1
|
Bede P, Chipika RH, Finegan E, Li Hi Shing S, Doherty MA, Hengeveld JC, Vajda A, Hutchinson S, Donaghy C, McLaughlin RL, Hardiman O. Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: A longitudinal neuroimaging study. NEUROIMAGE-CLINICAL 2019; 24:102054. [PMID: 31711033 PMCID: PMC6849418 DOI: 10.1016/j.nicl.2019.102054] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 01/06/2023]
Abstract
Computational neuroimaging captures focal brainstem pathology in motor neuron diseases in contrast to both healthy- and disease controls. ALS patients exhibit progressive medulla oblongata, pontine and mesencephalic volume loss over time. Brainstem atrophy in ALS and PLS is dominated by medulla oblongata volume reductions. Vertex analyses of ALS patients reveal flattening of the medullary pyramids bilaterally. Morphometric analyses in ALS detect density reductions in the mesencephalic crura consistent with corticospinal tract degeneration.
Background Brainstem pathology is a hallmark feature of ALS, yet most imaging studies focus on cortical grey matter alterations and internal capsule white matter pathology. Brainstem imaging in ALS provides a unique opportunity to appraise descending motor tract degeneration and bulbar lower motor neuron involvement. Methods A prospective longitudinal imaging study has been undertaken with 100 patients with ALS, 33 patients with PLS, 30 patients with FTD and 100 healthy controls. Volumetric, vertex and morphometric analyses were conducted correcting for demographic factors to characterise disease-specific patterns of brainstem pathology. Using a Bayesian segmentation algorithm, the brainstem was segmented into the medulla, pons and mesencephalon to measure regional volume reductions, shape analyses were performed to ascertain the atrophy profile of each study group and region-of-interest morphometry was used to evaluate focal density alterations. Results ALS and PLS patients exhibit considerable brainstem atrophy compared to both disease- and healthy controls. Volume reductions in ALS and PLS are dominated by medulla oblongata pathology, but pontine atrophy can also be detected. In ALS, vertex analyses confirm the flattening of the medullary pyramids bilaterally in comparison to healthy controls and widespread pontine shape deformations in contrast to PLS. The ALS cohort exhibit bilateral density reductions in the mesencephalic crura in contrast to healthy controls, central pontine atrophy compared to disease controls, peri-aqueduct mesencephalic and posterior pontine changes in comparison to PLS patients. Conclus ions: Computational brainstem imaging captures the degeneration of both white and grey matter components in ALS. Our longitudinal data indicate progressive brainstem atrophy over time, underlining the biomarker potential of quantitative brainstem measures in ALS. At a time when a multitude of clinical trials are underway worldwide, there is an unprecedented need for accurate biomarkers to monitor disease progression and detect response to therapy. Brainstem imaging is a promising addition to candidate biomarkers of ALS and PLS.
Collapse
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Siobhan Hutchinson
- Department of Neurology, St James's Hospital, James's St, Ushers, Dublin 8 D08 NHY1, Ireland
| | - Colette Donaghy
- Department of Neurology, Western Health & Social Care Trust, Belfast, UK
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
2
|
Bede P. The histological correlates of imaging metrics: postmortem validation of in vivo findings. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:457-460. [PMID: 31293187 DOI: 10.1080/21678421.2019.1639195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
3
|
Caron I, Micotti E, Paladini A, Merlino G, Plebani L, Forloni G, Modo M, Bendotti C. Comparative Magnetic Resonance Imaging and Histopathological Correlates in Two SOD1 Transgenic Mouse Models of Amyotrophic Lateral Sclerosis. PLoS One 2015; 10:e0132159. [PMID: 26132656 PMCID: PMC4488470 DOI: 10.1371/journal.pone.0132159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 06/10/2015] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal disease due to motoneuron degeneration. Magnetic resonance imaging (MRI) is becoming a promising non-invasive approach to monitor the disease course but a direct correlation with neuropathology is not feasible in human. Therefore in this study we aimed to examine MRI changes in relation to histopathology in two