1
|
Maimon A, Wald IY, Snir A, Ben Oz M, Amedi A. Perceiving depth beyond sight: Evaluating intrinsic and learned cues via a proof of concept sensory substitution method in the visually impaired and sighted. PLoS One 2024; 19:e0310033. [PMID: 39321152 PMCID: PMC11423994 DOI: 10.1371/journal.pone.0310033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
This study explores spatial perception of depth by employing a novel proof of concept sensory substitution algorithm. The algorithm taps into existing cognitive scaffolds such as language and cross modal correspondences by naming objects in the scene while representing their elevation and depth by manipulation of the auditory properties for each axis. While the representation of verticality utilized a previously tested correspondence with pitch, the representation of depth employed an ecologically inspired manipulation, based on the loss of gain and filtration of higher frequency sounds over distance. The study, involving 40 participants, seven of which were blind (5) or visually impaired (2), investigates the intrinsicness of an ecologically inspired mapping of auditory cues for depth by comparing it to an interchanged condition where the mappings of the two axes are swapped. All participants successfully learned to use the algorithm following a very brief period of training, with the blind and visually impaired participants showing similar levels of success for learning to use the algorithm as did their sighted counterparts. A significant difference was found at baseline between the two conditions, indicating the intuitiveness of the original ecologically inspired mapping. Despite this, participants were able to achieve similar success rates following the training in both conditions. The findings indicate that both intrinsic and learned cues come into play with respect to depth perception. Moreover, they suggest that by employing perceptual learning, novel sensory mappings can be trained in adulthood. Regarding the blind and visually impaired, the results also support the convergence view, which claims that with training, their spatial abilities can converge with those of the sighted. Finally, we discuss how the algorithm can open new avenues for accessibility technologies, virtual reality, and other practical applications.
Collapse
Affiliation(s)
- Amber Maimon
- Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- Computational Psychiatry and Neurotechnology Lab, Ben Gurion University, Be'er Sheva, Israel
| | - Iddo Yehoshua Wald
- Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- Digital Media Lab, University of Bremen, Bremen, Germany
| | - Adi Snir
- Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
| | - Meshi Ben Oz
- Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
| | - Amir Amedi
- Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
| |
Collapse
|
2
|
Buchs G, Haimler B, Kerem M, Maidenbaum S, Braun L, Amedi A. A self-training program for sensory substitution devices. PLoS One 2021; 16:e0250281. [PMID: 33905446 PMCID: PMC8078811 DOI: 10.1371/journal.pone.0250281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/01/2021] [Indexed: 11/30/2022] Open
Abstract
Sensory Substitution Devices (SSDs) convey visual information through audition or touch, targeting blind and visually impaired individuals. One bottleneck towards adopting SSDs in everyday life by blind users, is the constant dependency on sighted instructors throughout the learning process. Here, we present a proof-of-concept for the efficacy of an online self-training program developed for learning the basics of the EyeMusic visual-to-auditory SSD tested on sighted blindfolded participants. Additionally, aiming to identify the best training strategy to be later re-adapted for the blind, we compared multisensory vs. unisensory as well as perceptual vs. descriptive feedback approaches. To these aims, sighted participants performed identical SSD-stimuli identification tests before and after ~75 minutes of self-training on the EyeMusic algorithm. Participants were divided into five groups, differing by the feedback delivered during training: auditory-descriptive, audio-visual textual description, audio-visual perceptual simultaneous and interleaved, and a control group which had no training. At baseline, before any EyeMusic training, participants SSD objects’ identification was significantly above chance, highlighting the algorithm’s intuitiveness. Furthermore, self-training led to a significant improvement in accuracy between pre- and post-training tests in each of the four feedback groups versus control, though no significant difference emerged among those groups. Nonetheless, significant correlations between individual post-training success rates and various learning measures acquired during training, suggest a trend for an advantage of multisensory vs. unisensory feedback strategies, while no trend emerged for perceptual vs. descriptive strategies. The success at baseline strengthens the conclusion that cross-modal correspondences facilitate learning, given SSD algorithms are based on such correspondences. Additionally, and crucially, the results highlight the feasibility of self-training for the first stages of SSD learning, and suggest that for these initial stages, unisensory training, easily implemented also for blind and visually impaired individuals, may suffice. Together, these findings will potentially boost the use of SSDs for rehabilitation.
