues behind why previous clinical trials with vitamin A supplementation have failed, and how these issues might be overcome.
Collapse
Affiliation(s)
- Ahmad Z. Bahlool
- School of Pharmacy and Biomolecular Sciences (PBS), Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, Ireland
- Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, Ireland
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Conor Grant
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences (PBS), Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, Ireland
- Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, Ireland
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland
- SFI Centre for Research in Medical Devices (CURAM), RCSI, Dublin and National University of Ireland, Galway, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Mary P. O'Sullivan
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| |
Collapse
|
11
|
Liu Q, Guan J, Song R, Zhang X, Mao S. Physicochemical properties of nanoparticles affecting their fate and the physiological function of pulmonary surfactants. Acta Biomater 2022; 140:76-87. [PMID: 34843949 DOI: 10.1016/j.actbio.2021.11.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
Pulmonary drug delivery has drawn great attention due to its targeted local lung action, reduced side effects, and ease of administration. However, inhaled nanoparticles (NPs) could adsorb different pulmonary surfactants depending on their physicochemical properties, which may impair the physiological function of the pulmonary surfactants or alter the fate of the NPs. Thus, the objective of this review is to summarize how the physicochemical properties of NPs affecting the physiological function of pulmonary surfactants and their fate. First of all, the composition and characteristics of pulmonary surfactants, methods for studying pulmonary surfactant interaction with NPs are introduced. Thereafter, the influence of physicochemical properties of NPs on hydrophobic protein adsorption and strategies to decrease the interaction of NPs with pulmonary surfactants are discussed. Finally, the influence of physicochemical properties of NPs on lipids and hydrophilic protein adsorption and consequently their fate is described. In conclusion, a better understanding of the interaction of NPs with pulmonary surfactants will promote the faster development of safe and effective nanomedicine for pulmonary drug delivery. STATEMENT OF SIGNIFICANCE: Drug delivery carriers often face complex body fluid components after entering the human body. Pulmonary surfactants diffuse at the lung gas-liquid interface, and particles inevitably interact with pulmonary surfactants after pulmonary nanomedicine delivery. This review presents an overview of how the physicochemical properties of nanoparticles affecting their fate and physiological function of pulmonary surfactants. We believe that the information included in this review can provide important guiding for the development of safe and effective pulmonary delivery nanocarriers.
Collapse
|
12
|
Reconstituted basement membrane enables airway epithelium modeling and nanoparticle toxicity testing. Int J Biol Macromol 2022; 204:300-309. [PMID: 35149090 DOI: 10.1016/j.ijbiomac.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/14/2022]
Abstract
Basement membrane (BM) acts as a sheet-like extracellular matrix to support and promote the formation of epithelial and endothelial cell layers. The in vitro reconstruction of the BM is however not easy due to its ultrathin membrane features. This difficulty is overcome by self-assembling type IV collagen and laminin in the porous areas of a monolayer of crosslinked gelatin nanofibers deposited on a honeycomb microframe. Herein, a method is presented to generate airway epithelium by using such an artificial basement membrane (ABM) and human-induced pluripotent stem cells (hiPSCs). Bipolar primordial lung progenitors are firstly induced from hiPSCs and then replated on the ABM for differentiation toward matured airway epithelium under submerged and air-liquid interface culture conditions. As a result, a pseudostratified airway epithelium consisting of several cell types is achieved, showing remarkable apical secretion of MUC5AC proteins and clear advantages over other types of substrates. As a proof of concept, the derived epithelium is used for toxicity test of cadmium telluride (CdTe) nanoparticles (NPs), demonstrating the applicability of ABM-based assays involving hiPSC-derived epithelial cells-based assays.
Collapse
|
13
|
Khan HA, Kishore U, Alsulami HM, Alrokayan SH. Pro-Apoptotic and Immunotherapeutic Effects of Carbon Nanotubes Functionalized with Recombinant Human Surfactant Protein D on Leukemic Cells. Int J Mol Sci 2021; 22:ijms221910445. [PMID: 34638783 PMCID: PMC8508673 DOI: 10.3390/ijms221910445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 02/05/2023] Open
Abstract
Nanoparticles are efficient drug delivery vehicles for targeting specific organs as well as systemic therapy for a range of diseases, including cancer. However, their interaction with the immune system offers an intriguing challenge. Due to the unique physico-chemical properties, carbon nanotubes (CNTs) are considered as nanocarriers of considerable interest in cancer diagnosis and therapy. CNTs, as a promising nanomaterial, are capable of both detecting as well as delivering drugs or small therapeutic molecules to tumour cells. In this study, we coupled a recombinant fragment of human surfactant protein D (rfhSP-D) with carboxymethyl-cellulose (CMC) CNTs (CMC-CNT, 10-20 nm diameter) for augmenting their apoptotic and immunotherapeutic properties using two leukemic cell lines. The cell viability of AML14.3D10 or K562 cancer cell lines was reduced when cultured with CMC-mwCNT-coupled-rfhSP-D (CNT + rfhSP-D) at 24 h. Increased levels of caspase 3, 7 and cleaved caspase 9 in CNT + rfhSP-D treated AML14.3D10 and K562 cells suggested an involvement of an intrinsic pathway of apoptosis. CNT + rfhSP-D treated leukemic cells also showed higher mRNA expression of p53 and cell cycle inhibitors (p21 and p27). This suggested a likely reduction in cdc2-cyclin B1, causing G2/M cell cycle arrest and p53-dependent apoptosis in AML14.3D10 cells, while p53-independent mechanisms appeared to be in operation in K562 cells. We suggest that CNT + rfhSP-D has therapeutic potential in targeting leukemic cells, irrespective of their p53 status, and thus, it is worth setting up pre-clinical trials in animal models.
Collapse
Affiliation(s)
- Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.A.); (S.H.A.)
- Correspondence: ; Tel.: +966-11-4675859
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Hamed M. Alsulami
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.A.); (S.H.A.)
| | - Salman H. Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.A.); (S.H.A.)
| |
Collapse
|
14
|
Arroyo R, Kingma PS. Surfactant protein D and bronchopulmonary dysplasia: a new way to approach an old problem. Respir Res 2021; 22:141. [PMID: 33964929 PMCID: PMC8105703 DOI: 10.1186/s12931-021-01738-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Surfactant protein D (SP-D) is a collectin protein synthesized by alveolar type II cells in the lungs. SP-D participates in the innate immune defense of the lungs by helping to clear infectious pathogens and modulating the immune response. SP-D has shown an anti-inflammatory role by down-regulating the release of pro-inflammatory mediators in different signaling pathways such as the TLR4, decreasing the recruitment of inflammatory cells to the lung, and modulating the oxidative metabolism in the lungs. Recombinant human SP-D (rhSP-D) has been successfully produced mimicking the structure and functions of native SP-D. Several in vitro and in vivo experiments using different animal models have shown that treatment with rhSP-D reduces the lung inflammation originated by different insults, and that rhSP-D could be a potential treatment for bronchopulmonary dysplasia (BPD), a rare disease for which there is no effective therapy up to date. BPD is a complex disease in preterm infants whose incidence increases with decreasing gestational age at birth. Lung inflammation, which is caused by different prenatal and postnatal factors like infections, lung hyperoxia and mechanical ventilation, among others, is the key player in BPD. Exacerbated inflammation causes lung tissue injury that results in a deficient gas exchange in the lungs of preterm infants and frequently leads to long-term chronic lung dysfunction during childhood and adulthood. In addition, low SP-D levels and activity in the first days of life in preterm infants have been correlated with a worse pulmonary outcome in BPD. Thus, SP-D mediated functions in the innate immune response could be critical aspects of the pathogenesis in BPD and SP-D could inhibit lung tissue injury in this preterm population. Therefore, administration of rhSP-D has been proposed as promising therapy that could prevent BPD.
