1
|
Panchalingam S, Kasivelu G. Exploring the impact of circular RNA on ALS progression: A systematic review. Brain Res 2024; 1838:148990. [PMID: 38734122 DOI: 10.1016/j.brainres.2024.148990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disease that damages motor neurons and causes gradual muscular weakening and paralysis. Although studies have linked a number of genetic and environmental factors to ALS, the specific causes and mechanisms of the disease are still unclear. The pivotal role of circular RNA in the pathogenesis of ALS is a newly emerging area of research. The term "circular RNA" describes a particular class of RNA molecule that, in contrast to most RNA molecules, has a closed-loop structure. According to recent research, circular RNA might be essential for the development and progression of ALS. It has been discovered that these circular RNAs support important cellular functions related to ALS, including protein turnover, mitochondrial function, RNA processing, and cellular transport. Gaining knowledge about the precise roles and processes of circular RNA in the development of ALS could assist in understanding the pathophysiology of the disease and possibly pave the way for the development of targeted therapies. However, the understanding of circular RNA in ALS is still limited, and more research is needed to fully elucidate its role. In order to gain a comprehensive understanding of the role of circRNAs in ALS, it is imperative to delve into the various mechanisms through which circRNAs may contribute to the development and progression of the disease. Examining the current status of circRNA research in ALS and offering insights into their potential as therapeutic targets and diagnostic markers are the primary objectives of this review.
Collapse
Affiliation(s)
- Santhiya Panchalingam
- Centre for Ocean Research (DST-FIST Sponsored Centre), Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Govindaraju Kasivelu
- Centre for Ocean Research (DST-FIST Sponsored Centre), Sathyabama Institute of Science and Technology, Chennai 600119, India.
| |
Collapse
|
2
|
Bedja-Iacona L, Richard E, Marouillat S, Brulard C, Alouane T, Beltran S, Andres CR, Blasco H, Corcia P, Veyrat-Durebex C, Vourc’h P. Post-Translational Variants of Major Proteins in Amyotrophic Lateral Sclerosis Provide New Insights into the Pathophysiology of the Disease. Int J Mol Sci 2024; 25:8664. [PMID: 39201350 PMCID: PMC11354932 DOI: 10.3390/ijms25168664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Post-translational modifications (PTMs) affecting proteins during or after their synthesis play a crucial role in their localization and function. The modification of these PTMs under pathophysiological conditions, i.e., their appearance, disappearance, or variation in quantity caused by a pathological environment or a mutation, corresponds to post-translational variants (PTVs). These PTVs can be directly or indirectly involved in the pathophysiology of diseases. Here, we present the PTMs and PTVs of four major amyotrophic lateral sclerosis (ALS) proteins, SOD1, TDP-43, FUS, and TBK1. These modifications involve acetylation, phosphorylation, methylation, ubiquitination, SUMOylation, and enzymatic cleavage. We list the PTM positions known to be mutated in ALS patients and discuss the roles of PTVs in the pathophysiological processes of ALS. In-depth knowledge of the PTMs and PTVs of ALS proteins is needed to better understand their role in the disease. We believe it is also crucial for developing new therapies that may be more effective in ALS.
Collapse
Affiliation(s)
- Léa Bedja-Iacona
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | - Elodie Richard
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | - Sylviane Marouillat
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | | | | | - Stéphane Beltran
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Neurologie, CHRU de Tours, 37000 Tours, France
| | - Christian R. Andres
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Hélène Blasco
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Philippe Corcia
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Neurologie, CHRU de Tours, 37000 Tours, France
| | - Charlotte Veyrat-Durebex
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- UTTIL, CHRU de Tours, 37000 Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Patrick Vourc’h
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- UTTIL, CHRU de Tours, 37000 Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| |
Collapse
|
3
|
Xiao X, Li M, Ye Z, He X, Wei J, Zha Y. FUS gene mutation in amyotrophic lateral sclerosis: a new case report and systematic review. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:1-15. [PMID: 37926865 DOI: 10.1080/21678421.2023.2272170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/08/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with upper and lower motor neuron degeneration and necrosis, characterized by progressive muscle weakness, atrophy, and paralysis. The FUS mutation-associated ALS has been classified as ALS6. We reported a case of ALS6 with de novo mutation and investigated retrospectively the characteristics of cases with FUS mutation. METHODS We reported a male patient with a new heterozygous variant of the FUS gene and comprehensively reviewed 173 ALS cases with FUS mutation. The literature was reviewed from the PubMed MEDLINE electronic database (https://www.ncbi.nlm.nih.gov/pubmed) using "Amyotrophic Lateral Sclerosis and Fus mutation" or "Fus mutation" as key words from 1 January 2009 to 1 January 2022. RESULTS We report a case of ALS6 with a new mutation point (c.1225-1227delGGA) and comprehensively review 173 ALS cases with FUS mutation. Though ALS6 is all with FUS mutation, it is still a highly heterogenous subtype. The average onset age of ALS6 is 35.2 ± 1.3 years, which is much lower than the average onset age of ALS (60 years old). Juvenile FUS mutations have an aggressive progression of disease, with an average time from onset to death or tracheostomy of 18.2 ± 0.5 months. FUS gene has the characteristics of early onset, faster progress, and shorter survival, especially in deletion mutation p.G504Wfs *12 and missense mutation of p.P525L. CONCLUSIONS ALS6 is a highly heterogenous subtype. Our study could allow clinicians to better understand the non-ALS typical symptoms, phenotypes, and pathophysiology of ALS6.