Collapse
Affiliation(s)
- Galit Buchs
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- Department of Cognitive Science, Faculty of Humanities, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail: (AA); (GB)
| | - Benedetta Haimler
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- Center of Advanced Technologies in Rehabilitation (CATR), The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Menachem Kerem
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
| | - Shachar Maidenbaum
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- Department of Biomedical Engineering, Ben Gurion University, Beersheba, Israel
| | - Liraz Braun
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amir Amedi
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- * E-mail: (AA); (GB)
| |
Collapse
|
3
|
Patel K, Parmar B. Assistive device using computer vision and image processing for visually impaired; review and current status. Disabil Rehabil Assist Technol 2020; 17:290-297. [PMID: 32608288 DOI: 10.1080/17483107.2020.1786731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Purpose: The purpose of this article is to review the vision substitution devices based on computer vision and Image processing. The focus of this article is on reviewing devices that require coding and sensors mechanism.Methods: Review of existing and commercially available vision assistive devices has been done. Comparison is based on feedback mechanics, adaptability in the surrounding environment, and functionality of devices. The study extended to advanced researches based on computer science and image processing. The integration of object detection and face recognition techniques in assistive devices for visually impaired in specific applications has been studied. Comparative analyses were presented.Results: The findings from this study suggest that a few assistive devices are available commercially. The commercially available assistive devices influenced by the mindsets of visually impaired and economical benefits. A combination of several devices can be fruitful in eliminating the limitation of an available device. Ample researches have been done for navigation, communication, object detection, and object recognition to assist visual impaired. The primary results might be promising, but most studies are not tested in actual conditions. Conclusion: Various assistive devices for visually impaired are available commercially and several studies indicate further advancement. However, adaptability and trustworthiness are major issues. The primary reason behind this is the low-performance level of the device, feedback, and testing. The secondary reason is commercial availability and poor knowledge of the end-user.IMPLICATIONS FOR REHABILITATIONAdvancement in computer science and image processing has paved the way to assist sensory impaired in doing various activities.Assistive technologies play a pivotal role in daily activities of visually impaired by assisting them for communication, and mobility.Assistive technologies can lead visually impaired to make them self-sustained.Very few research and devices related to assistive technology had reached the stage of testing and commercialization.Researchers can utilize the study in providing better assistive technology for the visually impaired.
Collapse
Affiliation(s)
- Karan Patel
- L. D College of Engineering, Gujarat Technological University, Ahmedabad, India
| | - Bhavesh Parmar
- L. D College of Engineering, Gujarat Technological University, Ahmedabad, India
| |
Collapse
|
4
|
Proulx MJ, Brown DJ, Lloyd-Esenkaya T, Leveson JB, Todorov OS, Watson SH, de Sousa AA. Visual-to-auditory sensory substitution alters language asymmetry in both sighted novices and experienced visually impaired users. APPLIED ERGONOMICS 2020; 85:103072. [PMID: 32174360 DOI: 10.1016/j.apergo.2020.103072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 12/05/2019] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Visual-to-auditory sensory substitution devices (SSDs) provide improved access to the visual environment for the visually impaired by converting images into auditory information. Research is lacking on the mechanisms involved in processing data that is perceived through one sensory modality, but directly associated with a source in a different sensory modality. This is important because SSDs that use auditory displays could involve binaural presentation requiring both ear canals, or monaural presentation requiring only one - but which ear would be ideal? SSDs may be similar to reading, as an image (printed word) is converted into sound (when read aloud). Reading, and language more generally, are typically lateralised to the left cerebral hemisphere. Yet, unlike symbolic written language, SSDs convert images to sound based on visuospatial properties, with the right cerebral hemisphere potentially having a role in processing such visuospatial data. Here we investigated whether there is a hemispheric bias in the processing of visual-to-auditory sensory substitution information and whether that varies as a function of experience and visual ability. We assessed the lateralization of auditory processing with two tests: a standard dichotic listening test and a novel dichotic listening test created using the auditory information produced by an SSD, The vOICe. Participants were tested either in the lab or online with the same stimuli. We did not find a hemispheric bias in the processing of visual-to-auditory information in visually impaired, experienced vOICe users. Further, we did not find any difference between visually impaired, experienced vOICe users and sighted novices in the hemispheric lateralization of visual-to-auditory information processing. Although standard dichotic listening is lateralised to the left hemisphere, the auditory processing of images in SSDs is bilateral, possibly due to the increased influence of right hemisphere processing. Auditory SSDs might therefore be equally effective with presentation to either ear if a monaural, rather than binaural, presentation were necessary.