Collapse
Affiliation(s)
- Raquel Arroyo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. ML7029, Cincinnati, OH, 45229-3039, USA
| | - Paul S Kingma
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. ML7029, Cincinnati, OH, 45229-3039, USA. .,Airway Therapeutics Inc, Cincinnati, OH, 45249, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
15
|
Watson A, Madsen J, Clark HW. SP-A and SP-D: Dual Functioning Immune Molecules With Antiviral and Immunomodulatory Properties. Front Immunol 2021; 11:622598. [PMID: 33542724 PMCID: PMC7851053 DOI: 10.3389/fimmu.2020.622598] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023] Open
Abstract
Surfactant proteins A (SP-A) and D (SP-D) are soluble innate immune molecules which maintain lung homeostasis through their dual roles as anti-infectious and immunomodulatory agents. SP-A and SP-D bind numerous viruses including influenza A virus, respiratory syncytial virus (RSV) and human immunodeficiency virus (HIV), enhancing their clearance from mucosal points of entry and modulating the inflammatory response. They also have diverse roles in mediating innate and adaptive cell functions and in clearing apoptotic cells, allergens and other noxious particles. Here, we review how the properties of these first line defense molecules modulate inflammatory responses, as well as host-mediated immunopathology in response to viral infections. Since SP-A and SP-D are known to offer protection from viral and other infections, if their levels are decreased in some disease states as they are in severe asthma and chronic obstructive pulmonary disease (COPD), this may confer an increased risk of viral infection and exacerbations of disease. Recombinant molecules of SP-A and SP-D could be useful in both blocking respiratory viral infection while also modulating the immune system to prevent excessive inflammatory responses seen in, for example, RSV or coronavirus disease 2019 (COVID-19). Recombinant SP-A and SP-D could have therapeutic potential in neutralizing both current and future strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus as well as modulating the inflammation-mediated pathology associated with COVID-19. A recombinant fragment of human (rfh)SP-D has recently been shown to neutralize SARS-CoV-2. Further work investigating the potential therapeutic role of SP-A and SP-D in COVID-19 and other infectious and inflammatory diseases is indicated.
Collapse
Affiliation(s)
- Alastair Watson
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Southampton NIHR Respiratory Biomedical Research Centre, Southampton General Hospital, Southampton, United Kingdom
- Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Jens Madsen
- Neonatology, EGA Institute for Women’s Health, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Howard William Clark
- Neonatology, EGA Institute for Women’s Health, Faculty of Population Health Sciences, University College London, London, United Kingdom
- NIHR Biomedical Research Centre, University College London Hospital (UCLH), University College London (UCL), London, United Kingdom
| |
Collapse
|
16
|
Papini E, Tavano R, Mancin F. Opsonins and Dysopsonins of Nanoparticles: Facts, Concepts, and Methodological Guidelines. Front Immunol 2020; 11:567365. [PMID: 33154748 PMCID: PMC7587406 DOI: 10.3389/fimmu.2020.567365] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding the effects mediated by a set of nanoparticle (NP)-bound host biomolecules, often indicated with the umbrella term of NP corona, is essential in nanomedicine, nanopharmacology, and nanotoxicology. Among the NP-adsorbed proteome, some factors mediate cell binding, endocytosis, and clearing by macrophages and other phagocytes (opsonins), while some others display few affinities for the cell surface (dysopsonins). The functional mapping of opsonins and dysopsonins is instrumental to design long-circulating and nanotoxicologically safe next-generation nanotheranostics. In this review, we critically analyze functional data identifying specific proteins with opsonin or dysopsonin properties. Special attention is dedicated to the following: (1) the simplicity or complexity of the NP proteome and its modulation, (2) the role of specific host proteins in mediating the stealth properties of uncoated or polymer-coated NPs, and (3) the ability of the innate immune system, and, in particular, of the complement proteins, to mediate NP clearance by phagocytes. Emerging species-specific peculiarities, differentiating humans from preclinical animal models (the murine especially), are highlighted throughout this overview. The operative definition of opsonin and dysopsonin and the measurement schemes to assess their in vitro efficacy is critically re-examined. This provides a shared and unbiased approach useful for NP opsonin and dysopsonin systematic identification.
Collapse
Affiliation(s)
- Emanuele Papini
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Centre for Innovative Biotechnological Research, University of Padua, Padua, Italy
| | - Regina Tavano
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Centre for Innovative Biotechnological Research, University of Padua, Padua, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
17
|
Cao Y, Li S, Chen J. Modeling better in vitro models for the prediction of nanoparticle toxicity: a review. Toxicol Mech Methods 2020; 31:1-17. [PMID: 32972312 DOI: 10.1080/15376516.2020.1828521] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P. R. China
| | - Shuang Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P. R. China
| | - Jiamao Chen
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P. R. China
| |
Collapse
|
18
|
Kämpfer AAM, Busch M, Schins RPF. Advanced In Vitro Testing Strategies and Models of the Intestine for Nanosafety Research. Chem Res Toxicol 2020; 33:1163-1178. [PMID: 32383381 DOI: 10.1021/acs.chemrestox.0c00079] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is growing concern about the potential adverse effects of oral exposure to engineered nanomaterials (ENM). Recent years have witnessed major developments in and advancement of intestinal in vitro models for nanosafety evaluation. The present paper reviews the key factors that should be considered for inclusion in nonanimal alternative testing approaches to reliably reflect the in vivo dynamics of the physicochemical properties of ENM as well the intestinal physiology and morphology. Currently available models range from simple cell line-based monocultures to advanced 3D systems and organoids. In addition, in vitro approaches exist to replicate the mucous barrier, digestive processes, luminal flow, peristalsis, and interactions of ENM with the intestinal microbiota. However, while the inclusion of a multitude of individual factors/components of particle (pre)treatment, exposure approach, and cell model approximates in vivo-like conditions, such increasing complexity inevitably affects the system's robustness and reproducibility. The selection of the individual modules to build the in vitro testing strategy should be driven and justified by the specific purpose of the study and, not least, the intended or actual application of the investigated ENM. Studies that address health hazards of ingested ENM likely require different approaches than research efforts to unravel the fundamental interactions or toxicity mechanisms of ENM in the intestine. Advanced reliable and robust in vitro models of the intestine, especially when combined in an integrated testing approach, offer great potential to further improve the field of nanosafety research.
Collapse
Affiliation(s)
- Angela A M Kämpfer
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| | - Mathias Busch
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| | - Roel P F Schins
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| |
Collapse
|
19
|
Yang L, Li C, Tang X. The Impact of PM 2.5 on the Host Defense of Respiratory System. Front Cell Dev Biol 2020; 8:91. [PMID: 32195248 PMCID: PMC7064735 DOI: 10.3389/fcell.2020.00091] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The harm of fine particulate matter (PM2.5) to public health is the focus of attention around the world. The Global Burden of Disease (GBD) Study 2015 (GBD 2015 Risk Factors Collaborators, 2016) ranked PM2.5 as the fifth leading risk factor for death, which caused 4.2 million deaths and 103.1 million disability-adjusted life-years (DALYs) loss, representing 7.6% of total global deaths and 4.2% of global DALYs. Epidemiological studies have confirmed that exposure to PM2.5 increases the incidence and mortality of respiratory infections. The host defense dysfunction caused by PM2.5 exposure may be the key to the susceptibility of respiratory system infection. Thus, this review aims to assess the impact of PM2.5 on the host defense of respiratory system. Firstly, we elaborated the epidemiological evidence that exposure to PM2.5 increases the risk of respiratory infections. Secondly, we summarized the experimental evidence that PM2.5 exposure increases the susceptibility of different pathogens (including bacteria and viruses) in respiratory system. Furthermore, here we discussed the underlying host defense mechanisms by which PM2.5 exposure increases the risk of respiratory infections as well as future perspectives.
Collapse
Affiliation(s)
- Liyao Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Cheng Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoxiao Tang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Yin B, Chan CKW, Liu S, Hong H, Wong SHD, Lee LKC, Ho LWC, Zhang L, Leung KCF, Choi PCL, Bian L, Tian XY, Chan MN, Choi CHJ. Intrapulmonary Cellular-Level Distribution of Inhaled Nanoparticles with Defined Functional Groups and Its Correlations with Protein Corona and Inflammatory Response. ACS NANO 2019; 13:14048-14069. [PMID: 31725257 DOI: 10.1021/acsnano.9b06424] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Concerns over the health risks associated with airborne exposure to ultrafine particles [PM0.1, or nanoparticles (NPs)] call for a comprehensive understanding in the interactions of inhaled NPs along their respiratory journey. We prepare a collection of polyethylene glycol-coated gold nanoparticles that bear defined functional groups commonly identified in atmospheric particulates (Au@PEG-X NPs, where X = OCH3, COOH, NH2, OH, or C12H25). Regardless of the functional group, these ∼50 nm NPs remain colloidally stable following aerosolization and incubation in bronchoalveolar lavage fluid (BALF), without pronouncedly crossing the air-blood barrier. The type of BALF proteins adhered onto the NPs is similar, but the composition of protein corona depends on functional group. By subjecting Balb/c mice to inhalation of Au@PEG-X NPs for 6 h, we demonstrate that the intrapulmonary distribution of NPs among the various types of cells (both found in BALF and isolated from the lavaged lung) and the acute inflammatory responses induced by inhalation are sensitive to the functional group of NPs and postinhalation period (0, 24, or 48 h). By evaluating the pairwise correlations between the three variables of "lung-nano" interactions (protein corona, intrapulmonary cellular-level distribution, and inflammatory response), we reveal strong statistical correlations between the (1) fractions of albumin or carbonyl reductase bound to NPs, (2) associations of inhaled NPs to neutrophils in BALF or macrophages in the lavaged lung, and (3) level of total protein in BALF. Our results provide insights into the effect of functional group on lung-nano interactions and health risks associated with inhalation of PM0.1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ken Cham-Fai Leung
- Department of Chemistry , Hong Kong Baptist University , Kowloon , Hong Kong
| | | | | | | | | | | |
Collapse
|
21
|
Zhang S, Huo X, Zhang Y, Lu X, Xu C, Xu X. The association of PM 2.5 with airway innate antimicrobial activities of salivary agglutinin and surfactant protein D. CHEMOSPHERE 2019; 226:915-923. [PMID: 31509921 DOI: 10.1016/j.chemosphere.2019.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 02/05/2023]
Abstract
Fine particulate matter ≤2.5 μm (PM2.5) is a prominent global public health risk factor that can cause respiratory infection by downregulating the amounts of antimicrobial proteins and peptides (AMPs). Both salivary agglutinin (SAG) and surfactant protein D (SPD) are important AMPs in respiratory mucosal fluid, providing protection against airway pathogen invasion and infection by inducing microbial aggregation and enhancing pathogen clearance. However, the relationship between PM2.5 and these AMPs is unclear. To better understand the relationship between PM2.5 and airway innate immune defenses, we review the respiratory antimicrobial activities of SAG and SPD, as well as the adverse effects of PM2.5 on airway innate antimicrobial defense. We speculate there exists a dual effect between PM2.5 and respiratory antimicrobial activity, which means that PM2.5 suppresses respiratory antimicrobial activity through downregulating airway AMPs, while airway AMPs accelerate PM2.5 clearance by inducing PM2.5 microbial aggregation. We propose further research on the relationship between PM2.5 and these AMPs.