Collapse
Affiliation(s)
- Xin Xiao
- Department of Neurology, Yichang Central Hospital, Institute of Neural Regeneration and Repair, College of Basic Medical Science, China Three Gorges University, Yichang, China and
| | - Min Li
- Department of Neurology, Yichang Central Hospital, Institute of Neural Regeneration and Repair, College of Basic Medical Science, China Three Gorges University, Yichang, China and
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Zhi Ye
- Department of Neurology, Yichang Central Hospital, Institute of Neural Regeneration and Repair, College of Basic Medical Science, China Three Gorges University, Yichang, China and
| | - Xiaoyan He
- Department of Neurology, Yichang Central Hospital, Institute of Neural Regeneration and Repair, College of Basic Medical Science, China Three Gorges University, Yichang, China and
| | - Jun Wei
- Department of Neurology, Yichang Central Hospital, Institute of Neural Regeneration and Repair, College of Basic Medical Science, China Three Gorges University, Yichang, China and
| | - Yunhong Zha
- Department of Neurology, Yichang Central Hospital, Institute of Neural Regeneration and Repair, College of Basic Medical Science, China Three Gorges University, Yichang, China and
| |
Collapse
|
4
|
Genetic analysis in Chinese patients with familial or young-onset amyotrophic lateral sclerosis. Neurol Sci 2021; 43:2579-2587. [PMID: 34564799 DOI: 10.1007/s10072-021-05634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of our study was to investigate the genetic characteristics in patients with familial or young-onset amyotrophic lateral sclerosis (ALS) in a Chinese center. METHODS Patients with familial or young-onset (age of onset < 45 years old) ALS were reviewed. The clinical data was collected. Whole-exome sequencing was performed to identify the disease-associated variants. Single-nucleotide variants and small insertions/deletions were further predicted with silico tools and compared to the Single Nucleotide Polymorphism Database, Exome Aggregation Consortium, and the 1000 Genomes Project. The evolutionary conservations were estimated, and the structures of proteins were constructed by Swiss-Model server. Immunohistochemistry was used to confirm the misfolded SOD1 protein. RESULTS Three familial ALS and 5 young-onset ALS were enrolled. Genetic analysis identified related variants of SOD1 (4/6, 66.7%), FUS (1/6, 16.7%), and NEK1 (1/6, 16.7%) in 6 patients. Three of them were familial probands (3/3, 100%), and the others were sporadic young-onset patients (3/5, 60%). NEK1 c.290G > A mutation (NM_012224.2 exon4) in a patient with familial ALS and SOD1 c.362A > G mutation (NM_000454 exon5) in a young-onset ALS patient were novel. The novel mutations were predicted to be deleterious, affected evolutionarily highly conserved amino acid residue and the formation of hydrogen bonds between the mutated site and its surrounding amino acid residues. Misfolded SOD1 protein was identified in patient with SOD1 c.362A > G mutation. CONCLUSIONS Two novel mutations were detected in our patients. Patients with familial or young-onset ALS often carried related gene mutations, and genetic sequencing should be thus routinely performed.
