1
|
Czwartos J, Dobosz B, Kasprzycka W, Osuchowska PN, Stępińska M, Trafny EA, Starzyński J, Mierczyk Z. Preliminary Study on the Effect of a Single High-Energy Electromagnetic Pulse on Morphology and Free Radical Generation in Human Mesenchymal Stem Cells. Int J Mol Sci 2023; 24:ijms24087246. [PMID: 37108409 PMCID: PMC10139018 DOI: 10.3390/ijms24087246] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The effect of nanosecond electromagnetic pulses on human health, and especially on forming free radicals in human cells, is the subject of continuous research and ongoing discussion. This work presents a preliminary study on the effect of a single high-energy electromagnetic pulse on morphology, viability, and free radical generation in human mesenchymal stem cells (hMSC). The cells were exposed to a single electromagnetic pulse with an electric field magnitude of ~1 MV/m and a pulse duration of ~120 ns generated from a 600 kV Marx generator. The cell viability and morphology at 2 h and 24 h after exposure were examined using confocal fluorescent microscopy and scanning electron microscopy (SEM), respectively. The number of free radicals was investigated with electron paramagnetic resonance (EPR). The microscopic observations and EPR measurements showed that the exposure to the high-energy electromagnetic pulse influenced neither the number of free radicals generated nor the morphology of hMSC in vitro compared to control samples.
Collapse
Affiliation(s)
- Joanna Czwartos
- Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
| | - Bernadeta Dobosz
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Wiktoria Kasprzycka
- Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
| | - Paulina Natalia Osuchowska
- Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
| | - Małgorzata Stępińska
- Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
| | - Elżbieta Anna Trafny
- Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
| | - Jacek Starzyński
- Faculty of Electronical Engineering, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| | - Zygmunt Mierczyk
- Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
| |
Collapse
|
2
|
Motataianu A, Serban G, Barcutean L, Balasa R. Oxidative Stress in Amyotrophic Lateral Sclerosis: Synergy of Genetic and Environmental Factors. Int J Mol Sci 2022; 23:ijms23169339. [PMID: 36012603 PMCID: PMC9409178 DOI: 10.3390/ijms23169339] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a grievous neurodegenerative disease whose survival is limited to only a few years. In spite of intensive research to discover the underlying mechanisms, the results are fairly inconclusive. Multiple hypotheses have been regarded, including genetic, molecular, and cellular processes. Notably, oxidative stress has been demonstrated to play a crucial role in ALS pathogenesis. In addition to already recognized and exhaustively studied genetic mutations involved in oxidative stress production, exposure to various environmental factors (e.g., electromagnetic fields, solvents, pesticides, heavy metals) has been suggested to enhance oxidative damage. This review aims to describe the main processes influenced by the most frequent genetic mutations and environmental factors concurring in oxidative stress occurrence in ALS and the potential therapeutic molecules capable of diminishing the ALS related pro-oxidative status.
Collapse
Affiliation(s)
- Anca Motataianu
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
- 1st Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Georgiana Serban
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Correspondence: ; Tel.: +40-0724-051-516
| | - Laura Barcutean
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
- 1st Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Rodica Balasa
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
- 1st Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
3
|
Residential exposure to electromagnetic fields and risk of amyotrophic lateral sclerosis: a dose-response meta-analysis. Sci Rep 2021; 11:11939. [PMID: 34099747 PMCID: PMC8185090 DOI: 10.1038/s41598-021-91349-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/25/2021] [Indexed: 11/08/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is neurodegenerative disease characterized by a fatal prognosis and still unknown etiology. Some environmental risk factors have been suggested, including exposure to magnetic fields. Studies have suggested positive associations in occupationally-exposed populations, but the link with residential exposure is still debated as is the shape of such relation. Due to recent availability of advanced biostatistical tools for dose–response meta-analysis, we carried out a systematic review in order to assess the dose–response association between ALS and residential exposure to magnetic fields. We performed an online literature searching through April 30, 2021. Studies were included if they assessed residential exposure to electromagnetic fields, based either on distance from overhead power lines or on magnetic field modelling techniques, and if they reported risk estimates for ALS. We identified six eligible studies, four using distance-based and one modelling-based exposure assessment, and one both methods. Both distance-based and particularly modelling-based exposure estimates appeared to be associated with a decreased ALS risk in the highest exposure category, although estimates were very imprecise (summary RRs 0.87, 95% CI 0.63–1.20, and 0.27, 95% CI 0.05–1.36). Dose–response meta-analysis also showed little association between distance from power lines and ALS, with no evidence of any threshold. Overall, we found scant evidence of a positive association between residential magnetic fields exposure and ALS, although the available data were too limited to conduct a dose–response analysis for the modelled magnetic field estimates or to perform stratified analyses.