Collapse
Affiliation(s)
- Shaocheng Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xueling Lu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Cheng Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
22
|
Pathak YV. Targeted Delivery of Surface-Modified Nanoparticles: Modulation of Inflammation for Acute Lung Injury. SURFACE MODIFICATION OF NANOPARTICLES FOR TARGETED DRUG DELIVERY 2019. [PMCID: PMC7123653 DOI: 10.1007/978-3-030-06115-9_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nanocarriers have been widely employed in the diagnosis and treatment of various diseases. The drug release kinetics and pharmacodynamics could be adjusted by changing the materials, designs, and physicochemical properties of the carriers. Furthermore, the carrier surface could be modified to minimize the particle clearance, increase the circulation duration, escape the biological protective mechanisms, penetrate through physical barriers, and prolong the residence of the drug at the target site. Among lung diseases, acute lung injury has been considered life-threatening with approximately 190,000 cases and 74,500 deaths per year in the USA. Numerous researches have reported the efficacy of drug-encapsulated nanoparticles in the treatment of acute lung injury. The use of nanoparticles could help minimize the effect of airway defenses in the lung, thus provides a prolonged retention, sustained drug release, and targeted delivery to the lung tissues. Meanwhile, the toxicity of nanoparticles in the lungs needs to be investigated thoroughly to alleviate the safety concerns. In this chapter, we discuss the targeted pulmonary delivery of surface-modified nanocarriers to efficiently treat acute lung injury.
Collapse
Affiliation(s)
- Yashwant V Pathak
- grid.170693.a0000 0001 2353 285XCollege of Pharmacy, University of South Florida, Tampa, FL USA
| |
Collapse
|
23
|
Guagliardo R, Pérez-Gil J, De Smedt S, Raemdonck K. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins. J Control Release 2018; 291:116-126. [PMID: 30321577 DOI: 10.1016/j.jconrel.2018.10.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Pulmonary surfactant (PS) has been extensively studied because of its primary role in mammalian breathing. The deposition of this surface-active material at the alveolar air-water interface is essential to lower surface tension, thus avoiding alveolar collapse during expiration. In addition, PS is involved in host defense, facilitating the clearance of potentially harmful particulates. PS has a unique composition, including 92% of lipids and 8% of surfactant proteins (SPs) by mass. Although they constitute the minor fraction, SPs to a large extent orchestrate PS-related functions. PS contains four surfactant proteins (SPs) that can be structurally and functionally divided in two groups, i.e. the large hydrophilic SP-A and SP-D and the smaller hydrophobic SP-B and SP-C. The former belong to the family of collectins and are involved in opsonization processes, thus promoting uptake of pathogens and (nano)particles by phagocytic cell types. The latter SPs regulate interfacial surfactant adsorption dynamics, facilitating (phospho)lipid transfer and membrane fusion processes. In the context of pulmonary drug delivery, the exploitation of PS as a carrier to promote drug spreading along the alveolar interface is gaining interest. In addition, recent studies investigated the interaction of PS with drug-loaded nanoparticles (nanomedicines) following pulmonary administration, which strongly influences their biological fate, drug delivery efficiency and toxicological profile. Interestingly, the specific biophysical mode-of-action of the four SPs affect the drug delivery process of nanomedicines both on the extra-and intracellular level, modulating pulmonary distribution, cell targeting and intracellular delivery. This knowledge can be harnessed to exploit SPs for the design of unique and bio-inspired drug delivery strategies.
Collapse
Affiliation(s)
- Roberta Guagliardo
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Jesús Pérez-Gil
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Research Institute Hospital 12 Octubre, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain.
| | - Stefaan De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
24
|
Watson A, Phipps MJS, Clark HW, Skylaris CK, Madsen J. Surfactant Proteins A and D: Trimerized Innate Immunity Proteins with an Affinity for Viral Fusion Proteins. J Innate Immun 2018; 11:13-28. [PMID: 30293076 PMCID: PMC6738215 DOI: 10.1159/000492974] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022] Open
Abstract
Innate recognition of viruses is an essential part of the immune response to viral pathogens. This is integral to the maintenance of healthy lungs, which are free from infection and efficient at gaseous exchange. An important component of innate immunity for identifying viruses is the family of C-type collagen-containing lectins, also known as collectins. These secreted, soluble proteins are pattern recognition receptors (PRRs) which recognise pathogen-associated molecular patterns (PAMPs), including viral glycoproteins. These innate immune proteins are composed of trimerized units which oligomerise into higher-order structures and facilitate the clearance of viral pathogens through multiple mechanisms. Similarly, many viral surface proteins form trimeric configurations, despite not showing primary protein sequence similarities across the virus classes and families to which they belong. In this review, we discuss the role of the lung collectins, i.e., surfactant proteins A and D (SP-A and SP-D) in viral recognition. We focus particularly on the structural similarity and complementarity of these trimeric collectins with the trimeric viral fusion proteins with which, we hypothesise, they have elegantly co-evolved. Recombinant versions of these innate immune proteins may have therapeutic potential in a range of infectious and inflammatory lung diseases including anti-viral therapeutics.
Collapse
Affiliation(s)
- Alastair Watson
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Maximillian J S Phipps
- Computational Chemistry, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Howard W Clark
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Chris-Kriton Skylaris
- Computational Chemistry, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Jens Madsen
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United .,Institute for Life Sciences, University of Southampton, Southampton, United .,National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United
| |
Collapse
|
25
|
Interaction of engineered nanomaterials with the immune system: Health-related safety and possible benefits. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
|
27
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
28
|
Konduru NV, Molina RM, Swami A, Damiani F, Pyrgiotakis G, Lin P, Andreozzi P, Donaghey TC, Demokritou P, Krol S, Kreyling W, Brain JD. Protein corona: implications for nanoparticle interactions with pulmonary cells. Part Fibre Toxicol 2017; 14:42. [PMID: 29084556 PMCID: PMC5663074 DOI: 10.1186/s12989-017-0223-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/17/2017] [Indexed: 11/25/2022] Open
Abstract
Background We previously showed that cerium oxide (CeO2), barium sulfate (BaSO4) and zinc oxide (ZnO) nanoparticles (NPs) exhibited different lung toxicity and pulmonary clearance in rats. We hypothesize that these NPs acquire coronas with different protein compositions that may influence their clearance from the lungs. Methods CeO2, silica-coated CeO2, BaSO4, and ZnO NPs were incubated in rat lung lining fluid in vitro. Then, gel electrophoresis followed by quantitative mass spectrometry was used to characterize the adsorbed proteins stripped from these NPs. We also measured uptake of instilled NPs by alveolar macrophages (AMs) in rat lungs using electron microscopy. Finally, we tested whether coating of gold NPs with albumin would alter their lung clearance in rats. Results We found that the amounts of nine proteins in the coronas formed on the four NPs varied significantly. The amounts of albumin, transferrin and α-1 antitrypsin were greater in the coronas of BaSO4 and ZnO than that of the two CeO2 NPs. The uptake of BaSO4 in AMs was less than CeO2 and silica-coated CeO2 NPs. No identifiable ZnO NPs were observed in AMs. Gold NPs coated with albumin or citrate instilled into the lungs of rats acquired the similar protein coronas and were cleared from the lungs to the same extent. Conclusions We show that different NPs variably adsorb proteins from the lung lining fluid. The amount of albumin in the NP corona varies as does NP uptake by AMs. However, albumin coating does not affect the translocation of gold NPs across the air-blood barrier. A more extensive database of corona composition of a diverse NP library will develop a platform to help predict the effects and biokinetics of inhaled NPs.