Collapse
Affiliation(s)
- Michael J Proulx
- Department of Psychology, University of Bath, Bath, BA2 7AY, UK; Crossmodal Cognition Laboratory, REVEAL Research Centre, University of Bath, Bath, BA2 7AY, UK
| | - David J Brown
- Crossmodal Cognition Laboratory, REVEAL Research Centre, University of Bath, Bath, BA2 7AY, UK; Centre for Health and Cognition, Bath Spa University, Bath, BA2 9BN, UK
| | - Tayfun Lloyd-Esenkaya
- Crossmodal Cognition Laboratory, REVEAL Research Centre, University of Bath, Bath, BA2 7AY, UK; Department of Computer Science, REVEAL Research Centre, University of Bath, Bath, BA2 7AY, UK
| | - Jack Barnett Leveson
- Department of Psychology, University of Bath, Bath, BA2 7AY, UK; Crossmodal Cognition Laboratory, REVEAL Research Centre, University of Bath, Bath, BA2 7AY, UK
| | - Orlin S Todorov
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Samuel H Watson
- Centre for Health and Cognition, Bath Spa University, Bath, BA2 9BN, UK
| | - Alexandra A de Sousa
- Crossmodal Cognition Laboratory, REVEAL Research Centre, University of Bath, Bath, BA2 7AY, UK; Centre for Health and Cognition, Bath Spa University, Bath, BA2 9BN, UK.
| |
Collapse
|
5
|
Elmannai W, Elleithy K. Sensor-Based Assistive Devices for Visually-Impaired People: Current Status, Challenges, and Future Directions. SENSORS (BASEL, SWITZERLAND) 2017; 17:E565. [PMID: 28287451 PMCID: PMC5375851 DOI: 10.3390/s17030565] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/25/2017] [Accepted: 03/01/2017] [Indexed: 01/03/2023]
Abstract
The World Health Organization (WHO) reported that there are 285 million visuallyimpaired people worldwide. Among these individuals, there are 39 million who are totally blind. There have been several systems designed to support visually-impaired people and to improve the quality of their lives. Unfortunately, most of these systems are limited in their capabilities. In this paper, we present a comparative survey of the wearable and portable assistive devices for visuallyimpaired people in order to show the progress in assistive technology for this group of people. Thus, the contribution of this literature survey is to discuss in detail the most significant devices that are presented in the literature to assist this population and highlight the improvements, advantages, disadvantages, and accuracy. Our aim is to address and present most of the issues of these systems to pave the way for other researchers to design devices that ensure safety and independent mobility to visually-impaired people.
Collapse
Affiliation(s)
- Wafa Elmannai
- Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA.
| | - Khaled Elleithy
- Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA.
| |
Collapse
|
6
|
Schumann F, O'Regan JK. Sensory augmentation: integration of an auditory compass signal into human perception of space. Sci Rep 2017; 7:42197. [PMID: 28195187 PMCID: PMC5307328 DOI: 10.1038/srep42197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/06/2017] [Indexed: 12/30/2022] Open
Abstract
Bio-mimetic approaches to restoring sensory function show great promise in that they rapidly produce perceptual experience, but have the disadvantage of being invasive. In contrast, sensory substitution approaches are non-invasive, but may lead to cognitive rather than perceptual experience. Here we introduce a new non-invasive approach that leads to fast and truly perceptual experience like bio-mimetic techniques. Instead of building on existing circuits at the neural level as done in bio-mimetics, we piggy-back on sensorimotor contingencies at the stimulus level. We convey head orientation to geomagnetic North, a reliable spatial relation not normally sensed by humans, by mimicking sensorimotor contingencies of distal sounds via head-related transfer functions. We demonstrate rapid and long-lasting integration into the perception of self-rotation. Short training with amplified or reduced rotation gain in the magnetic signal can expand or compress the perceived extent of vestibular self-rotation, even with the magnetic signal absent in the test. We argue that it is the reliability of the magnetic signal that allows vestibular spatial recalibration, and the coding scheme mimicking sensorimotor contingencies of distal sounds that permits fast integration. Hence we propose that contingency-mimetic feedback has great potential for creating sensory augmentation devices that achieve fast and genuinely perceptual experiences.