Collapse
|
4
|
Jalilian H, Najafi K, Khosravi Y, Röösli M. Amyotrophic lateral sclerosis, occupational exposure to extremely low frequency magnetic fields and electric shocks: a systematic review and meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:129-142. [PMID: 32946420 DOI: 10.1515/reveh-2020-0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Exposure to extremely low frequency magnetic fields (ELF-MF) and electric shocks occurs in many workplaces and occupations but it is unclear whether any of these exposures cause Amyotrophic lateral sclerosis (ALS). The aim of this systematic review and meta-analysis is to explore whether occupational exposure to ELF-MF and/or electric shocks are risk factor for ALS. We searched PubMed, Embase, and Web of Science databases up to the end of 2019. Pooled risk estimates were calculated using random-effects meta-analysis including exploration of the sources of heterogeneity between studies and publication bias. Twenty-seven publications fulfilled the inclusion criteria. We found a weak, significant, association between occupational exposure to ELF-MF and the risk of ALS (RRPooled estimate: 1.20; 95%CI: 1.05, 1.38) with moderate to high heterogeneity (I2=66.3%) and indication of publication bias (PEgger's test=0.03). No association was observed between occupational exposure to electric shocks and risk of ALS (RRPooled estimate: 0.97; 95%CI: 0.80, 1.17) with high heterogeneity (I2=80.5%), and little indication for publication bias (PEgger's test=0.24). The findings indicate that occupational exposure to ELF-MF, but not electric shocks, might be a risk factor for ALS. However, given the moderate to high heterogeneity and potential publication bias, the results should be interpreted with caution.
Collapse
Affiliation(s)
- Hamed Jalilian
- Department of Occupational Health and Safety Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Kamran Najafi
- Student Research Committee, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Yahya Khosravi
- Department of Occupational Health and Safety Engineering, School of Health, Research Center for Health, Safety and Environment, Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Riancho J, Sanchez de la Torre JR, Paz-Fajardo L, Limia C, Santurtun A, Cifra M, Kourtidis K, Fdez-Arroyabe P. The role of magnetic fields in neurodegenerative diseases. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:107-117. [PMID: 32198562 DOI: 10.1007/s00484-020-01896-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The term neurodegenerative diseases include a long list of diseases affecting the nervous system that are characterized by the degeneration of different neurological structures. Among them, Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) are the most representative ones. The vast majority of cases are sporadic and results from the interaction of genes and environmental factors in genetically predisposed individuals. Among environmental conditions, electromagnetic field exposure has begun to be assessed as a potential risk factor for neurodegeneration. In this review, we discuss the existing literature regarding electromagnetic fields and neurodegenerative diseases. Epidemiological studies in AD, PD, and ALS have shown discordant results; thus, a clear correlation between electromagnetic exposure and neurodegeneration has not been demonstrated. In addition, we discuss the role of electromagnetic radiation as a potential non-invasive therapeutic strategy for some neurodegenerative diseases, particularly for PD and AD.
Collapse
Affiliation(s)
- Javier Riancho
- Service of Neurology, Hospital Sierrallana-IDIVAL, Barrio Ganzo s/n, 39300, Torrelavega, Spain.
- CIBERNED, Barcelona, Spain.
- Medicine and Psychiatry Department, University of Cantabria, Santander, Spain.