Collapse
Affiliation(s)
- Nagarjun V Konduru
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.,Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Ramon M Molina
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.,Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Archana Swami
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Flavia Damiani
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Georgios Pyrgiotakis
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.,Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Paulo Lin
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Patrizia Andreozzi
- CIC biomaGUNE Soft Matter Nanotechnology Group, Paseo de Miramón, 182, 20014, San Sebastian-Donostia, Guipuzcoa, Spain.,IFOM, via Adamello 16, 20139 Milano, Italy
| | - Thomas C Donaghey
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Silke Krol
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133, Milan, Italy.,I.R.C.C.S. Istituto Tumori Giovanni Paolo II, Viale O. Flacco 65, 70124, Bari, Italy
| | - Wolfgang Kreyling
- Institute of Epidemiology 2, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Joseph D Brain
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA. .,Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
29
|
McKenzie Z, Kendall M, Mackay RM, Whitwell H, Elgy C, Ding P, Mahajan S, Morgan C, Griffiths M, Clark H, Madsen J. Surfactant protein A (SP-A) inhibits agglomeration and macrophage uptake of toxic amine modified nanoparticles. Nanotoxicology 2017; 9:952-62. [PMID: 25676620 PMCID: PMC4486002 DOI: 10.3109/17435390.2014.992487] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The lung provides the main route for nanomaterial exposure. Surfactant protein A (SP-A) is an important respiratory innate immune molecule with the ability to bind or opsonise pathogens to enhance phagocytic removal from the airways. We hypothesised that SP-A, like surfactant protein D, may interact with inhaled nanoparticulates, and that this interaction will be affected by nanoparticle (NP) surface characteristics. In this study, we characterise the interaction of SP-A with unmodified (U-PS) and amine-modified (A-PS) polystyrene particles of varying size and zeta potential using dynamic light scatter analysis. SP-A associated with both 100 nm U-PS and A-PS in a calcium-independent manner. SP-A induced significant calcium-dependent agglomeration of 100 nm U-PS NPs but resulted in calcium-independent inhibition of A-PS self agglomeration. SP-A enhanced uptake of 100 nm U-PS into macrophage-like RAW264.7 cells in a dose-dependent manner but in contrast inhibited A-PS uptake. Reduced association of A-PS particles in RAW264.7 cells following pre-incubation of SP-A was also observed with coherent anti-Stokes Raman spectroscopy. Consistent with these findings, alveolar macrophages (AMs) from SP-A(-/-) mice were more efficient at uptake of 100 nm A-PS compared with wild type C57Bl/6 macrophages. No difference in uptake was observed with 500 nm U-PS or A-PS particles. Pre-incubation with SP-A resulted in a significant decrease in uptake of 100 nm A-PS in macrophages isolated from both groups of mice. In contrast, increased uptake by AMs of U-PS was observed after pre-incubation with SP-A. Thus we have demonstrated that SP-A promotes uptake of non-toxic U-PS particles but inhibits the clearance of potentially toxic A-PS particles by blocking uptake into macrophages.
Collapse
Affiliation(s)
- Zofi McKenzie
- a Department of Child Health, Clinical and Experimental Sciences, Faculty of Medicine , Southampton General Hospital, University of Southampton , Southampton , UK
| | - Michaela Kendall
- a Department of Child Health, Clinical and Experimental Sciences, Faculty of Medicine , Southampton General Hospital, University of Southampton , Southampton , UK .,b School of Geography, Earth and Environmental Sciences, University of Birmingham , Birmingham , UK
| | - Rose-Marie Mackay
- a Department of Child Health, Clinical and Experimental Sciences, Faculty of Medicine , Southampton General Hospital, University of Southampton , Southampton , UK
| | - Harry Whitwell
- a Department of Child Health, Clinical and Experimental Sciences, Faculty of Medicine , Southampton General Hospital, University of Southampton , Southampton , UK
| | - Christine Elgy
- b School of Geography, Earth and Environmental Sciences, University of Birmingham , Birmingham , UK
| | - Ping Ding
- c Facility for Environmental Nanoscience Analysis and Characterisation (FENAC), School of Metallurgy and Materials, University of Birmingham , Birmingham , UK
| | - Sumeet Mahajan
- d Institute for Life Sciences, University of Southampton , Highfield , Southampton , UK .,e Department of Chemistry , University of Southampton , Highfield , Southampton , UK
| | - Cliff Morgan
- f Leukocyte Biology, Royal Brompton Campus, Imperial College London , London , UK , and
| | - Mark Griffiths
- f Leukocyte Biology, Royal Brompton Campus, Imperial College London , London , UK , and
| | - Howard Clark
- a Department of Child Health, Clinical and Experimental Sciences, Faculty of Medicine , Southampton General Hospital, University of Southampton , Southampton , UK .,d Institute for Life Sciences, University of Southampton , Highfield , Southampton , UK .,g National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust , Southampton , UK
| | - Jens Madsen
- a Department of Child Health, Clinical and Experimental Sciences, Faculty of Medicine , Southampton General Hospital, University of Southampton , Southampton , UK .,d Institute for Life Sciences, University of Southampton , Highfield , Southampton , UK .,g National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust , Southampton , UK
| |
Collapse
|
30
|
Pondman KM, Paudyal B, Sim RB, Kaur A, Kouser L, Tsolaki AG, Jones LA, Salvador-Morales C, Khan HA, Ten Haken B, Stenbeck G, Kishore U. Pulmonary surfactant protein SP-D opsonises carbon nanotubes and augments their phagocytosis and subsequent pro-inflammatory immune response. NANOSCALE 2017; 9:1097-1109. [PMID: 27991644 DOI: 10.1039/c6nr08807d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbon nanotubes (CNTs) are increasingly being developed for use in biomedical applications, including drug delivery. One of the most promising applications under evaluation is in treating pulmonary diseases such as tuberculosis. Once inhaled or administered, the nanoparticles are likely to be recognised by innate immune molecules in the lungs such as hydrophilic pulmonary surfactant proteins. Here, we set out to examine the interaction between surfactant protein D (SP-D), a key lung pattern recognition molecule and CNTs, and possible downstream effects on the immune response via macrophages. We show here that a recombinant form of human SP-D (rhSP-D) bound to oxidised and carboxymethyl cellulose (CMC) coated CNTs via its C-type lectin domain and enhanced phagocytosis by U937 and THP-1 macrophages/monocytic cell lines, together with an increased pro-inflammatory response, suggesting that sequestration of SP-D by CNTs in the lungs can trigger an unwanted and damaging immune response. We also observed that functionalised CNTs, opsonised with rhSP-D, continued to activate complement via the classical pathway, suggesting that C1q, which is the recognition sub-component of the classical pathway, and SP-D have distinct pattern recognition sites on the CNTs. Consistent with our earlier reports, complement deposition on the rhSP-D opsonised CNTs led to dampening of the pro-inflammatory immune response by THP-1 macrophages, as evident from qPCR, cytokine array and NF-κB nuclear translocation analyses. This study highlights the importance of understanding the interplay between innate immune humoral factors including complement in devising nanoparticle based drug delivery strategies.