Collapse
|
5
|
Arenas A, Chen J, Kuang L, Barnett KR, Kasarskis EJ, Gal J, Zhu H. Lysine acetylation regulates the RNA binding, subcellular localization and inclusion formation of FUS. Hum Mol Genet 2021; 29:2684-2697. [PMID: 32691043 DOI: 10.1093/hmg/ddaa159] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/17/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the preferential death of motor neurons. Approximately 10% of ALS cases are familial and 90% are sporadic. Fused in sarcoma (FUS) is a ubiquitously expressed RNA-binding protein implicated in familial ALS and frontotemporal dementia (FTD). The physiological function and pathological mechanism of FUS are not well understood, particularly whether post-translational modifications play a role in regulating FUS function. In this study, we discovered that FUS was acetylated at lysine-315/316 (K315/K316) and lysine-510 (K510) residues in two distinct domains. Located in the nuclear localization sequence, K510 acetylation disrupted the interaction between FUS and Transportin-1, resulting in the mislocalization of FUS in the cytoplasm and formation of stress granule-like inclusions. Located in the RNA recognition motif, K315/K316 acetylation reduced RNA binding to FUS and decreased the formation of cytoplasmic inclusions. Treatment with deacetylase inhibitors also significantly reduced the inclusion formation in cells expressing ALS mutation P525L. More interestingly, familial ALS patient fibroblasts showed higher levels of FUS K510 acetylation as compared with healthy controls. Lastly, CREB-binding protein/p300 acetylated FUS, whereas both sirtuins and histone deacetylases families of lysine deacetylases contributed to FUS deacetylation. These findings demonstrate that FUS acetylation regulates the RNA binding, subcellular localization and inclusion formation of FUS, implicating a potential role of acetylation in the pathophysiological process leading to FUS-mediated ALS/FTD.
Collapse
Affiliation(s)
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry
| | - Lisha Kuang
- Department of Molecular and Cellular Biochemistry
| | | | - Edward J Kasarskis
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jozsef Gal
- Department of Molecular and Cellular Biochemistry
| | - Haining Zhu
- Department of Toxicology and Cancer Biology.,Department of Molecular and Cellular Biochemistry.,Lexington VA Medical Center, Research and Development, Lexington, KY 40502, USA
| |
Collapse
|
6
|
Zou ZY, Che CH, Feng SY, Fang XY, Huang HP, Liu CY. Novel FUS mutation Y526F causing rapidly progressive familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2020; 22:73-79. [PMID: 32720527 DOI: 10.1080/21678421.2020.1797815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
FUS gene is one of the most common mutated genes in amyotrophic lateral sclerosis (ALS). We sequenced for FUS mutations in a cohort of 15 familial ALS and 275 sporadic ALS of Chinese origin. All 15 exons of the FUS gene were sequenced by targeted next-generation sequencing in a cohort of 15 familial ALS indexes and 275 sporadic ALS patients of Chinese origin. One novel p.Y526F mutation in FUS was detected in one familial ALS proband. Another novel FUS p.Q140R variant and two known FUS mutations (p.R495Efs*33 and p.R521C) were identified in four sporadic ALS cases. The frequency of FUS mutation in our cohort is 6.7% in familial ALS and 1.5% in sporadic ALS. The familial ALS proband carrying the FUS p.Y526F mutation presented with juvenile-onset lower limbs weakness and demonstrated an aggressive course, with respiratory muscles involvement 6 months after onset. The other patients in the family all had limbs weakness and died 1-2 years after disease onset. Our results strengthen that FUS mutations are the most frequent genetic causes of young-onset aggressive ALS. Genetic testing of the FUS gene should be performed in early-onset ALS patients especially those with a rapid progression.
Collapse
Affiliation(s)
- Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shu-Yan Feng
- Department of Neurophysiology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Xiu-Ying Fang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
7
|
Chen C, Ding X, Akram N, Xue S, Luo SZ. Fused in Sarcoma: Properties, Self-Assembly and Correlation with Neurodegenerative Diseases. Molecules 2019; 24:molecules24081622. [PMID: 31022909 PMCID: PMC6514960 DOI: 10.3390/molecules24081622] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Fused in sarcoma (FUS) is a DNA/RNA binding protein that is involved in RNA metabolism and DNA repair. Numerous reports have demonstrated by pathological and genetic analysis that FUS is associated with a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and polyglutamine diseases. Traditionally, the fibrillar aggregation of FUS was considered to be the cause of those diseases, especially via its prion-like domains (PrLDs), which are rich in glutamine and asparagine residues. Lately, a nonfibrillar self-assembling phenomenon, liquid–liquid phase separation (LLPS), was observed in FUS, and studies of its functions, mechanism, and mutual transformation with pathogenic amyloid have been emerging. This review summarizes recent studies on FUS self-assembling, including both aggregation and LLPS as well as their relationship with the pathology of ALS, FTLD, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiufang Ding
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Nimrah Akram
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Song Xue
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Recabarren-Leiva D, Alarcón M. New insights into the gene expression associated to amyotrophic lateral sclerosis. Life Sci 2018; 193:110-123. [DOI: 10.1016/j.lfs.2017.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/01/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022]
|
9
|
Screening of SOD1, FUS and TARDBP genes in patients with amyotrophic lateral sclerosis in central-southern China. Sci Rep 2016; 6:32478. [PMID: 27604643 PMCID: PMC5015023 DOI: 10.1038/srep32478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/08/2016] [Indexed: 01/26/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons of the brain, brainstem and spinal cord. To date, mutations in more than 30 genes have been linked to the pathogenesis of ALS. Among them, SOD1, FUS and TARDBP are ranked as the three most common genes associated with ALS. However, no mutation analysis has been reported in central-southern China. In this study, we sequenced SOD1, FUS and TARDBP in a central-southern Chinese cohort of 173 patients with ALS (15 familial ALS and 158 sporadic ALS) to detect mutations. As a result, five missense mutations in SOD1, namely, p.D101N, p.D101G, p.C111Y, p.N86S and p.V87A, were identified in three unrelated familial probands and three sporadic cases; two mutations in FUS were found in two unrelated familial probands, including an insertion mutation (p.P525_Y526insY) and a missense mutation (p.R521H); no variants of TARDBP were observed in patients. Therefore, SOD1 mutations were present in 20.0% of familial ALS patients and 1.9% of sporadic ALS patients, while FUS mutations were responsible for 13.3% of familial ALS cases, and TARDBP mutations were rare in either familial or sporadic ALS cases. This study broadens the known mutational spectrum in patients with ALS and further demonstrates the necessity for genetic screening in ALS patients from central-southern China.