Collapse
Affiliation(s)
- Frank Schumann
- Laboratoire Psychologie de la Perception - CNRS UMR 8242, Université Paris Descartes, Paris, France
| | - J Kevin O'Regan
- Laboratoire Psychologie de la Perception - CNRS UMR 8242, Université Paris Descartes, Paris, France
| |
Collapse
|
7
|
Proulx MJ, Gwinnutt J, Dell'Erba S, Levy-Tzedek S, de Sousa AA, Brown DJ. Other ways of seeing: From behavior to neural mechanisms in the online "visual" control of action with sensory substitution. Restor Neurol Neurosci 2016; 34:29-44. [PMID: 26599473 PMCID: PMC4927905 DOI: 10.3233/rnn-150541] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vision is the dominant sense for perception-for-action in humans and other higher primates. Advances in sight restoration now utilize the other intact senses to provide information that is normally sensed visually through sensory substitution to replace missing visual information. Sensory substitution devices translate visual information from a sensor, such as a camera or ultrasound device, into a format that the auditory or tactile systems can detect and process, so the visually impaired can see through hearing or touch. Online control of action is essential for many daily tasks such as pointing, grasping and navigating, and adapting to a sensory substitution device successfully requires extensive learning. Here we review the research on sensory substitution for vision restoration in the context of providing the means of online control for action in the blind or blindfolded. It appears that the use of sensory substitution devices utilizes the neural visual system; this suggests the hypothesis that sensory substitution draws on the same underlying mechanisms as unimpaired visual control of action. Here we review the current state of the art for sensory substitution approaches to object recognition, localization, and navigation, and the potential these approaches have for revealing a metamodal behavioral and neural basis for the online control of action.
Collapse
Affiliation(s)
- Michael J Proulx
- Crossmodal Cognition Lab, Department of Psychology, University of Bath, Bath, UK
| | - James Gwinnutt
- Crossmodal Cognition Lab, Department of Psychology, University of Bath, Bath, UK
| | - Sara Dell'Erba
- Crossmodal Cognition Lab, Department of Psychology, University of Bath, Bath, UK
| | - Shelly Levy-Tzedek
- Cognition, Aging and Rehabilitation Lab, Recanati School for Community Health Professions, Department of Physical Therapy & Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexandra A de Sousa
- Crossmodal Cognition Lab, Department of Psychology, University of Bath, Bath, UK.,Department of Science, Bath Spa University, Bath, UK
| | - David J Brown
- Crossmodal Cognition Lab, Department of Psychology, University of Bath, Bath, UK
| |
Collapse
|
8
|
Buchs G, Maidenbaum S, Levy-Tzedek S, Amedi A. Integration and binding in rehabilitative sensory substitution: Increasing resolution using a new Zooming-in approach. Restor Neurol Neurosci 2016; 34:97-105. [PMID: 26518671 PMCID: PMC4927841 DOI: 10.3233/rnn-150592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE To visually perceive our surroundings we constantly move our eyes and focus on particular details, and then integrate them into a combined whole. Current visual rehabilitation methods, both invasive, like bionic-eyes and non-invasive, like Sensory Substitution Devices (SSDs), down-sample visual stimuli into low-resolution images. Zooming-in to sub-parts of the scene could potentially improve detail perception. Can congenitally blind individuals integrate a 'visual' scene when offered this information via different sensory modalities, such as audition? Can they integrate visual information -perceived in parts - into larger percepts despite never having had any visual experience? METHODS We explored these questions using a zooming-in functionality embedded in the EyeMusic visual-to-auditory SSD. Eight blind participants were tasked with identifying cartoon faces by integrating their individual components recognized via the EyeMusic's zooming mechanism. RESULTS After specialized training of just 6-10 hours, blind participants successfully and actively integrated facial features into cartooned identities in 79±18% of the trials in a highly significant manner, (chance level 10% ; rank-sum P < 1.55E-04). CONCLUSIONS These findings show that even users who lacked any previous visual experience whatsoever can indeed integrate this visual information with increased resolution. This potentially has important practical visual rehabilitation implications for both invasive and non-invasive methods.