Collapse
Affiliation(s)
- Kirsten M Pondman
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK. and Neuro Imaging, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Basudev Paudyal
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK. and Faculty of Science, Engineering and Computing, Kingston University Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE, UK
| | - Robert B Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Anuvinder Kaur
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Lubna Kouser
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Anthony G Tsolaki
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Lucy A Jones
- Faculty of Science, Engineering and Computing, Kingston University Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE, UK
| | - Carolina Salvador-Morales
- Bioengineering Department and Krasnow Institute for Advanced Study, George Mason University, Fairfax, 22030 Virginia, USA
| | - Haseeb A Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bennie Ten Haken
- Neuro Imaging, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Gudrun Stenbeck
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Uday Kishore
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
31
|
Whitwell H, Mackay RM, Elgy C, Morgan C, Griffiths M, Clark H, Skipp P, Madsen J. Nanoparticles in the lung and their protein corona: the few proteins that count. Nanotoxicology 2016; 10:1385-94. [PMID: 27465202 DOI: 10.1080/17435390.2016.1218080] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The formation of protein coronae on nanoparticles (NPs) has been investigated almost exclusively in serum, despite the prevailing route of exposure being inhalation of airborne particles. In addition, an increasing number of nanomedicines, that exploit the airways as the site of delivery, are undergoing medical trials. An understanding of the effects of NPs on the airways is therefore required. To further this field, we have described the corona formed on polystyrene (PS) particles with different surface modifications and on titanium dioxide particles when incubated in human bronchoalveolar lavage fluid (BALF) from patients with pulmonary alveolar proteinosis (PAP). We show, using high-resolution quantitative mass spectrometry (MS(E)), that a large number of proteins bind with low copy numbers but that a few "core" proteins bind to all particles tested with high fidelity, averaging the surface properties of the different particles independent of the surface properties of the specific particle. The averaging effect at the particle surface means that differing cellular effects may not be due to the protein corona but due to the surface properties of the nanoparticle once inside the cell. Finally, the adherence of surfactant associated proteins (SP-A, B and D) suggests that there may be interactions with lipids and pulmonary surfactant (PSf), which could have potential in vivo health effects for people with chronic airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), or those who have increased susceptibility toward other respiratory diseases.
Collapse
Affiliation(s)
- Harry Whitwell
- a Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital , Southampton , UK .,b Institute for Life Sciences, University of Southampton , Southampton , UK
| | - Rose-Marie Mackay
- a Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital , Southampton , UK
| | - Christine Elgy
- c School of Geography, Earth and Environmental Sciences, University of Birmingham , Birmingham , UK
| | - Cliff Morgan
- d Leukocyte Biology, Royal Brompton Campus, Imperial College London , London , UK , and
| | - Mark Griffiths
- d Leukocyte Biology, Royal Brompton Campus, Imperial College London , London , UK , and
| | - Howard Clark
- a Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital , Southampton , UK .,b Institute for Life Sciences, University of Southampton , Southampton , UK .,e National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust , Southampton , UK
| | - Paul Skipp
- b Institute for Life Sciences, University of Southampton , Southampton , UK .,e National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust , Southampton , UK
| | - Jens Madsen
- a Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital , Southampton , UK .,b Institute for Life Sciences, University of Southampton , Southampton , UK .,e National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust , Southampton , UK
| |
Collapse
|
32
|
Theodorou IG, Ruenraroengsak P, Gow A, Schwander S, Zhang JJ, Chung KF, Tetley TD, Ryan MP, Porter AE. Effect of pulmonary surfactant on the dissolution, stability and uptake of zinc oxide nanowires by human respiratory epithelial cells. Nanotoxicology 2016; 10:1351-62. [PMID: 27441789 DOI: 10.1080/17435390.2016.1214762] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inhaled nanoparticles (NPs) have high-deposition rates in the alveolar region of the lung but the effects of pulmonary surfactant (PS) on nanoparticle bioreactivity are unclear. Here, the impact of PS on the stability and dissolution of ZnO nanowires (ZnONWs) was investigated, and linked with their bioreactivity in vitro with human alveolar epithelial type 1-like cells (TT1). Pre-incubation of ZnONWs with Curosurf® (a natural porcine PS) decreased their dissolution at acidic pH, through the formation of a phospholipid corona. Confocal live cell microscopy confirmed that Curosurf® lowered intracellular dissolution, thus delaying the onset of cell death compared to bare ZnONWs. Despite reducing dissolution, Curosurf® significantly increased the uptake of ZnONWs within TT1 cells, ultimately increasing their toxicity after 24 h. Although serum improved ZnONW dispersion in suspension similar to Curosurf®, it had no effect on ZnONW internalization and toxicity, indicating a unique role of PS in promoting particle uptake. In the absence of PS, ZnONW length had no effect on dissolution kinetics or degree of cellular toxicity, indicating a less important role of length in determining ZnONW bioreactivity. This work provides unique findings on the effects of PS on the stability and toxicity of ZnONWs, which could be important in the study of pulmonary toxicity and epithelial-endothelial translocation of nanoparticles in general.
Collapse
Affiliation(s)
| | - Pakatip Ruenraroengsak
- a Department of Materials and London Centre for Nanotechnology , and.,b National Heart and Lung Institute, Imperial College London , Exhibition Road , London , United Kingdom
| | - Andrew Gow
- c Department of Pharmacology and Toxicology , Rutgers University , Piscataway , NJ , USA
| | - Stephan Schwander
- d Department of Environmental and Occupational Health , Rutgers University, School of Public Health , Hoes LaneWest, Piscataway, NJ , USA , and
| | - Junfeng Jim Zhang
- e Nicholas School of the Environment and Duke Global Health Institute, Duke University , Durham , NC , USA
| | - Kian Fan Chung
- b National Heart and Lung Institute, Imperial College London , Exhibition Road , London , United Kingdom
| | - Teresa D Tetley
- b National Heart and Lung Institute, Imperial College London , Exhibition Road , London , United Kingdom
| | - Mary P Ryan
- a Department of Materials and London Centre for Nanotechnology , and
| | | |
Collapse
|
33
|
Seiffert J, Buckley A, Leo B, Martin NG, Zhu J, Dai R, Hussain F, Guo C, Warren J, Hodgson A, Gong J, Ryan MP, Zhang JJ, Porter A, Tetley TD, Gow A, Smith R, Chung KF. Pulmonary effects of inhalation of spark-generated silver nanoparticles in Brown-Norway and Sprague-Dawley rats. Respir Res 2016; 17:85. [PMID: 27435725 PMCID: PMC4950697 DOI: 10.1186/s12931-016-0407-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022] Open
Abstract
Background The increasing use of silver nanoparticles (AgNPs) in consumer products is concerning. We examined the potential toxic effects when inhaled in Brown-Norway (BN) rats with a pre-inflammatory state compared to Sprague–Dawley (SD) rats. Methods We determined the effect of AgNPs generated from a spark generator (mass concentration: 600–800 μg/mm3; mean diameter: 13–16 nm; total lung doses: 8 [Low] and 26–28 [High] μg) inhaled by the nasal route in both rat strains. Rats were sacrificed at day 1 and day 7 after exposure and measurement of lung function. Results In both strains, there was an increase in neutrophils in bronchoalveolar lavage (BAL) fluid at 24 h at the high dose, with concomitant eosinophilia in BN rats. While BAL inflammatory cells were mostly normalised by Day 7, lung inflammation scores remained increased although not the tissue eosinophil scores. Total protein levels were elevated at both lung doses in both strains. There was an increase in BAL IL-1β, KC, IL-17, CCL2 and CCL3 levels in both strains at Day 1, mostly at high dose. Phospholipid levels were increased at the high dose in SD rats at Day 1 and 7, while in BN rats, this was only seen at Day 1; surfactant protein D levels decreased at day 7 at the high dose in SD rats, but was increased at Day 1 at the low dose in BN rats. There was a transient increase in central airway resistance and in tissue elastance in BN rats at Day 1 but not in SD rats. Positive silver-staining was seen particularly in lung tissue macrophages in a dose and time-dependent response in both strains, maximal by day 7. Lung silver levels were relatively higher in BN rat and present at day 7 in both strains. Conclusions Presence of cellular inflammation and increasing silver-positive macrophages in lungs at day 7, associated with significant levels of lung silver indicate that lung toxicity is persistent even with the absence of airway luminal inflammation at that time-point. The higher levels and persistence of lung silver in BN rats may be due to the pre-existing inflammatory state of the lungs.