| | | | - Lucía Paz-Fajardo
- Service of Internal Medicine, Hospital Sierrallana, Torrelavega, Spain
| | - Cristina Limia
- Service of Internal Medicine, Hospital Sierrallana, Torrelavega, Spain
| | - Ana Santurtun
- Legal Medicine and Toxicology Unit, Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic
| | - Kostas Kourtidis
- Department of Environmental Engineering, Democritus University of Thrace, 67100, Xanthi, Greece
- Environmental and Networking Technologies and Applications Unit (ENTA), Athena Research and Innovation Center, 67100, Xanthi, Greece
| | - Pablo Fdez-Arroyabe
- Geography and Planning Department, Geobiomet Research Group, University of Cantabria, Santander, Spain
| |
Collapse
|
6
|
Effects of a Single Head Exposure to GSM-1800 MHz Signals on the Transcriptome Profile in the Rat Cerebral Cortex: Enhanced Gene Responses Under Proinflammatory Conditions. Neurotox Res 2020; 38:105-123. [PMID: 32200527 PMCID: PMC7223958 DOI: 10.1007/s12640-020-00191-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 01/02/2023]
Abstract
Mobile communications are propagated by electromagnetic fields (EMFs), and since the 1990s, they operate with pulse-modulated signals such as the GSM-1800 MHz. The biological effects of GSM-EMF in humans affected by neuropathological processes remain seldom investigated. In this study, a 2-h head-only exposure to GSM-1800 MHz was applied to (i) rats undergoing an acute neuroinflammation triggered by a lipopolysaccharide (LPS) treatment, (ii) age-matched healthy rats, or (iii) transgenic hSOD1G93A rats that modeled a presymptomatic phase of human amyotrophic lateral sclerosis (ALS). Gene responses were assessed 24 h after the GSM head-only exposure in a motor area of the cerebral cortex (mCx) where the mean specific absorption rate (SAR) was estimated to be 3.22 W/kg. In LPS-treated rats, a genome-wide mRNA profiling was performed by RNA-seq analysis and revealed significant (adjusted p value < 0.05) but moderate (fold changes < 2) upregulations or downregulations affecting 2.7% of the expressed genes, including genes expressed predominantly in neuronal or in glial cell types and groups of genes involved in protein ubiquitination or dephosphorylation. Reverse transcription-quantitative PCR analyses confirmed gene modulations uncovered by RNA-seq data and showed that in a set of 15 PCR-assessed genes, significant gene responses to GSM-1800 MHz depended upon the acute neuroinflammatory state triggered in LPS-treated rats, because they were not observed in healthy or in hSOD1G93A rats. Together, our data specify the extent of cortical gene modulations triggered by GSM-EMF in the course of an acute neuroinflammation and indicate that GSM-induced gene responses can differ according to pathologies affecting the CNS.
Collapse
|
7
|
Su L, Jin Y, Lou H, Chen G. RE: "ASSOCIATIONS OF ELECTRIC SHOCK AND EXTREMELY LOW-FREQUENCY MAGNETIC FIELD EXPOSURE WITH THE RISK OF AMYOTROPHIC LATERAL SCLEROSIS: THE EURO-MOTOR PROJECT". Am J Epidemiol 2019; 188:1753-1759. [PMID: 31150043 DOI: 10.1093/aje/kwz122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Liling Su
- Bioelectromagnetics Laboratory and Department of Reproductive Endocrinology of Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Clinical Medicine, Jiangxi Medical College, Shangrao, China
| | - Yumin Jin
- Bioelectromagnetics Laboratory and Department of Reproductive Endocrinology of Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haifeng Lou
- Bioelectromagnetics Laboratory and Department of Reproductive Endocrinology of Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guangdi Chen
- Bioelectromagnetics Laboratory and Department of Reproductive Endocrinology of Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Consales C, Panatta M, Butera A, Filomeni G, Merla C, Carrì MT, Marino C, Benassi B. 50-Hz magnetic field impairs the expression of iron-related genes in the in vitro SOD1 G93A model of amyotrophic lateral sclerosis. Int J Radiat Biol 2019; 95:368-377. [PMID: 30513241 DOI: 10.1080/09553002.2019.1552378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE We characterized the response to the extremely low frequency magnetic field (ELF-MF) in an in vitro model of familial Amyotrophic Lateral Sclerosis (fALS), carrying two mutant variants of the superoxide dismutase 1 (SOD1) gene. MATERIALS AND METHODS SH-SY5Y human neuroblastoma cells, stably over-expressing the wild type, the G93A or the H46R mutant SOD1 cDNA, were exposed to either the ELF-MF (50 Hz, 1 mT) or the sham control field, up to 72 h. Analysis of (i) viability, proliferation and apoptosis, (ii) reactive oxygen species generation, and (iii) assessment of the iron metabolism, were carried out in all clones in response to the MF exposure. RESULTS We report that 50-Hz MF exposure induces: (i) no change in proliferation and viability; (ii) no modulation of the intracellular superoxide and H2O2 levels; (iii) a significant deregulation in the expression of iron-related genes IRP1, MFRN1 and TfR1, this evidence being exclusive for the SOD1G93A clone and associated with a slight (p = .0512) difference in the total iron content. CONCLUSIONS 50-Hz MF affects iron homeostasis in the in vitro SOD1G93A ALS model.