Collapse
Affiliation(s)
- Galit Buchs
- Department of Cognitive Science, Faculty of Humanities, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Research, Hebrew University of Jerusalem Hadassah Ein-Kerem, Jerusalem, Israel
| | - Shachar Maidenbaum
- The Edmond and Lily Safra Center for Brain Research, Hebrew University of Jerusalem Hadassah Ein-Kerem, Jerusalem, Israel
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel
| | - Shelly Levy-Tzedek
- Recanati School for Community Health Professions, Department of Physical Therapy, Ben Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Amir Amedi
- Department of Cognitive Science, Faculty of Humanities, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Research, Hebrew University of Jerusalem Hadassah Ein-Kerem, Jerusalem, Israel
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel
- Sorbonne Universités UPMC Univ Paris 06, Institut de la Vision Paris, France
| |
Collapse
|
9
|
Reich L, Amedi A. 'Visual' parsing can be taught quickly without visual experience during critical periods. Sci Rep 2015; 5:15359. [PMID: 26482105 PMCID: PMC4611203 DOI: 10.1038/srep15359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022] Open
Abstract
Cases of invasive sight-restoration in congenital blind adults demonstrated that acquiring visual abilities is extremely challenging, presumably because visual-experience during critical-periods is crucial for learning visual-unique concepts (e.g. size constancy). Visual rehabilitation can also be achieved using sensory-substitution-devices (SSDs) which convey visual information non-invasively through sounds. We tested whether one critical concept – visual parsing, which is highly-impaired in sight-restored patients – can be learned using SSD. To this end, congenitally blind adults participated in a unique, relatively short (~70 hours), SSD-‘vision’ training. Following this, participants successfully parsed 2D and 3D visual objects. Control individuals naïve to SSDs demonstrated that while some aspects of parsing with SSD are intuitive, the blind’s success could not be attributed to auditory processing alone. Furthermore, we had a unique opportunity to compare the SSD-users’ abilities to those reported for sight-restored patients who performed similar tasks visually, and who had months of eyesight. Intriguingly, the SSD-users outperformed the patients on most criteria tested. These suggest that with adequate training and technologies, key high-order visual features can be quickly acquired in adulthood, and lack of visual-experience during critical-periods can be somewhat compensated for. Practically, these highlight the potential of SSDs as standalone-aids or combined with invasive restoration approaches.
Collapse
Affiliation(s)
- Lior Reich
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| | - Amir Amedi
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel.,The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| |
Collapse
|
10
|
Stronks HC, Nau AC, Ibbotson MR, Barnes N. The role of visual deprivation and experience on the performance of sensory substitution devices. Brain Res 2015; 1624:140-152. [DOI: 10.1016/j.brainres.2015.06.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 06/15/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
|
11
|
Hannagan T, Amedi A, Cohen L, Dehaene-Lambertz G, Dehaene S. Origins of the specialization for letters and numbers in ventral occipitotemporal cortex. Trends Cogn Sci 2015; 19:374-82. [DOI: 10.1016/j.tics.2015.05.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/15/2015] [Accepted: 05/15/2015] [Indexed: 01/06/2023]
|
12
|
Stiles NRB, Zheng Y, Shimojo S. Length and orientation constancy learning in 2-dimensions with auditory sensory substitution: the importance of self-initiated movement. Front Psychol 2015; 6:842. [PMID: 26136719 PMCID: PMC4469823 DOI: 10.3389/fpsyg.2015.00842] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/03/2015] [Indexed: 12/02/2022] Open
Abstract
A subset of sensory substitution (SS) devices translate images into sounds in real time using a portable computer, camera, and headphones. Perceptual constancy is the key to understanding both functional and phenomenological aspects of perception with SS. In particular, constancies enable object externalization, which is critical to the performance of daily tasks such as obstacle avoidance and locating dropped objects. In order to improve daily task performance by the blind, and determine if constancies can be learned with SS, we trained blind (N = 4) and sighted (N = 10) individuals on length and orientation constancy tasks for 8 days at about 1 h per day with an auditory SS device. We found that blind and sighted performance at the constancy tasks significantly improved, and attained constancy performance that was above chance. Furthermore, dynamic interactions with stimuli were critical to constancy learning with the SS device. In particular, improved task learning significantly correlated with the number of spontaneous left-right head-tilting movements while learning length constancy. The improvement from previous head-tilting trials even transferred to a no-head-tilt condition. Therefore, not only can SS learning be improved by encouraging head movement while learning, but head movement may also play an important role in learning constancies in the sighted. In addition, the learning of constancies by the blind and sighted with SS provides evidence that SS may be able to restore vision-like functionality to the blind in daily tasks.