Collapse
Affiliation(s)
- Joanna Seiffert
- Airways Disease, National Heart & Lung Institute, Imperial College London, Dovehouse St, London, SW3 6LY, UK
| | - Alison Buckley
- Nanoparticle Inhalation Research Group, Public Health England, Oxfordshire, UK
| | - Bey Leo
- Department of Material Science, Chemistry and the London Centre for Nanotechnology, Imperial College, London, SW3, UK
| | - Nicholas G Martin
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, W6 8RF, UK
| | - Jie Zhu
- Airways Disease, National Heart & Lung Institute, Imperial College London, Dovehouse St, London, SW3 6LY, UK
| | - Ranran Dai
- Airways Disease, National Heart & Lung Institute, Imperial College London, Dovehouse St, London, SW3 6LY, UK
| | - Farhana Hussain
- Airways Disease, National Heart & Lung Institute, Imperial College London, Dovehouse St, London, SW3 6LY, UK
| | - Chang Guo
- Nanoparticle Inhalation Research Group, Public Health England, Oxfordshire, UK
| | - James Warren
- Nanoparticle Inhalation Research Group, Public Health England, Oxfordshire, UK
| | - Alan Hodgson
- Nanoparticle Inhalation Research Group, Public Health England, Oxfordshire, UK
| | - Jicheng Gong
- Nicholas School of Environment & Duke Global Health Institute, Duke University, Durham, USA
| | - Mary P Ryan
- Department of Material Science, Chemistry and the London Centre for Nanotechnology, Imperial College, London, SW3, UK
| | - Junfeng Jim Zhang
- Nicholas School of Environment & Duke Global Health Institute, Duke University, Durham, USA
| | - Alexandra Porter
- Department of Material Science, Chemistry and the London Centre for Nanotechnology, Imperial College, London, SW3, UK
| | - Terry D Tetley
- Airways Disease, National Heart & Lung Institute, Imperial College London, Dovehouse St, London, SW3 6LY, UK
| | - Andrew Gow
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Rachel Smith
- Nanoparticle Inhalation Research Group, Public Health England, Oxfordshire, UK
| | - Kian Fan Chung
- Airways Disease, National Heart & Lung Institute, Imperial College London, Dovehouse St, London, SW3 6LY, UK.
| |
Collapse
|
34
|
Ruenraroengsak P, Chen S, Hu S, Melbourne J, Sweeney S, Thorley AJ, Skepper JN, Shaffer MSP, Tetley TD, Porter AE. Translocation of Functionalized Multi-Walled Carbon Nanotubes across Human Pulmonary Alveolar Epithelium: Dominant Role of Epithelial Type 1 Cells. ACS NANO 2016; 10:5070-85. [PMID: 27035850 PMCID: PMC6682507 DOI: 10.1021/acsnano.5b08218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Uptake and translocation of short functionalized multi-walled carbon nanotubes (short-fMWCNTs) through the pulmonary respiratory epithelial barrier depend on physicochemical property and cell type. Two monoculture models, immortalized human alveolar epithelial type 1 (TT1) cells and primary human alveolar epithelial type 2 cells (AT2), which constitute the alveolar epithelial barrier, were employed to investigate the uptake and transport of 300 and 700 nm in length, poly(4-vinylpyridine)-functionalized, multi-walled carbon nanotubes (p(4VP)-MWCNTs) using quantitative imaging and spectroscopy techniques. The p(4VP)-MWCNT exhibited no toxicity on TT1 and AT2 cells, but significantly decreased barrier integrity (*p < 0.01). Uptake of p(4VP)-MWCNTs was observed in 70% of TT1 cells, correlating with compromised barrier integrity and basolateral p(4VP)-MWCNT translocation. There was a small but significantly greater uptake of 300 nm p(4VP)-MWCNTs than 700 nm p(4VP)-MWCNTs by TT1 cells. Up to 3% of both the 300 and 700 nm p(4VP)-MWCNTs reach the basal chamber; this relatively low amount arose because the supporting transwell membrane minimized the amount of p(4VP)-MWCNT translocating to the basal chamber, seen trapped between the basolateral cell membrane and the membrane. Only 8% of AT2 cells internalized p(4VP)-MWCNT, accounting for 17% of applied p(4VP)-MWCNT), with transient effects on barrier function, which initially fell then returned to normal; there was no MWCNT basolateral translocation. The transport rate was MWCNT length modulated. The comparatively lower p(4VP)-MWCNT uptake by AT2 cells is proposed to reflect a primary barrier effect of type 2 cell secretions and the functional differences between the type 1 and type 2 alveolar epithelial cells.
Collapse
Affiliation(s)
- Pakatip Ruenraroengsak
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, UK, SW7 2AZ
- Lung Cell Biology, Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK, SW3 6LY
- Correspondence should be addressed to: Dr Pakatip Ruenraroengsak, Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK, ; Prof. Teresa D. Tetley, Department of Lung Cell Biology, National Heart and Lung Institute, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK Phone: +44-207-5942984, ; Dr Alexandra E. Porter, Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK, Phone: +44-207-594691,
| | - Shu Chen
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, UK, SW7 2AZ
| | - Sheng Hu
- Department of Chemistry and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, UK
| | - Jodie Melbourne
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, UK, SW7 2AZ
| | - Sinbad Sweeney
- Lung Cell Biology, Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK, SW3 6LY
| | - Andrew J. Thorley
- Lung Cell Biology, Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK, SW3 6LY
| | - Jeremy N. Skepper
- Cambridge Advanced Imaging Centre, Department of Physiology, Development and Neuroscience, University of Cambridge, UK, CB2 3DY
| | - Milo S. P. Shaffer
- Department of Chemistry and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, UK
| | - Teresa D. Tetley
- Lung Cell Biology, Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK, SW3 6LY
- Correspondence should be addressed to: Dr Pakatip Ruenraroengsak, Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK, ; Prof. Teresa D. Tetley, Department of Lung Cell Biology, National Heart and Lung Institute, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK Phone: +44-207-5942984, ; Dr Alexandra E. Porter, Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK, Phone: +44-207-594691,
| | - Alexandra E. Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London, UK, SW7 2AZ
- Correspondence should be addressed to: Dr Pakatip Ruenraroengsak, Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK, ; Prof. Teresa D. Tetley, Department of Lung Cell Biology, National Heart and Lung Institute, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK Phone: +44-207-5942984, ; Dr Alexandra E. Porter, Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK, Phone: +44-207-594691,
| |
Collapse
|
35
|
Marchetti M, Shaffer MSP, Zambianchi M, Chen S, Superti F, Schwander S, Gow A, Zhang JJ, Chung KF, Ryan MP, Porter AE, Tetley TD. Adsorption of surfactant protein D from human respiratory secretions by carbon nanotubes and polystyrene nanoparticles depends on nanomaterial surface modification and size. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140038. [PMID: 25533095 DOI: 10.1098/rstb.2014.0038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The alveolar respiratory unit constitutes one of the main targets of inhaled nanoparticles; the effect of engineered nanomaterials (NMs) on human health is largely unknown. Surfactant protein D (SP-D) is synthesized by alveolar type II epithelial cells and released into respiratory secretions; its main function is in immune defence, notably against inhaled microbes. SP-D also plays an important role in modulating an appropriate inflammatory response in the lung, and reduced SP-D is associated with a number of inflammatory lung diseases. Adsorption of SP-D to inhaled NMs may facilitate their removal via macrophage phagocytosis. This study addresses the hypothesis that the chemistry, size and surface modification of engineered NMs will impact on their interaction with, and adsorption of, SP-D. To this purpose, we have examined the interactions between SP-D in human lung lavage and two NMs, carbon nanotubes and polystyrene nanoparticles, with different surface functionalization. We have demonstrated that particle size, functionalization and concentration affect the adsorption of SP-D from human lung lavage. Functionalization with negatively charged groups enhanced the amount of SP-D binding. While SP-D binding would be expected to enhance macrophage phagocytosis, these results suggest that the degree of binding is markedly affected by the physicochemistry of the NM and that deposition of high levels of some nanoparticles within the alveolar unit might deplete SP-D levels and affect alveolar immune defence mechanisms.
Collapse
Affiliation(s)
- Magda Marchetti
- National Heart and Lung Institute, Imperial College London, Dovehouse St., London SW3 6LY, UK Department of Technology and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Milo S P Shaffer
- Department of Chemistry and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Martina Zambianchi
- National Heart and Lung Institute, Imperial College London, Dovehouse St., London SW3 6LY, UK
| | - Shu Chen
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Fabiana Superti
- Department of Technology and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Stephan Schwander
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ 08854, USA
| | - Andrew Gow
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, Dovehouse St., London SW3 6LY, UK
| | - Mary P Ryan
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Alexandra E Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Teresa D Tetley
- National Heart and Lung Institute, Imperial College London, Dovehouse St., London SW3 6LY, UK
| |
Collapse
|
36
|
Kendall M, Hodges NJ, Whitwell H, Tyrrell J, Cangul H. Nanoparticle growth and surface chemistry changes in cell-conditioned culture medium. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140100. [PMID: 25533102 DOI: 10.1098/rstb.2014.0100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
When biomolecules attach to engineered nanoparticle (ENP) surfaces, they confer the particles with a new biological identity. Physical format may also radically alter, changing ENP stability and agglomeration state within seconds. In order to measure which biomolecules are associated with early ENP growth, we studied ENPs in conditioned medium from A549 cell culture, using dynamic light scattering (DLS) and linear trap quadrupole electron transfer dissociation mass spectrometry. Two types of 100 nm polystyrene particles (one uncoated and one with an amine functionalized surface) were used to measure the influence of surface type. In identically prepared conditioned medium, agglomeration was visible in all samples after 1 h, but was variable, indicating inter-sample variability in secretion rates and extracellular medium conditions. In samples conditioned for 1 h or more, ENP agglomeration rates varied significantly. Agglomerate size measured by DLS was well correlated with surface sequestered peptide number for uncoated but not for amine coated polystyrene ENPs. Amine-coated ENPs grew much faster and into larger agglomerates associated with fewer sequestered peptides, but including significant sequestered lactose dehydrogenase. We conclude that interference with extracellular peptide balance and oxidoreductase activity via sequestration is worthy of further study, as increased oxidative stress via this new mechanism may be important for cell toxicity.