Collapse
Affiliation(s)
- Claudia Consales
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| | - Martina Panatta
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy.,b Department of Chemistry and Biochemistry , University of Bern , Bern , Switzerland
| | - Alessio Butera
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| | - Giuseppe Filomeni
- c Department of Biology , University of Rome Tor Vergata , Rome , Italy.,d Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD) , Danish Cancer Society Research Center , Copenhagen , Denmark
| | - Caterina Merla
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| | | | - Carmela Marino
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| | - Barbara Benassi
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| |
Collapse
|
9
|
Riancho J, Bosque-Varela P, Perez-Pereda S, Povedano M, de Munaín AL, Santurtun A. The increasing importance of environmental conditions in amyotrophic lateral sclerosis. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:1361-1374. [PMID: 29713861 DOI: 10.1007/s00484-018-1550-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease affecting motor neurons (MNs). Although a small percentage of ALS has a familial origin, the vast majority of cases are sporadic in which genetic factors and environment interact with each other leading to disease onset in genetically predisposed individuals. In the current model of the disease, each individual has a determined genetic load, some degree of cell degeneration related to age and several risky environmental exposures. In this scenario, MN degeneration would occur when the sum of these factors reach a certain threshold. To date, an extensive list of environmental factors has been associated to ALS, including different categories, such as exposure to heavy metals and other toxicants, cyanotoxins or infectious agents. In addition, in recent years, lifestyle and other demographic parameters are gaining relevance in the genesis of the disease. Among them, physical activity, nutrition, body mass index, cardiovascular risk factors, autoimmune diseases and cancer are some of the conditions which have been related to the disease. In this review, we will discuss the potential mechanisms of environmental conditions in motor neuron degeneration. Understanding the role of each one of these factors as well as their interactions appears as a crucial step in order to develop new preventive, diagnostic and therapeutic approaches for ALS patients.
Collapse
Affiliation(s)
- Javier Riancho
- Service of Neurology, Hospital Sierrallana, Institute of Research Valdecilla (IDIVAL), Torrelavega, Spain.
- Department of Medicine, University of Cantabria, Santander, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, CIBERNED, Instituto Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.
| | - Pilar Bosque-Varela
- Service of Neurology, University Hospital Marques de Valdecilla, Santander, Spain
| | - Sara Perez-Pereda
- Service of Neurology, University Hospital Marques de Valdecilla, Santander, Spain
| | - Mónica Povedano
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, CIBERNED, Instituto Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
- Service of Neurology-Motor Neuron Unit, IDIBELL, Bellvitge University Hospital, Barcelona, Spain
| | - Adolfo López de Munaín
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, CIBERNED, Instituto Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
- ALS Multidisciplinary Unit, Hospital Donostia- Neuroscience Area, Donostia Health Research Institute, San Sebastián, Spain
| | - Ana Santurtun
- Toxicology Unit, Physiology and Farmacology Department, University of Cantabria-IDIVAL, Santander, Spain
| |
Collapse
|
10
|
Sharma NK, Sharma R, Mathur D, Sharad S, Minhas G, Bhatia K, Anand A, Ghosh SP. Role of Ionizing Radiation in Neurodegenerative Diseases. Front Aging Neurosci 2018; 10:134. [PMID: 29867445 PMCID: PMC5963202 DOI: 10.3389/fnagi.2018.00134] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 04/23/2018] [Indexed: 02/03/2023] Open
Abstract
Ionizing radiation (IR) from terrestrial sources is continually an unprotected peril to human beings. However, the medical radiation and global radiation background are main contributors to human exposure and causes of radiation sickness. At high-dose exposures acute radiation sickness occurs, whereas chronic effects may persist for a number of years. Radiation can increase many circulatory, age related and neurodegenerative diseases. Neurodegenerative diseases occur a long time after exposure to radiation, as demonstrated in atomic bomb survivors, and are still controversial. This review discuss the role of IR in neurodegenerative diseases and proposes an association between neurodegenerative diseases and exposure to IR.