Collapse
|
10
|
Akiyama T, Warita H, Kato M, Nishiyama A, Izumi R, Ikeda C, Kamada M, Suzuki N, Aoki M. Genotype-phenotype relationships in familial amyotrophic lateral sclerosis with FUS/TLS mutations in Japan. Muscle Nerve 2016; 54:398-404. [PMID: 26823199 DOI: 10.1002/mus.25061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2016] [Indexed: 12/19/2022]
Abstract
INTRODUCTION We investigated possible genotype-phenotype correlations in Japanese patients with familial amyotrophic lateral sclerosis (FALS) carrying fused in sarcoma/translated in liposarcoma (FUS/TLS) gene mutations. METHODS A consecutive series of 111 Japanese FALS pedigrees were screened for copper/zinc superoxide dismutase 1 (SOD1) and FUS/TLS gene mutations. Clinical data, including onset age, onset site, disease duration, and extramotor symptoms, were collected. RESULTS Nine different FUS/TLS mutations were found in 12 pedigrees. Most of the patients with FUS/TLS-linked FALS demonstrated early onset in the brainstem/upper cervical region, and relatively short disease duration. A few mutations exhibited phenotypes that were distinct from typical cases. Frontotemporal dementia was present in 1 patient. CONCLUSIONS This study revealed a characteristic phenotype in FUS/TLS-linked FALS patients in Japan. FUS/TLS screening is recommended in patients with FALS with this phenotype. Muscle Nerve 54: 398-404, 2016.
Collapse
Affiliation(s)
- Tetsuya Akiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Masaaki Kato
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Chikako Ikeda
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaki Kamada
- Department of Neurological Intractable Disease Research, Kagawa University Faculty of Medicine, Kagawa, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| |
Collapse
|
11
|
Lysogorskaia EV, Abramycheva NY, Zakharova MN, Stepanova MS, Moroz AA, Rossokhin AV, Illarioshkin SN. Genetic studies of Russian patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2015; 17:135-41. [PMID: 26551617 DOI: 10.3109/21678421.2015.1107100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Our objective was to search for mutations in genes SOD1, TARDBP, C9orf72, ANG, ATXN2 and VEGF in Russian patients with amyotrophic lateral sclerosis (ALS). A group of 208 Russian patients with ALS was examined. Molecular genetic analysis was conducted using direct sequencing, fragment analysis, and real-time PCR. We found eight different point mutations in the SOD1 gene, with the frequency of mutations being 50% in familial ALS and 3% in sporadic ALS. No mutations were found in exon 6 of the TARDBP gene; however, deletion c.715-126delG in intron 5 of TARDBP was over-represented in ALS patients compared to controls (38% vs. 26.6%; χ(2 )= 13.17; p = 0.002). Hexanucleotide repeat expansion of the C9orf72 gene was revealed in 2.5% of sporadic ALS patients. Mutations in the ANG gene were identified in 1.5% of sporadic ALS patients. The presence of an intermediate number (28-33) of GAC repeats in the ATXN2 gene was observed significantly more often in the study group compared to the control group (5% vs. 1.7%; χ(2 )= 3.89; p = 0.0486). In the cohort examined, we found an association between the disease and the risk A-allele and the A/A genotype at the -2578С/А locus of the VEGF gene. In conclusion, we determined for the first time the genetic basis of ALS in a Russian population.