Collapse
Affiliation(s)
- Michaela Kendall
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK Child Health, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Nikolas J Hodges
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Harry Whitwell
- Child Health, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Jess Tyrrell
- European Centre of Environment and Human Health, University of Exeter Medical School, Truro, Cornwall, UK
| | - Hakan Cangul
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
37
|
Lynch I, Feitshans IL, Kendall M. 'Bio-nano interactions: new tools, insights and impacts': summary of the Royal Society discussion meeting. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140162. [PMID: 25533104 DOI: 10.1098/rstb.2014.0162] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bio-nano interactions can be defined as the study of interactions between nanoscale entities and biological systems such as, but not limited to, peptides, proteins, lipids, DNA and other biomolecules, cells and cellular receptors and organisms including humans. Studying bio-nano interactions is particularly useful for understanding engineered materials that have at least one dimension in the nanoscale. Such materials may consist of discrete particles or nanostructured surfaces. Much of biology functions at the nanoscale; therefore, our ability to manipulate materials such that they are taken up at the nanoscale, and engage biological machinery in a designed and purposeful manner, opens new vistas for more efficient diagnostics, therapeutics (treatments) and tissue regeneration, so-called nanomedicine. Additionally, this ability of nanomaterials to interact with and be taken up by cells allows nanomaterials to be used as probes and tools to advance our understanding of cellular functioning. Yet, as a new technology, assessment of the safety of nanomaterials, and the applicability of existing regulatory frameworks for nanomaterials must be investigated in parallel with development of novel applications. The Royal Society meeting 'Bio-nano interactions: new tools, insights and impacts' provided an important platform for open dialogue on the current state of knowledge on these issues, bringing together scientists, industry, regulatory and legal experts to concretize existing discourse in science law and policy. This paper summarizes these discussions and the insights that emerged.
Collapse
Affiliation(s)
- Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ilise L Feitshans
- Institute for Work and Health, University of Lausanne, Vaud, 1015 Lausanne, Switzerland
| | - Michaela Kendall
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
38
|
McKenzie Z, Kendall M, Mackay RM, Tetley TD, Morgan C, Griffiths M, Clark HW, Madsen J. Nanoparticles modulate surfactant protein A and D mediated protection against influenza A infection in vitro. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140049. [PMID: 25533100 PMCID: PMC4275912 DOI: 10.1098/rstb.2014.0049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Numerous epidemiological and toxicological studies have indicated that respiratory infections are exacerbated following enhanced exposure to airborne particulates. Surfactant protein A (SP-A) and SP-D form an important part of the innate immune response in the lung and can interact with nanoparticles to modulate the cellular uptake of these particles. We hypothesize that this interaction will also affect the ability of these proteins to combat infections. TT1, A549 and differentiated THP-1 cells, representing the predominant cell types found in the alveolus namely alveolar type I (ATI) epithelial cells, ATII cells and macrophages, were used to examine the effect of two model nanoparticles, 100 nm amine modified (A-PS) and unmodified polystyrene (U-PS), on the ability of SP-A and SP-D to neutralize influenza A infections in vitro. Pre-incubation of low concentrations of U-PS with SP-A resulted in a reduction of SP-A anti-influenza activity in A549 cells, whereas at higher concentrations there was an increase in SP-A antiviral activity. This differential pattern of U-PS concentration on surfactant protein mediated protection against IAV was also shown with SP-D in TT1 cells. On the other hand, low concentrations of A-PS particles resulted in a reduction of SP-A activity in TT1 cells and a reduction in SP-D activity in A549 cells. These results indicate that nanoparticles can modulate the ability of SP-A and SP-D to combat viral challenges. Furthermore, the nanoparticle concentration, surface chemistry and cell type under investigation are important factors in determining the extent of these modulations.
Collapse
Affiliation(s)
- Zofi McKenzie
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Michaela Kendall
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK
| | - Rose-Marie Mackay
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Teresa D Tetley
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Cliff Morgan
- Leukocyte Biology, Imperial College London, Royal Brompton Campus, London SW3 6NP, UK
| | - Mark Griffiths
- Leukocyte Biology, Imperial College London, Royal Brompton Campus, London SW3 6NP, UK
| | - Howard W Clark
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Jens Madsen
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
39
|
Orgeig S, Morrison JL, Daniels CB. Evolution, Development, and Function of the Pulmonary Surfactant System in Normal and Perturbed Environments. Compr Physiol 2015; 6:363-422. [PMID: 26756637 DOI: 10.1002/cphy.c150003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Surfactant lipids and proteins form a surface active film at the air-liquid interface of internal gas exchange organs, including swim bladders and lungs. The system is uniquely positioned to meet both the physical challenges associated with a dynamically changing internal air-liquid interface, and the environmental challenges associated with the foreign pathogens and particles to which the internal surface is exposed. Lungs range from simple, transparent, bag-like units to complex, multilobed, compartmentalized structures. Despite this anatomical variability, the surfactant system is remarkably conserved. Here, we discuss the evolutionary origin of the surfactant system, which likely predates lungs. We describe the evolution of surfactant structure and function in invertebrates and vertebrates. We focus on changes in lipid and protein composition and surfactant function from its antiadhesive and innate immune to its alveolar stability and structural integrity functions. We discuss the biochemical, hormonal, autonomic, and mechanical factors that regulate normal surfactant secretion in mature animals. We present an analysis of the ontogeny of surfactant development among the vertebrates and the contribution of different regulatory mechanisms that control this development. We also discuss environmental (oxygen), hormonal and biochemical (glucocorticoids and glucose) and pollutant (maternal smoking, alcohol, and common "recreational" drugs) effects that impact surfactant development. On the adult surfactant system, we focus on environmental variables including temperature, pressure, and hypoxia that have shaped its evolution and we discuss the resultant biochemical, biophysical, and cellular adaptations. Finally, we discuss the effect of major modern gaseous and particulate pollutants on the lung and surfactant system.
Collapse
Affiliation(s)
- Sandra Orgeig
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Christopher B Daniels
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
40
|
De Backer L, Cerrada A, Pérez-Gil J, De Smedt SC, Raemdonck K. Bio-inspired materials in drug delivery: Exploring the role of pulmonary surfactant in siRNA inhalation therapy. J Control Release 2015; 220:642-50. [PMID: 26363301 DOI: 10.1016/j.jconrel.2015.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 01/13/2023]
Abstract
Many pathologies of the respiratory tract are inadequately treated with existing small molecule-based therapies. The emergence of RNA interference (RNAi) enables the post-transcriptional silencing of key molecular disease factors that cannot readily be targeted with conventional small molecule drugs. Pulmonary administration of RNAi effectors, such as small interfering RNA (siRNA), allows direct delivery into the lung tissue, hence reducing systemic exposure. Unfortunately, the clinical translation of RNAi is severely hampered by inefficient delivery of siRNA therapeutics towards the cytoplasm of the target cells. In order to have a better control of the siRNA delivery process, both extra- and intracellular, siRNAs are typically formulated in nanosized delivery vehicles (nanoparticles, NPs). In the lower airways, which are the targeted sites of action for multiple pulmonary disorders, these siRNA-loaded NPs will encounter the pulmonary surfactant (PS) layer, covering the entire alveolar surface. The interaction between the instilled siRNA-loaded NPs and the PS at this nano-bio interface results in the adsorption of PS components onto the surface of the NPs. The formation of this so-called biomolecular corona conceals the original NP surface and will therefore profoundly determine the biological efficacy of the NP. Though this interplay has initially been regarded as a barrier towards efficient siRNA delivery to the respiratory target cell, recent reports have illustrated that the interaction with PS might also be beneficial for local pulmonary siRNA delivery.
Collapse
Affiliation(s)
- Lynn De Backer
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Alejandro Cerrada
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, and Research Institute Hospital 12 Octubre, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain.
| | - Jesús Pérez-Gil
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, and Research Institute Hospital 12 Octubre, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain.
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
41
|
Sweeney S, Theodorou IG, Zambianchi M, Chen S, Gow A, Schwander S, Zhang JJ, Chung KF, Shaffer MSP, Ryan MP, Porter AE, Tetley TD. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells. NANOSCALE 2015; 7:10398-409. [PMID: 25996248 PMCID: PMC4765325 DOI: 10.1039/c5nr01496d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit.