Collapse
Affiliation(s)
- Neel K. Sharma
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Rupali Sharma
- Center for Neuroscience and Regenerative Medicine, Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Deepali Mathur
- Neurobiology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Shashwat Sharad
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Gillipsie Minhas
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | | | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Sanchita P. Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
11
|
Wang MD, Little J, Gomes J, Cashman NR, Krewski D. Identification of risk factors associated with onset and progression of amyotrophic lateral sclerosis using systematic review and meta-analysis. Neurotoxicology 2017; 61:101-130. [DOI: 10.1016/j.neuro.2016.06.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022]
|
12
|
Vinceti M, Malagoli C, Fabbi S, Kheifets L, Violi F, Poli M, Caldara S, Sesti D, Violanti S, Zanichelli P, Notari B, Fava R, Arena A, Calzolari R, Filippini T, Iacuzio L, Arcolin E, Mandrioli J, Fini N, Odone A, Signorelli C, Patti F, Zappia M, Pietrini V, Oleari P, Teggi S, Ghermandi G, Dimartino A, Ledda C, Mauceri C, Sciacca S, Fiore M, Ferrante M. Magnetic fields exposure from high-voltage power lines and risk of amyotrophic lateral sclerosis in two Italian populations. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:583-589. [PMID: 28569083 DOI: 10.1080/21678421.2017.1332078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aetiology of amyotrophic lateral sclerosis (ALS), a rare and extremely severe neurodegenerative disease, has been associated with magnetic fields exposure. However, evidence for such a relation in the general population is weak, although the previous null results might also be due to exposure misclassification, or a relationship might exist only for selected subgroups. To test such a hypothesis we carried out a population-based case-control study in two Northern and Southern Italy regions, including 703 ALS cases newly diagnosed from 1998 to 2011 and 2737 controls randomly selected from the residents in the study provinces. Overall, we found that a residence near high-voltage power lines, within the corridors yielding a magnetic fields of ≥0.1 μT, was not associated with an excess disease risk, nor did we identify a dose-response relationship after splitting the exposed corridor according to the 0.1, 0.2 and 0.4 μT cut-points of exposure. These results were confirmed taking into account age at onset, period of diagnosis, sex, geographical area, and length of exposure. Overall, despite the residual possibility of unmeasured confounding or small susceptible subgroups not identified in our study, these results appear to confirm that the exposure to magnetic fields from power lines occurring in the general population is not associated with increased ALS risk.
Collapse
Affiliation(s)
- Marco Vinceti
- a Environmental, Genetic, and Nutritional Epidemiology Research Center - CREAGEN, Department of Biomedical, Metabolic and Neural Sciences , University of Modena and Reggio Emilia , Modena , Italy.,b Department of Epidemiology , Boston University School of Public Health , Boston , MA , USA
| | - Carlotta Malagoli
- a Environmental, Genetic, and Nutritional Epidemiology Research Center - CREAGEN, Department of Biomedical, Metabolic and Neural Sciences , University of Modena and Reggio Emilia , Modena , Italy
| | - Sara Fabbi
- c Department of Engineering "Enzo Ferrari" , University of Modena and Reggio Emilia , Modena , Italy
| | - Leeka Kheifets
- d Department of Epidemiology , UCLA Fielding School of Public Health , Los Angeles , CA , USA
| | - Federica Violi
- a Environmental, Genetic, and Nutritional Epidemiology Research Center - CREAGEN, Department of Biomedical, Metabolic and Neural Sciences , University of Modena and Reggio Emilia , Modena , Italy
| | - Maurizio Poli
- e Emilia-Romagna Regional Agency for Environmental Prevention and Energy (ARPAE) , Emilia-Romagna Region , Italy
| | - Salvatore Caldara
- f Sicilia Regional Agency for Environmental Prevention (ARPA) , Palermo , Italy
| | - Daniela Sesti
- e Emilia-Romagna Regional Agency for Environmental Prevention and Energy (ARPAE) , Emilia-Romagna Region , Italy
| | - Silvia Violanti
- e Emilia-Romagna Regional Agency for Environmental Prevention and Energy (ARPAE) , Emilia-Romagna Region , Italy
| | - Paolo Zanichelli
- e Emilia-Romagna Regional Agency for Environmental Prevention and Energy (ARPAE) , Emilia-Romagna Region , Italy
| | - Barbara Notari
- e Emilia-Romagna Regional Agency for Environmental Prevention and Energy (ARPAE) , Emilia-Romagna Region , Italy
| | - Roberto Fava