mouse models of ALS (C57BL6/J and 129S2/SvHsd SOD1G93A mice) with different disease onset and progression. A longitudinal in vivo analysis of T2 maps, compared to ex vivo histological changes, was performed on cranial motor nuclei. An increased T2 value was associated with a significant tissue vacuolization that occurred prior to motoneuron loss in the cranial nuclei of C57 SOD1G93A mice. Conversely, in 129Sv SOD1G93A mice, which exhibit a more severe phenotype, MRI detected a milder increase of T2 value, associated with a milder vacuolization. This suggests that alteration within brainstem nuclei is not predictive of a more severe phenotype in the SOD1G93A mouse model. Using an ex vivo paradigm, Diffusion Tensor Imaging was also applied to study white matter spinal cord degeneration. In contrast to degeneration of cranial nuclei, alterations in white matter and axons loss reflected the different disease phenotype of SOD1G93A mice. The correspondence between MRI and histology further highlights the potential of MRI to monitor progressive motoneuron and axonal degeneration non-invasively in vivo. The identification of prognostic markers of the disease nevertheless requires validation in multiple models of ALS to ensure that these are not merely model-specific. Eventually this approach has the potential to lead to the development of robust and validated non-invasive imaging biomarkers in ALS patients, which may help to monitor the efficacy of therapies.
Collapse
Affiliation(s)
- Ilaria Caron
- Laboratory of Molecular Neurobiology, Neuroscience Department, IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
| | - Edoardo Micotti
- Laboratory of Biology of neurodegenerative disorders, Neuroscience Department, IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
| | - Alessandra Paladini
- Laboratory of Biology of neurodegenerative disorders, Neuroscience Department, IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
| | - Giuseppe Merlino
- Laboratory of Molecular Neurobiology, Neuroscience Department, IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
| | - Laura Plebani
- Laboratory of Molecular Neurobiology, Neuroscience Department, IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
| | - Gianluigi Forloni
- Laboratory of Biology of neurodegenerative disorders, Neuroscience Department, IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
| | - Michel Modo
- McGowan Institute for Regenerative Medicine & Centre for the Neural Basis of Cognition, Departments of Radiology & Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Neuroscience Department, IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
- * E-mail:
| |
Collapse
|
4
|
Jukkola P, Gu C. Regulation of neurovascular coupling in autoimmunity to water and ion channels. Autoimmun Rev 2015; 14:258-67. [PMID: 25462580 PMCID: PMC4303502 DOI: 10.1016/j.autrev.2014.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/15/2014] [Indexed: 12/27/2022]
Abstract
Much progress has been made in understanding autoimmune channelopathies, but the underlying pathogenic mechanisms are not always clear due to broad expression of some channel proteins. Recent studies show that autoimmune conditions that interfere with neurovascular coupling in the central nervous system (CNS) can lead to neurodegeneration. Cerebral blood flow that meets neuronal activity and metabolic demand is tightly regulated by local neural activity. This process of reciprocal regulation involves coordinated actions of a number of cell types, including neurons, glia, and vascular cells. In particular, astrocytic endfeet cover more than 90% of brain capillaries to assist blood-brain barrier (BBB) function, and wrap around synapses and nodes of Ranvier to communicate with neuronal activity. In this review, we highlight four types of channel proteins that are expressed in astrocytes, regarding their structures, biophysical properties, expression and distribution patterns, and related diseases including autoimmune disorders. Water channel aquaporin 4 (AQP4) and inwardly rectifying potassium (Kir4.1) channels are concentrated in astrocytic endfeet, whereas some voltage-gated Ca(2+) and two-pore domain K(+) channels are expressed throughout the cell body of reactive astrocytes. More channel proteins are found in astrocytes under normal and abnormal conditions. This research field will contribute to a better understanding of pathogenic mechanisms underlying autoimmune disorders.