Collapse
Affiliation(s)
| | | | | | | | - Anna A Moroz
- a Research Centre of Neurology , Moscow , Russia
| | | | | |
Collapse
|
12
|
King A, Troakes C, Smith B, Nolan M, Curran O, Vance C, Shaw CE, Al-Sarraj S. ALS-FUS pathology revisited: singleton FUS mutations and an unusual case with both a FUS and TARDBP mutation. Acta Neuropathol Commun 2015; 3:62. [PMID: 26452761 PMCID: PMC4600255 DOI: 10.1186/s40478-015-0235-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022] Open
Abstract
Introduction Mutations in the FUS gene have been shown to be a rare cause of amyotrophic lateral sclerosis (ALS-FUS) and whilst well documented clinically and genetically there have been relatively few neuropathological studies.Recent work suggested a possible correlation between pathological features such as frequency of basophilic inclusions in neurons and rate of clinical decline, other studies have revealed a discrepancy between the upper motor neuron features detected clinically and the associated pathology. The purpose of this study was to describe the pathological features associated with more recently discovered FUS mutations and reinvestigate those with well recognised mutations in an attempt to correlate the pathology with mutation and/or clinical phenotype. The brains and spinal cords of seven cases of ALS-FUS were examined neuropathologically, including cases with the newly described p.K510E mutation and a case with both a known p.P525L mutation in the FUS gene and a truncating p.Y374X mutation in the TARDBP gene. Results The neuropathology in all cases revealed basophilic and FUS inclusions in the cord. The density and type of inclusions varied markedly between cases, but did not allow a clear correlation with clinical progression. Only one case showed significant motor cortical pathology despite the upper motor neuron clinical features being evident in 4 patients. The case with both a FUS and TARDBP mutation revealed FUS positive inclusions but no TDP-43 pathology. Instead there were unusual p62 positive, FUS negative neuronal and glial inclusions as well as dot-like neurites. Conclusions The study confirms cases of ALS-FUS to be mainly a lower motor neuron disease and to have pathology that does not appear to neatly correlate with clinical features or genetics. Furthermore, the case with both a FUS and TARDBP mutation reveals an intriguing pathological profile which at least in part involves a very unusual staining pattern for the ubiquitin-binding protein p62.
Collapse
|
13
|
Hübers A, Just W, Rosenbohm A, Müller K, Marroquin N, Goebel I, Högel J, Thiele H, Altmüller J, Nürnberg P, Weishaupt JH, Kubisch C, Ludolph AC, Volk AE. De novo FUS mutations are the most frequent genetic cause in early-onset German ALS patients. Neurobiol Aging 2015; 36:3117.e1-3117.e6. [PMID: 26362943 DOI: 10.1016/j.neurobiolaging.2015.08.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/15/2015] [Accepted: 08/08/2015] [Indexed: 01/27/2023]
Abstract
In amyotrophic lateral sclerosis (ALS) patients with known genetic cause, mutations in chromosome 9 open reading frame 72 (C9orf72) and superoxide dismutase 1 (SOD1) account for most familial and late-onset sporadic cases, whereas mutations in fused in sarcoma (FUS) can be identified in just around 5% of familial and 1% of overall sporadic cases. There are only few reports on de novo FUS mutations in juvenile ALS patients. To date, no systematic evaluation on the frequency of de novo FUS mutations in early-onset ALS patients has been conducted. Here, we screened a cohort of 14 early-onset sporadic ALS patients (onset age <35 years) to determine the frequency of mutations in C9orf72, SOD1, and FUS in this defined patient cohort. All patients were recruited prospectively by a single center in a period of 38 months. No mutations were detected in SOD1 or C9orf72; however, we identified 6 individuals (43%) carrying a heterozygous FUS mutation including 1 mutation that has not been described earlier (c.1504delG [p.Asp502Thrfs*27]). Genetic testing of parents was possible in 5 families and revealed that the mutations in these patients arose de novo. Three of the 6 identified patients presented with initial bulbar symptoms. Our study identifies FUS mutations as the most frequent genetic cause in early-onset ALS. Genetic testing of FUS thus seems indicated in sporadic early-onset ALS patients especially if showing predominant bulbar symptoms and an aggressive disease course.