- e Emilia-Romagna Regional Agency for Environmental Prevention and Energy (ARPAE) , Emilia-Romagna Region , Italy
| | - Alessia Arena
- f Sicilia Regional Agency for Environmental Prevention (ARPA) , Palermo , Italy
| | - Roberta Calzolari
- f Sicilia Regional Agency for Environmental Prevention (ARPA) , Palermo , Italy
| | - Tommaso Filippini
- a Environmental, Genetic, and Nutritional Epidemiology Research Center - CREAGEN, Department of Biomedical, Metabolic and Neural Sciences , University of Modena and Reggio Emilia , Modena , Italy
| | - Laura Iacuzio
- a Environmental, Genetic, and Nutritional Epidemiology Research Center - CREAGEN, Department of Biomedical, Metabolic and Neural Sciences , University of Modena and Reggio Emilia , Modena , Italy
| | - Elisa Arcolin
- a Environmental, Genetic, and Nutritional Epidemiology Research Center - CREAGEN, Department of Biomedical, Metabolic and Neural Sciences , University of Modena and Reggio Emilia , Modena , Italy
| | - Jessica Mandrioli
- g Department of Neuroscience , S.Agostino-Estense Hospital, Policlinico University Hospital , Modena , Italy
| | - Nicola Fini
- g Department of Neuroscience , S.Agostino-Estense Hospital, Policlinico University Hospital , Modena , Italy
| | - Anna Odone
- h Department of Biomedical , Biotechnological, and Translational Sciences, University of Parma , Parma , Italy
| | - Carlo Signorelli
- h Department of Biomedical , Biotechnological, and Translational Sciences, University of Parma , Parma , Italy.,i University 'Vita-Salute' San Raffaele , Milan , Italy
| | - Francesco Patti
- j Department of Medical , Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania , Catania , Italy
| | - Mario Zappia
- j Department of Medical , Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania , Catania , Italy
| | - Vladimiro Pietrini
- k Department of Neuroscience , University of Parma , Parma , Italy , and
| | - Paola Oleari
- l Information and Communication Technology Department , Local Health Unit of Reggio Emilia and IRCCS-Arcispedale Santa Maria Nuova , Reggio Emilia , Italy
| | - Sergio Teggi
- c Department of Engineering "Enzo Ferrari" , University of Modena and Reggio Emilia , Modena , Italy
| | - Grazia Ghermandi
- c Department of Engineering "Enzo Ferrari" , University of Modena and Reggio Emilia , Modena , Italy
| | - Angela Dimartino
- j Department of Medical , Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania , Catania , Italy
| | - Caterina Ledda
- j Department of Medical , Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania , Catania , Italy
| | - Cristina Mauceri
- j Department of Medical , Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania , Catania , Italy
| | - Salvatore Sciacca
- j Department of Medical , Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania , Catania , Italy
| | - Maria Fiore
- j Department of Medical , Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania , Catania , Italy
| | - Margherita Ferrante
- j Department of Medical , Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania , Catania , Italy
| |
Collapse
|
13
|
Zufiría M, Gil-Bea FJ, Fernández-Torrón R, Poza JJ, Muñoz-Blanco JL, Rojas-García R, Riancho J, López de Munain A. ALS: A bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol 2016; 142:104-129. [DOI: 10.1016/j.pneurobio.2016.05.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022]
|
14
|
Terzi M, Ozberk B, Deniz OG, Kaplan S. The role of electromagnetic fields in neurological disorders. J Chem Neuroanat 2016; 75:77-84. [PMID: 27083321 DOI: 10.1016/j.jchemneu.2016.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 12/25/2022]
Abstract
In the modern world, people are exposed to electromagnetic fields (EMFs) as part of their daily lives; the important question is "What is the effect of EMFs on human health?" Most previous studies are epidemiological, and we still do not have concrete evidence of EMF pathophysiology. Several factors may lead to chemical, morphological, and electrical alterations in the nervous system in a direct or indirect way. It is reported that non-ionizing EMFs have effects on animals and cells. The changes they bring about in organic systems may cause oxidative stress, which is essential for the neurophysiological process; it is associated with increased oxidization in species, or a reduction in antioxidant defense systems. Severe oxidative stress can cause imbalances in reactive oxygen species, which may trigger neurodegeneration. This review aims to detail these changes. Special attention is paid to the current data regarding EMFs' effects on neurological disease and associated symptoms, such as headache, sleep disturbances, and fatigue.