Collapse
Affiliation(s)
- Noelle R B Stiles
- Shimojo Psychophysics Laboratory, Biology and Biological Engineering, California Institute of Technology Pasadena, CA, USA ; Shimojo Psychophysics Laboratory, Computation and Neural Systems, California Institute of Technology Pasadena, CA, USA
| | - Yuqian Zheng
- Mechanical Engineering, California Institute of Technology Pasadena, CA, USA
| | - Shinsuke Shimojo
- Shimojo Psychophysics Laboratory, Biology and Biological Engineering, California Institute of Technology Pasadena, CA, USA ; Shimojo Psychophysics Laboratory, Computation and Neural Systems, California Institute of Technology Pasadena, CA, USA
| |
Collapse
|
13
|
Chebat DR, Maidenbaum S, Amedi A. Navigation using sensory substitution in real and virtual mazes. PLoS One 2015; 10:e0126307. [PMID: 26039580 PMCID: PMC4454637 DOI: 10.1371/journal.pone.0126307] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/31/2015] [Indexed: 01/27/2023] Open
Abstract
Under certain specific conditions people who are blind have a perception of space that is equivalent to that of sighted individuals. However, in most cases their spatial perception is impaired. Is this simply due to their current lack of access to visual information or does the lack of visual information throughout development prevent the proper integration of the neural systems underlying spatial cognition? Sensory Substitution devices (SSDs) can transfer visual information via other senses and provide a unique tool to examine this question. We hypothesize that the use of our SSD (The EyeCane: a device that translates distance information into sounds and vibrations) can enable blind people to attain a similar performance level as the sighted in a spatial navigation task. We gave fifty-six participants training with the EyeCane. They navigated in real life-size mazes using the EyeCane SSD and in virtual renditions of the same mazes using a virtual-EyeCane. The participants were divided into four groups according to visual experience: congenitally blind, low vision & late blind, blindfolded sighted and sighted visual controls. We found that with the EyeCane participants made fewer errors in the maze, had fewer collisions, and completed the maze in less time on the last session compared to the first. By the third session, participants improved to the point where individual trials were no longer significantly different from the initial performance of the sighted visual group in terms of errors, time and collision.
Collapse
Affiliation(s)
- Daniel-Robert Chebat
- The Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Research, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel; Department of Behavioral Sciences, Ariel University, Ariel, Israel
| | - Shachar Maidenbaum
- The Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Research, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel
| | - Amir Amedi
- The Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Research, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel
| |
Collapse
|
14
|
Elli GV, Benetti S, Collignon O. Is there a future for sensory substitution outside academic laboratories? Multisens Res 2015; 27:271-91. [PMID: 25693297 DOI: 10.1163/22134808-00002460] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sensory substitution devices (SSDs) have been developed with the ultimate purpose of supporting sensory deprived individuals in their daily activities. However, more than forty years after their first appearance in the scientific literature, SSDs still remain more common in research laboratories than in the daily life of people with sensory deprivation. Here, we seek to identify the reasons behind the limited diffusion of SSDs among the blind community by discussing the ergonomic, neurocognitive and psychosocial issues potentially associated with the use of these systems. We stress that these issues should be considered together when developing future devices or improving existing ones. We provide some examples of how to achieve this by adopting a multidisciplinary and participatory approach. These efforts would contribute not solely to address fundamental theoretical research questions, but also to better understand the everyday needs of blind people and eventually promote the use of SSDs outside laboratories.
Collapse
|
15
|
Nau AC, Pintar C, Arnoldussen A, Fisher C. Acquisition of Visual Perception in Blind Adults Using the BrainPort Artificial Vision Device. Am J Occup Ther 2015; 69:6901290010p1-8. [PMID: 25553750 PMCID: PMC4281706 DOI: 10.5014/ajot.2015.011809] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE We sought to determine whether intensive low vision rehabilitation would confer any functional improvement in a sample of blind adults using the BrainPort artificial vision device. METHOD Eighteen adults ages 28-69 yr (n=10 men and n=8 women) who had light perception only or worse vision bilaterally spent up to 6 hr per day for 1 wk undergoing structured rehabilitation interventions. The functional outcomes of object identification and word recognition were tested at baseline and after rehabilitation training. RESULTS At baseline, participants were unable to complete the two functional assessments. After participation in the 1-wk training protocol, participants were able to use the BrainPort device to complete the two tasks with moderate success. CONCLUSION Without training, participants were not able to perform above chance level using the BrainPort device. As artificial vision technologies become available, occupational therapy practitioners can play a key role in clients' success or failure in using these devices.