Collapse
Affiliation(s)
- Sinbad Sweeney
- Lung Cell Biology, Section of Pharmacology and Toxicology, Airways Disease, National Heart & Lung Institute, Imperial College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hittinger M, Juntke J, Kletting S, Schneider-Daum N, de Souza Carvalho C, Lehr CM. Preclinical safety and efficacy models for pulmonary drug delivery of antimicrobials with focus on in vitro models. Adv Drug Deliv Rev 2015; 85:44-56. [PMID: 25453270 DOI: 10.1016/j.addr.2014.10.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022]
Abstract
New pharmaceutical formulations must be proven as safe and effective before entering clinical trials. Also in the context of pulmonary drug delivery, preclinical models allow testing of novel antimicrobials, reducing risks and costs during their development. Such models allow reducing the complexity of the human lung, but still need to reflect relevant (patho-) physiological features. This review focuses on preclinical pulmonary models, mainly in vitro models, to assess drug safety and efficacy of antimicrobials. Furthermore, approaches to investigate common infectious diseases of the respiratory tract, are emphasized. Pneumonia, tuberculosis and infections occurring due to cystic fibrosis are in focus of this review. We conclude that especially in vitro models offer the chance of an efficient and detailed analysis of new antimicrobials, but also draw attention to the advantages and limitations of such currently available models and critically discuss the necessary steps for their future development.
Collapse
|
43
|
George I, Naudin G, Boland S, Mornet S, Contremoulins V, Beugnon K, Martinon L, Lambert O, Baeza-Squiban A. Metallic oxide nanoparticle translocation across the human bronchial epithelial barrier. NANOSCALE 2015; 7:4529-4544. [PMID: 25685900 DOI: 10.1039/c4nr07079h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Inhalation is the most frequent route of unintentional exposure to nanoparticles (NPs). Our aim was to quantify the translocation of different metallic NPs across human bronchial epithelial cells and to determine the factors influencing this translocation. Calu-3 cells forming a tight epithelial barrier when grown on a porous membrane in a two compartment chamber were exposed to fluorescently labelled NPs to quantify the NP translocation. NP translocation and uptake by cells were also studied by confocal and transmission electron microscopy. Translocation was characterized according to NP size (16, 50, or 100 nm), surface charge (negative or positive SiO2), composition (SiO2 or TiO2), presence of proteins or phospholipids and in an inflammatory context. Our results showed that NPs can translocate through the Calu-3 monolayer whatever their composition (SiO2 or TiO2), but this translocation was increased for the smallest and negatively charged NPs. Translocation was not associated with an alteration of the integrity of the epithelial monolayer, suggesting a transcytosis of the internalized NPs. By modifying the NP corona, the ability of NPs to cross the epithelial barrier differed depending on their intrinsic properties, making positively charged NPs more prone to translocate. NP translocation can be amplified by using agents known to open tight junctions and to allow paracellular passage. NP translocation was also modulated when mimicking an inflammatory context frequently found in the lungs, altering the epithelial integrity and inducing transient tight junction opening. This in vitro evaluation of NP translocation could be extended to other inhaled NPs to predict their biodistribution.
Collapse
Affiliation(s)
- Isabelle George
- Univ Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology (BFA) (BFA) UMR 8251 CNRS, F-75205, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kumar A, Forbes B, Mudway I, Bicer EM, Dailey LA. What are the biological and therapeutic implications of biomolecule corona formation on the surface of inhaled nanomedicines? Nanomedicine (Lond) 2015; 10:343-5. [DOI: 10.2217/nnm.15.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Abhinav Kumar
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Ben Forbes
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Ian Mudway
- MRC-PHE Centre for Environment & Health, Analytical & Environmental Sciences, King's College London, London, UK
| | - Elif Melis Bicer
- MRC-PHE Centre for Environment & Health, Analytical & Environmental Sciences, King's College London, London, UK
| | - Lea Ann Dailey
- Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
45
|
Effect of particle agglomeration in nanotoxicology. Arch Toxicol 2015; 89:659-75. [PMID: 25618546 DOI: 10.1007/s00204-015-1460-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/08/2015] [Indexed: 12/27/2022]
Abstract
The emission of engineered nanoparticles (ENPs) into the environment in increasing quantity and variety raises a general concern regarding potential effects on human health. Compared with soluble substances, ENPs exhibit additional dimensions of complexity, that is, they exist not only in various sizes, shapes and chemical compositions but also in different degrees of agglomeration. The effect of the latter is the topic of this review in which we explore and discuss the role of agglomeration on toxicity, including the fate of nanomaterials after their release and the biological effects they may induce. In-depth investigations of the effect of ENP agglomeration on human health are still rare, but it may be stated that outside the body ENP agglomeration greatly reduces human exposure. After uptake, agglomeration of ENPs reduces translocation across primary barriers such as lungs, skin or the gastrointestinal tract, preventing exposure of "secondary" organs. In analogy, also cellular ENP uptake and intracellular distribution are affected by agglomeration. However, agglomeration may represent a risk factor if it occurs after translocation across the primary barriers, and ENPs are able to accumulate within the tissue and thus reduce clearance efficiency.
Collapse
|
46
|
Ledford JG, Addison KJ, Foster MW, Que LG. Eosinophil-associated lung diseases. A cry for surfactant proteins A and D help? Am J Respir Cell Mol Biol 2015; 51:604-14. [PMID: 24960334 DOI: 10.1165/rcmb.2014-0095tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Surfactant proteins (SP)-A and SP-D (SP-A/-D) play important roles in numerous eosinophil-dominated diseases, including asthma, allergic bronchopulmonary aspergillosis, and allergic rhinitis. In these settings, SP-A/-D have been shown to modulate eosinophil chemotaxis, inhibit eosinophil mediator release, and mediate macrophage clearance of apoptotic eosinophils. Dysregulation of SP-A/-D function in eosinophil-dominated diseases is also not uncommon. Alterations in serum SP-A/-D levels are associated with disease severity in allergic rhinitis and chronic obstructive pulmonary disease. Furthermore, oligimerization of SP-A/-D, necessary for their proper function, can be perturbed by reactive nitrogen species, which are increased in eosinophilic disease. In this review, we highlight the associations of eosinophilic lung diseases with SP-A and SP-D levels and functions.
Collapse
Affiliation(s)
- Julie G Ledford
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care, and
| | | | | | | |
Collapse
|
47
|
Thorley AJ, Ruenraroengsak P, Potter TE, Tetley TD. Critical determinants of uptake and translocation of nanoparticles by the human pulmonary alveolar epithelium. ACS NANO 2014; 8:11778-89. [PMID: 25360809 PMCID: PMC4246006 DOI: 10.1021/nn505399e] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/31/2014] [Indexed: 05/18/2023]
Abstract
The ability to manipulate the size and surface properties of nanomaterials makes them a promising vector for improving drug delivery and efficacy. Inhalation is a desirable route of administration as nanomaterials preferentially deposit in the alveolar region, a large surface area for drug absorption. However, as yet, the mechanisms by which particles translocate across the alveolar epithelial layer are poorly understood. Here we show that human alveolar type I epithelial cells internalize nanoparticles, whereas alveolar type II epithelial cells do not, and that nanoparticles translocate across the epithelial monolayer but are unable to penetrate the tight junctions between cells, ruling out paracellular translocation. Furthermore, using siRNA, we demonstrate that 50 nm nanoparticles enter largely by passive diffusion and are found in the cytoplasm, whereas 100 nm nanoparticles enter primarily via clathrin- and also caveolin-mediated endocytosis and are found in endosomes. Functionalization of nanoparticles increases their uptake and enhances binding of surfactant which further promotes uptake. Thus, we demonstrate that uptake and translocation across the pulmonary epithelium is controlled by alveolar type I epithelial cells, and furthermore, we highlight a number of factors that should be considered when designing new nanomedicines in order to improve drug delivery to the lung.
Collapse
Affiliation(s)
- Andrew J. Thorley
- Lung Cell Biology, Section of Pharmacology and Toxicology, National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K.
| | - Pakatip Ruenraroengsak
- Lung Cell Biology, Section of Pharmacology and Toxicology, National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K.
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
| | - Thomas E. Potter
- Lung Cell Biology, Section of Pharmacology and Toxicology, National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K.
| | - Teresa D. Tetley
- Lung Cell Biology, Section of Pharmacology and Toxicology, National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K.
| |
Collapse
|
48
|
Lynch I, Ahluwalia A, Boraschi D, Byrne HJ, Fadeel B, Gehr P, Gutleb AC, Kendall M, Papadopoulos MG. The bio-nano-interface in predicting nanoparticle fate and behaviour in living organisms: towards grouping and categorising nanomaterials and ensuring nanosafety by design. ACTA ACUST UNITED AC 2013. [DOI: 10.1515/bnm-2013-0011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|