Collapse
Affiliation(s)
- Murat Terzi
- Department of Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
| | - Berra Ozberk
- Department of Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Omur Gulsum Deniz
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Suleyman Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
15
|
Low-frequency magnetic fields do not aggravate disease in mouse models of Alzheimer's disease and amyotrophic lateral sclerosis. Sci Rep 2015; 5:8585. [PMID: 25717019 PMCID: PMC4341214 DOI: 10.1038/srep08585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/27/2015] [Indexed: 11/08/2022] Open
Abstract
Low-frequency magnetic fields (LF-MF) generated by power lines represent a potential environmental health risk and are classified as possibly carcinogenic by the World Health Organization. Epidemiological studies indicate that LF-MF might propagate neurodegenerative diseases like Alzheimer's disease (AD) or amyotrophic lateral sclerosis (ALS). We conducted a comprehensive analysis to determine whether long-term exposure to LF-MF (50 Hz, 1 mT) interferes with disease development in established mouse models for AD and ALS, namely APP23 mice and mice expressing mutant Cu/Zn-superoxide dismutase (SOD1), respectively. Exposure for 16 months did not aggravate learning deficit of APP23 mice. Likewise, disease onset and survival of SOD1(G85R) or SOD1(G93A) mice were not altered upon LF-MF exposure for ten or eight months, respectively. These results and an extended biochemical analysis of protein aggregation, glial activation and levels of toxic protein species suggests that LF-MF do not affect cellular processes involved in the pathogenesis of AD or ALS.
Collapse
|
16
|
Trojsi F, Monsurrò MR, Tedeschi G. Exposure to environmental toxicants and pathogenesis of amyotrophic lateral sclerosis: state of the art and research perspectives. Int J Mol Sci 2013; 14:15286-311. [PMID: 23887652 PMCID: PMC3759860 DOI: 10.3390/ijms140815286] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 12/12/2022] Open
Abstract
There is a broad scientific consensus that amyotrophic lateral sclerosis (ALS), a fatal neuromuscular disease, is caused by gene--environment interactions. In fact, given that only about 10% of all ALS diagnosis has a genetic basis, gene-environmental interaction may give account for the remaining percentage of cases. However, relatively little attention has been paid to environmental and lifestyle factors that may trigger the cascade of motor neuron degeneration leading to ALS, although exposure to chemicals--including lead and pesticides-agricultural environments, smoking, intense physical activity, trauma and electromagnetic fields have been associated with an increased risk of ALS. This review provides an overview of our current knowledge of potential toxic etiologies of ALS with emphasis on the role of cyanobacteria, heavy metals and pesticides as potential risk factors for developing ALS. We will summarize the most recent evidence from epidemiological studies and experimental findings from animal and cellular models, revealing that potential causal links between environmental toxicants and ALS pathogenesis have not been fully ascertained, thus justifying the need for further research.
Collapse
Affiliation(s)
- Francesca Trojsi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Piazza Miraglia 2, Naples 80138, Italy; E-Mails: (M.R.M.); (G.T.)
- Neurological Institute for Diagnosis and Care “Hermitage Capodimonte”, Via Cupa delle Tozzole 2, Naples 80131, Italy
| | - Maria Rosaria Monsurrò
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Piazza Miraglia 2, Naples 80138, Italy; E-Mails: (M.R.M.); (G.T.)
- Neurological Institute for Diagnosis and Care “Hermitage Capodimonte”, Via Cupa delle Tozzole 2, Naples 80131, Italy
| | - Gioacchino Tedeschi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Piazza Miraglia 2, Naples 80138, Italy; E-Mails: (M.R.M.); (G.T.)