Collapse
Affiliation(s)
- Annemarie Hübers
- Department of Neurology, University Hospital of Ulm, Ulm, Germany.
| | - Walter Just
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Angela Rosenbohm
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | - Kathrin Müller
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | | | - Ingrid Goebel
- Institute of Human Genetics, University of Ulm, Ulm, Germany; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Josef Högel
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany; Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Christian Kubisch
- Institute of Human Genetics, University of Ulm, Ulm, Germany; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Albert C Ludolph
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | - Alexander E Volk
- Institute of Human Genetics, University of Ulm, Ulm, Germany; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
14
|
PFN1 mutations are also rare in the Catalan population with amyotrophic lateral sclerosis. J Neurol 2014; 261:2387-92. [DOI: 10.1007/s00415-014-7501-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 12/11/2022]
|
15
|
Deng H, Gao K, Jankovic J. The role of FUS gene variants in neurodegenerative diseases. Nat Rev Neurol 2014; 10:337-48. [DOI: 10.1038/nrneurol.2014.78] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Mochizuki Y, Kawata A, Maruyama H, Homma T, Watabe K, Kawakami H, Komori T, Mizutani T, Matsubara S. A Japanese patient with familial ALS and a p.K510M mutation in the gene for FUS (FUS) resulting in the totally locked-in state. Neuropathology 2014; 34:504-9. [PMID: 24841222 DOI: 10.1111/neup.12130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/17/2014] [Indexed: 12/13/2022]
Abstract
We describe a Japanese patient with familial amyotrophic lateral sclerosis (ALS) and a p.K510M mutation in the fused in sarcoma gene (FUS). The patient's condition was characterized clinically by an early onset and rapid progression. The patient eventually required mechanical ventilation and progressed to the totally locked-in state. Neuropathologically, multiple system degeneration with many FUS-immunoreactive structures was observed. The involvement of the globus pallidus, subthalamic nucleus, substantia nigra, cerebellar efferent system, and both upper and lower motor neurons in the present patient was comparable to that described for ALS patients with different mutations in FUS, all of whom progressed to the totally locked-in state. However, the patient also exhibited degeneration of the cerebellar afferent system and posterior column. Furthermore, the appearance of non-compact FUS-immunoreactive neuronal cytoplasmic inclusions and many FUS-immunoreactive glial cytoplasmic inclusions were unique to the present patient. These features suggest that the morphological characteristics of the FUS-immunoreactive structures and distribution of the lesions vary with the diversity of mutations in FUS.
Collapse
Affiliation(s)
- Yoko Mochizuki
- Department of Pathology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan; Department of Neurology, Tokyo Metropolitan Kita Medical and Rehabilitation Centre for the Disabled, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lattante S, Rouleau GA, Kabashi E. TARDBPandFUSMutations Associated with Amyotrophic Lateral Sclerosis: Summary and Update. Hum Mutat 2013; 34:812-26. [DOI: 10.1002/humu.22319] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/28/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Serena Lattante
- Institut du Cerveau et de la Moelle épinière; Centre de Recherche, CHU Pitié-Salpétrière, Inserm, UMR_S975, CRICM, F-75013; UPMC Univ Paris 06, UMR_S975, F-75013; CNRS UMR 7225; F-75013; Paris; France
| | - Guy A. Rouleau
- Montreal Neurological Institute; Department of Neurology and Neurosurgery, McGill University; Montreal; Canada
| | | |
Collapse
|
18
|
Waibel S, Neumann M, Rosenbohm A, Birve A, Volk AE, Weishaupt JH, Meyer T, Müller U, Andersen PM, Ludolph AC. Truncating mutations in FUS/TLS give rise to a more aggressive ALS-phenotype than missense mutations: a clinico-genetic study in Germany. Eur J Neurol 2012; 20:540-546. [PMID: 23217123 DOI: 10.1111/ene.12031] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/10/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Mutations in the FUS/TLS have been associated with amyotrophic lateral sclerosis (ALS) in a few percent of patients. METHODS We screened 184 familial (FALS) and 200 sporadic German patients with ALS for FUS/TLS mutations by sequence analysis of exons 5, 6 and 13-15. We compared the phenotypes of patients with different FUS/TLS mutations. RESULTS We identified three missense mutations p.K510R, p.R514G, p.R521H, and the two truncating mutations p.R495X and p.G478LfsX23 in samples from eight pedigrees. Both truncating mutations were associated with young onset and very aggressive disease courses, whereas the p.R521H, p.R514G and in particular the p.K510R mutation showed a milder phenotype with disease durations ranging from 3 years to more than 26 years, the longest reported for a patient with a FUS/TLS mutation. Also, in a pair of monozygous twins with the p.K510R mutation, a remarkable similar disease course was observed. CONCLUSIONS Mutations in FUS/TLS account for 8.7% (16 of 184) of FALS in Germany. This is a higher prevalence than reported from other countries. Truncating FUS/TLS mutations result in a more severe phenotype than most missense mutations. The wide phenotypic differences have implications for genetic counselling.