Collapse
Affiliation(s)
- Peter Jukkola
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Chen Gu
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
5
|
Figini M, Zucca I, Aquino D, Pennacchio P, Nava S, Di Marzio A, Preti MG, Baselli G, Spreafico R, Frassoni C. In vivo DTI tractography of the rat brain: an atlas of the main tracts in Paxinos space with histological comparison. Magn Reson Imaging 2014; 33:296-303. [PMID: 25482578 DOI: 10.1016/j.mri.2014.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 12/30/2022]
Abstract
Diffusion tensor imaging (DTI) is a magnetic resonance modality that permits to characterize the orientation and integrity of white matter (WM). DTI-based tractography techniques, allowing the virtual reconstruction of WM tract pathways, have found wide application in preclinical neurological research. Recently, anatomically detailed rat brain atlases including DTI data were constructed from ex vivo DTI images, but tractographic atlases of normal rats in vivo are still lacking. We propose here a probabilistic tractographic atlas of the main WM tracts in the healthy rat brain based on in vivo DTI acquisition. Our study was carried out on 10 adult female Sprague-Dawley rats using a 7T preclinical scanner. The MRI protocol permitted a reliable reconstruction of the main rat brain bundles: corpus callosum, cingulum, external capsule, internal capsule, anterior commissure, optic tract. The reconstructed fibers were compared with histological data, proving the viability of in vivo DTI tractography in the rat brain with the proposed acquisition and processing protocol. All the data were registered to a rat brain template in the coordinate system of the commonly used atlas by Paxinos and Watson; then the individual tracts were binarized and averaged, obtaining a probabilistic atlas in Paxinos-Watson space of the main rat brain WM bundles. With respect to the recent high-resolution MRI atlases, the resulting tractographic atlas, available online, provides complementary information about the average anatomical position of the considered WM tracts and their variability between normal animals. Furthermore, reference values for the main DTI-derived parameters, mean diffusivity and fractional anisotropy, were provided. Both these results can be used as references in preclinical studies on pathological rat models involving potential alterations of WM.
Collapse
Affiliation(s)
- Matteo Figini
- Scientific Direction, IRCCS Fondazione Istituto Neurologico "C. Besta", Milano, Italy; Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy
| | - Ileana Zucca
- Scientific Direction, IRCCS Fondazione Istituto Neurologico "C. Besta", Milano, Italy.
| | - Domenico Aquino
- Neuroradiology Department, IRCCS Fondazione Istituto Neurologico "C. Besta", Milano, Italy
| | - Paolo Pennacchio
- Clinical Epileptology and Experimental Neurophysiology Unit, IRCCS Fondazione Istituto Neurologico "C. Besta", Milano, Italy
| | - Simone Nava
- Neuroradiology Department, IRCCS Fondazione Istituto Neurologico "C. Besta", Milano, Italy
| | - Alessandro Di Marzio
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy
| | - Maria Giulia Preti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy; IRCCS S. Maria Nascente, Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
| | - Guseppe Baselli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy
| | - Roberto Spreafico
- Clinical Epileptology and Experimental Neurophysiology Unit, IRCCS Fondazione Istituto Neurologico "C. Besta", Milano, Italy
| | - Carolina Frassoni
- Clinical Epileptology and Experimental Neurophysiology Unit, IRCCS Fondazione Istituto Neurologico "C. Besta", Milano, Italy
| |
Collapse
|
6
|
Evans MC, Serres S, Khrapitchev AA, Stolp HB, Anthony DC, Talbot K, Turner MR, Sibson NR. T₂-weighted MRI detects presymptomatic pathology in the SOD1 mouse model of ALS. J Cereb Blood Flow Metab 2014; 34:785-93. [PMID: 24496176 PMCID: PMC4013759 DOI: 10.1038/jcbfm.2014.19] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/10/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022]
Abstract
Neuroinflammation has been identified as a potential therapeutic target in amyotrophic lateral sclerosis (ALS), but relevant biomarkers are needed. The superoxide dismutase (SOD1)(G93A) transgenic mouse model of ALS offers a unique opportunity to study and potentially manipulate presymptomatic pathology. While T₂-weighted magnetic resonance imaging (MRI) has been shown to be sensitive to pathologic changes at symptom onset, no earlier biomarkers were previously identified and the underlying histopathologic correlates remain uncertain. To address these issues, we used a multimodal MRI approach targeting structural (T₂, T₁, apparent diffusion coefficient (ADC), magnetization transfer ratio (MTR)), vascular (gadolinium diethylene triamine pentaacetic acid), and endothelial (vascular cell adhesion molecule-microparticles of iron oxide) changes, together with histopathologic analysis from presymptomatic to symptomatic stages of disease. Presymptomatic changes in brainstem nuclei were evident on T₂-weighted images from as early as 60 days (P<0.05). Histologic indices of vacuolation, astro- and microglial activation all correlated with T₂-weighted changes. Significant reductions in ADC (P<0.01) and MTR (P<0.05) were found at 120 days in the same brainstem nuclei. No changes in T₁ relaxation, vascular permeability, or endothelial activation were found at any stage of disease. These findings suggest that T₂-weighted MRI offers the strongest biomarker potential in this model, and that MRI has unique potential for noninvasive and longitudinal assessment of presymptomatically applied therapeutic and neuroprotective agents.