- Neurological Institute for Diagnosis and Care “Hermitage Capodimonte”, Via Cupa delle Tozzole 2, Naples 80131, Italy
| |
Collapse
|
17
|
Zhou H, Chen G, Chen C, Yu Y, Xu Z. Association between extremely low-frequency electromagnetic fields occupations and amyotrophic lateral sclerosis: a meta-analysis. PLoS One 2012. [PMID: 23189129 PMCID: PMC3506624 DOI: 10.1371/journal.pone.0048354] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objectives To estimate the relationship between exposure to extremely low-frequency electromagnetic fields (ELF-EMF) and the risk of amyotrophic lateral sclerosis (ALS) by a meta-analysis. Methods Through searching PubMed databases (or manual searching) up to April 2012 using the following keywords: “occupational exposure”, “electromagnetic fields” and “amyotrophic lateral sclerosis” or “motor neuron disease”, seventeen studies were identified as eligible for this meta-analysis. The associations between ELF-EMF exposure and the ALS risk were estimated based on study design (case-control or cohort study), and ELF-EMF exposure level assessment (job title or job-exposure matrix). The heterogeneity across the studies was tested, as was publication bias. Results Occupational exposure to ELF-EMF was significantly associated with increased risk of ALS in pooled studies (RR = 1.29, 95%CI = 1.02–1.62), and case-control studies (OR = 1.39, 95%CI = 1.05–1.84), but not cohort studies (RR = 1.16, 95% CI = 0.80–1.69). In sub-analyses, similar significant associations were found when the exposure level was defined by the job title, but not the job-exposure matrix. In addition, significant associations between occupational exposure to ELF-EMF and increased risk of ALS were found in studies of subjects who were clinically diagnosed but not those based on the death certificate. Moderate heterogeneity was observed in all analyses. Conclusions Our data suggest a slight but significant ALS risk increase among those with job titles related to relatively high levels of ELF-EMF exposure. Since the magnitude of estimated RR was relatively small, we cannot deny the possibility of potential biases at work. Electrical shocks or other unidentified variables associated with electrical occupations, rather than magnetic-field exposure, may be responsible for the observed associations with ALS.
Collapse
Affiliation(s)
- Hongjie Zhou
- Bioelectromagnetics Laboratory, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunjing Chen
- Bioelectromagnetics Laboratory, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunxian Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (YY); (ZX)
| | - Zhengping Xu
- Bioelectromagnetics Laboratory, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (YY); (ZX)
| |
Collapse
|
18
|
Consales C, Merla C, Marino C, Benassi B. Electromagnetic fields, oxidative stress, and neurodegeneration. Int J Cell Biol 2012; 2012:683897. [PMID: 22991514 PMCID: PMC3444040 DOI: 10.1155/2012/683897] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/19/2012] [Accepted: 06/19/2012] [Indexed: 12/21/2022] Open
Abstract
Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system.
Collapse
Affiliation(s)
- Claudia Consales
- Unit of Radiation Biology and Human Health, ENEA-Casaccia, Rome 00123, Italy
| | | | | | - Barbara Benassi
- Unit of Radiation Biology and Human Health, ENEA-Casaccia, Rome 00123, Italy
| |
Collapse
|
19
|
Johnson FO, Atchison WD. The role of environmental mercury, lead and pesticide exposure in development of amyotrophic lateral sclerosis. Neurotoxicology 2009; 30:761-5. [PMID: 19632272 PMCID: PMC2761528 DOI: 10.1016/j.neuro.2009.07.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 07/08/2009] [Accepted: 07/16/2009] [Indexed: 12/12/2022]
Abstract
Exposure to an environmental toxicant as a risk factor in the development of amyotrophic lateral sclerosis (ALS) was first hinted at (demonstrated) in the Chamorro indigenous people of Guam. During the 1950s and 1960s these indigenous people presented an extremely high incidence of ALS which was presumed to be associated with the consumption of flying fox and cycad seeds. No other strong association between ALS and environmental toxicants has since been reported, although circumstantial epidemiological evidence has implicated exposure to heavy metals such as lead and mercury, industrial solvents and pesticides especially organophosphates and certain occupations such as playing professional soccer. Given that only approximately 10% of all ALS diagnosis have a genetic basis, a gene-environmental interaction provides a plausible explanation for the other 90% of cases. This mini-review provides an overview of our current knowledge of environmental etiologies of ALS with emphasis on the effects of mercury, lead and pesticides as potential risk factors in developing ALS. Epidemiologic and experimental evidence from animal models investigating the possible association between exposure to environmental toxicant and ALS disease has proven inconclusive. Nonetheless, there are indications that there may be causal links, and a need for more research.
Collapse
Affiliation(s)
- Frank O Johnson
- Center for Integrative Toxicology and Neuroscience Program and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | | |
Collapse
|