Collapse
Affiliation(s)
- S Waibel
- Department of Neurology, University of Ulm, Ulm, Germany
| | - M Neumann
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - A Rosenbohm
- Department of Neurology, University of Ulm, Ulm, Germany
| | - A Birve
- Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - A E Volk
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - J H Weishaupt
- Department of Neurology, University of Ulm, Ulm, Germany
| | - T Meyer
- Department of Neurology, Humboldt University Berlin, Berlin, Germany
| | - U Müller
- Department of Human Genetics, University of Giessen, Giessen, Germany
| | - P M Andersen
- Department of Neurology, University of Ulm, Ulm, Germany.,Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - A C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
19
|
Zou ZY, Cui LY, Sun Q, Li XG, Liu MS, Xu Y, Zhou Y, Yang XZ. De novo FUS gene mutations are associated with juvenile-onset sporadic amyotrophic lateral sclerosis in China. Neurobiol Aging 2012; 34:1312.e1-8. [PMID: 23046859 DOI: 10.1016/j.neurobiolaging.2012.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/26/2012] [Accepted: 09/07/2012] [Indexed: 12/18/2022]
Abstract
Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of motor neuron disease and occurs before 25 years of age. Only very few sporadic cases of juvenile-onset ALS have been reported. Rare SOD1 mutations and several FUS mutations have been identified in juvenile-onset ALS patients. To define the genetics of juvenile-onset sporadic ALS (SALS) of Chinese origin, we sequenced all 5 exons of SOD1, exons 3-6 and 12-15 of FUS in 11 juvenile-onset SALS patients, 105 adult-onset ALS patients (including 6 familial ALS [FALS] pedigrees), and 245 healthy controls. For the 11 juvenile-onset SALS and 6 FALS cases, the other 7 exons of FUS were also screened. A heterozygous de novo missense mutation c.1574C>T (p.P525L), a heterozygous de novo 2-base pair deletion c.1509_1510delAG (p.G504Wfs*12), and a nonsense mutation c.1483C>T (p.R495X) was each identified in 1 juvenile SALS patient. A heterozygous missense mutation c.1561C>G (p.R521G) was identified in a FALS proband. In the Chinese population, the frequency of FUS mutation in FALS is 11.4% (95% confidence interval [CI], 0.9%-22.0%), higher than the Japanese (10%; 95% CI, 0.7%-19.3%), and Caucasians (4.9%; 95% CI, 3.9%-6.0%). The frequency of FUS mutation in SALS patients is 1.5% (95% CI, 0.2%-2.9%), which is similar to Koreans (1.6%; 95% CI, 0%-3.2%), but higher than in Caucasians (0.6%; 95% CI, 0.4%-0.8%). Our findings suggest that de novo FUS mutations are associated with juvenile-onset SALS of Chinese origin and that this gene should be screened in ALS patients with a young age of onset, aggressive progression, and sporadic occurrence.
Collapse
Affiliation(s)
- Zhang-Yu Zou
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zou ZY, Peng Y, Wang XN, Liu MS, Li XG, Cui LY. Screening of the TARDBP gene in familial and sporadic amyotrophic lateral sclerosis patients of Chinese origin. Neurobiol Aging 2012; 33:2229.e11-2229.e18. [DOI: 10.1016/j.neurobiolaging.2012.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/04/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
|
21
|
van Blitterswijk M, van Es MA, Hennekam EAM, Dooijes D, van Rheenen W, Medic J, Bourque PR, Schelhaas HJ, van der Kooi AJ, de Visser M, de Bakker PIW, Veldink JH, van den Berg LH. Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet 2012; 21:3776-84. [PMID: 22645277 DOI: 10.1093/hmg/dds199] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with a substantial heritable component. In pedigrees affected by its familial form, incomplete penetrance is often observed. We hypothesized that this could be caused by a complex inheritance of risk variants in multiple genes. Therefore, we screened 111 familial ALS (FALS) patients from 97 families, and large cohorts of sporadic ALS (SALS) patients and control subjects for mutations in TAR DNA-binding protein (TARDBP), fused in sarcoma/translated in liposarcoma (FUS/TLS), superoxide dismutase-1 (SOD1), angiogenin (ANG) and chromosome 9 open reading frame 72 (C9orf72). Mutations were identified in 48% of FALS families, 8% of SALS patients and 0.5% of control subjects. In five of the FALS families, we identified multiple mutations in ALS-associated genes. We detected FUS/TLS and TARDBP mutations in combination with ANG mutations, and C9orf72 repeat expansions with TARDBP, SOD1 and FUS/TLS mutations. Statistical analysis demonstrated that the presence of multiple mutations in FALS is in excess of what is to be expected by chance (P = 1.57 × 10(-7)). The most compelling evidence for an oligogenic basis was found in individuals with a p.N352S mutation in TARDBP, detected in five FALS families and three apparently SALS patients. Genealogical and haplotype analyses revealed that these individuals shared a common ancestor. We obtained DNA of 14 patients with this TARDBP mutation, 50% of whom had an additional mutation (ANG, C9orf72 or homozygous TARDBP). Hereby, we provide evidence for an oligogenic aetiology of ALS. This may have important implications for the interpretation of whole exome/genome experiments designed to identify new ALS-associated genes and for genetic counselling, especially of unaffected family members.