Collapse
Affiliation(s)
- Matthew C Evans
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, UK
| | - Sébastien Serres
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, UK
| | - Alexandre A Khrapitchev
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, UK
| | - Helen B Stolp
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Nicola R Sibson
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Turner MR, Bowser R, Bruijn L, Dupuis L, Ludolph A, McGrath M, Manfredi G, Maragakis N, Miller RG, Pullman SL, Rutkove SB, Shaw PJ, Shefner J, Fischbeck KH. Mechanisms, models and biomarkers in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14 Suppl 1:19-32. [PMID: 23678877 DOI: 10.3109/21678421.2013.778554] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The last 30 years have seen a major advance in the understanding of the clinical and pathological heterogeneity of amyotrophic lateral sclerosis (ALS), and its overlap with frontotemporal dementia. Multiple, seemingly disparate biochemical pathways converge on a common clinical syndrome characterized by progressive loss of upper and lower motor neurons. Pathogenic themes in ALS include excitotoxicity, oxidative stress, mitochondrial dysfunction, neuroinflammation, altered energy metabolism, and most recently RNA mis-processing. The transgenic rodent, overexpressing mutant superoxide dismutase-1, is now only one of several models of ALS pathogenesis. The nematode, fruit fly and zebrafish all offer fresh insight, and the development of induced pluripotent stem cell-derived motor neurons holds promise for the screening of candidate therapeutics. The lack of useful biomarkers in ALS contributes to diagnostic delay, and the inability to stratify patients by prognosis may be an important factor in the failure of therapeutic trials. Biomarkers sensitive to disease activity might lessen reliance on clinical measures and survival as trial endpoints and reduce study length. Emerging proteomic markers of neuronal loss and glial activity in cerebrospinal fluid, a cortical signature derived from advanced structural and functional MRI, and the development of more sensitive measurements of lower motor neuron physiology are leading a new phase of biomarker-driven therapeutic discovery.
Collapse
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Turner MR, Agosta F, Bede P, Govind V, Lulé D, Verstraete E. Neuroimaging in amyotrophic lateral sclerosis. Biomark Med 2012; 6:319-37. [PMID: 22731907 DOI: 10.2217/bmm.12.26] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The catastrophic system failure in amyotrophic lateral sclerosis is characterized by progressive neurodegeneration within the corticospinal tracts, brainstem nuclei and spinal cord anterior horns, with an extra-motor pathology that has overlap with frontotemporal dementia. The development of computed tomography and, even more so, MRI has brought insights into neurological disease, previously only available through post-mortem study. Although largely research-based, radionuclide imaging has continued to provide mechanistic insights into neurodegenerative disorders. The evolution of MRI to use advanced sequences highly sensitive to cortical and white matter structure, parenchymal metabolites and blood flow, many of which are now applicable to the spinal cord as well as the brain, make it a uniquely valuable tool for the study of a multisystem disorder such as amyotrophic lateral sclerosis. This comprehensive review considers the full range of neuroimaging techniques applied to amyotrophic lateral sclerosis over the last 25 years, the biomarkers they have revealed and future developments.
Collapse
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, UK.
| | | | | | | | | | | |
Collapse
|