Collapse
Affiliation(s)
- Marka van Blitterswijk
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht 3584 CX, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zou ZY, Peng Y, Feng XH, Wang XN, Sun Q, Liu MS, Li XG, Cui LY. Screening of the FUS gene in familial and sporadic amyotrophic lateral sclerosis patients of Chinese origin. Eur J Neurol 2012; 19:977-83. [DOI: 10.1111/j.1468-1331.2012.03662.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Schrooten M, Robberecht W, Van Damme P. From El Escorial to Awaji: where do we go next with the amyotrophic lateral sclerosis criteria? Neurodegener Dis Manag 2012. [DOI: 10.2217/nmt.11.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Making an early and accurate diagnosis in amyotrophic lateral sclerosis is important for patients and their families and for entry in clinical trials. Amyotrophic lateral sclerosis remains a clinical diagnosis, requiring the presence of upper and lower motor neuron symptoms and signs in multiple body regions, in patients with a progressive disease course and after exclusion of other diseases that can mimic the clinical presentation. Research criteria have been developed to allow uniform diagnosis. The original El Escorial criteria have been revised twice to improve the sensitivity. In this report, the current scientific status of these criteria is reviewed and suggestions for further adaptations are made.
Collapse
Affiliation(s)
- Maarten Schrooten
- Department of Neurology & Experimental Neurology, University Hospitals Leuven, KU Leuven, Belgium
| | - Wim Robberecht
- Department of Neurology & Experimental Neurology, University Hospitals Leuven, KU Leuven, Belgium
- LIND (Leuven Institute of Neurodegenerative Disorders), KU Leuven, Belgium
- Vesalius Research Center, VIB, Leuven, Belgium
| | - Philip Van Damme
- Neurology Department, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
24
|
Lanson NA, Pandey UB. FUS-related proteinopathies: lessons from animal models. Brain Res 2012; 1462:44-60. [PMID: 22342159 DOI: 10.1016/j.brainres.2012.01.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 12/11/2022]
Abstract
The recent identification of ALS-linked mutations in FUS and TDP-43 has led to a major shift in our thinking in regard to the potential molecular mechanisms of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). RNA-mediated proteinopathy is increasingly being recognized as a potential cause of neurodegenerative disorders. FUS and TDP-43 are structurally and functionally similar proteins. FUS is a DNA/RNA binding protein that may regulate aspects of RNA metabolism, including splicing, mRNA processing, and micro RNA biogenesis. It is unclear how ALS-linked mutations perturb the functions of FUS. This review highlights recent advances in understanding the functions of FUS and discusses findings from FUS animal models that provide several key insights into understanding the molecular mechanisms that might contribute to ALS pathogenesis.
Collapse
Affiliation(s)
- Nicholas A Lanson
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2223, USA
| | | |
Collapse
|
25
|
Chen Y, Yang M, Deng J, Chen X, Ye Y, Zhu L, Liu J, Ye H, Shen Y, Li Y, Rao EJ, Fushimi K, Zhou X, Bigio EH, Mesulam M, Xu Q, Wu JY. Expression of human FUS protein in Drosophila leads to progressive neurodegeneration. Protein Cell 2011; 2:477-86. [PMID: 21748598 DOI: 10.1007/s13238-011-1065-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 06/23/2011] [Indexed: 12/12/2022] Open
Abstract
Mutations in the Fused in sarcoma/Translated in liposarcoma gene (FUS/TLS, FUS) have been identified among patients with amyotrophic lateral sclerosis (ALS). FUS protein aggregation is a major pathological hallmark of FUS proteinopathy, a group of neurodegenerative diseases characterized by FUS-immunoreactive inclusion bodies. We prepared transgenic Drosophila expressing either the wild type (Wt) or ALS-mutant human FUS protein (hFUS) using the UAS-Gal4 system. When expressing Wt, R524S or P525L mutant FUS in photoreceptors, mushroom bodies (MBs) or motor neurons (MNs), transgenic flies show age-dependent progressive neural damages, including axonal loss in MB neurons, morphological changes and functional impairment in MNs. The transgenic flies expressing the hFUS gene recapitulate key features of FUS proteinopathy, representing the first stable animal model for this group of devastating diseases.
Collapse
Affiliation(s)
- Yanbo Chen
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|