Collapse
Affiliation(s)
- Amy C Nau
- Amy C. Nau, OD, is Assistant Professor, University of Pittsburgh Medical Center Eye Center; McGowan Institute for Regenerative Medicine; and Fox Center for Vision Restoration, Korb & Associates, Boston MA;
| | - Christine Pintar
- Christine Pintar, MS, is Clinical Research Coordinator, Fox Center for Vision Restoration, Pittsburgh, PA
| | - Aimee Arnoldussen
- Aimee Arnoldussen, PhD, is Technology Assessment Program Manager, University of Wisconsin, Madison
| | - Christopher Fisher
- Christopher Fisher is Research Assistant, Fox Center for Vision Restoration, Sensory Substitution Laboratory, Pittsburgh, PA
| |
Collapse
|
16
|
Lee VK, Nau AC, Laymon C, Chan KC, Rosario BL, Fisher C. Successful tactile based visual sensory substitution use functions independently of visual pathway integrity. Front Hum Neurosci 2014; 8:291. [PMID: 24860473 PMCID: PMC4026734 DOI: 10.3389/fnhum.2014.00291] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/18/2014] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Neuronal reorganization after blindness is of critical interest because it has implications for the rational prescription of artificial vision devices. The purpose of this study was to distinguish the microstructural differences between perinatally blind (PB), acquired blind (AB), and normally sighted controls (SCs) and relate these differences to performance on functional tasks using a sensory substitution device (BrainPort). METHODS We enrolled 52 subjects (PB n = 11; AB n = 35; SC n = 6). All subjects spent 15 h undergoing BrainPort device training. Outcomes of light perception, motion, direction, temporal resolution, grating, and acuity were tested at baseline and after training. Twenty-six of the subjects were scanned with a three Tesla MRI scanner for diffusion tensor imaging (DTI), and with a positron emission tomography (PET) scanner for mapping regional brain glucose consumption during sensory substitution function. Non-parametric models were used to analyze fractional anisotropy (FA; a DTI measure of microstructural integrity) of the brain via region-of-interest (ROI) analysis and tract-based spatial statistics (TBSS). RESULTS At baseline, all subjects performed all tasks at chance level. After training, light perception, time resolution, location and grating acuity tasks improved significantly for all subject groups. ROI and TBSS analyses of FA maps show areas of statistically significant differences (p ≤ 0.025) in the bilateral optic radiations and some visual association connections between all three groups. No relationship was found between FA and functional performance with the BrainPort. DISCUSSION All subjects showed performance improvements using the BrainPort irrespective of nature and duration of blindness. Definite brain areas with significant microstructural integrity changes exist among PB, AB, and NC, and these variations are most pronounced in the visual pathways. However, the use of sensory substitution devices is feasible irrespective of microstructural integrity of the primary visual pathways between the eye and the brain. Therefore, tongue based devices devices may be usable for a broad array of non-sighted patients.
Collapse
Affiliation(s)
- Vincent K Lee
- Department of Radiology, University of Pittsburgh Pittsburgh, PA, USA
| | - Amy C Nau
- Sensory Substitution Laboratory, Department of Ophthalmology, Eye and Ear Institute, University of Pittsburgh Pittsburgh, PA, USA ; Department of Ophthalmology, University of Pittsburgh Medical Center Pittsburgh, PA, USA ; McGowan Institute for Regenerative Medicine, University of Pittsburgh Pittsburgh, PA, USA ; Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh Pittsburgh, PA, USA
| | - Charles Laymon
- Department of Radiology, University of Pittsburgh Pittsburgh, PA, USA
| | - Kevin C Chan
- Department of Ophthalmology, University of Pittsburgh Medical Center Pittsburgh, PA, USA ; McGowan Institute for Regenerative Medicine, University of Pittsburgh Pittsburgh, PA, USA ; Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh Pittsburgh, PA, USA ; Department of Bioengineering, University of Pittsburgh Pittsburgh, PA, USA ; Center for the Neural Basis of Cognition, University of Pittsburgh-Carnegie Mellon University Pittsburgh, PA, USA
| | - Bedda L Rosario
- Department of Radiology, University of Pittsburgh Pittsburgh, PA, USA
| | - Chris Fisher
- Sensory Substitution Laboratory, Department of Ophthalmology, Eye and Ear Institute, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|
17
|
Maidenbaum S, Abboud S, Amedi A. Sensory substitution: closing the gap between basic research and widespread practical visual rehabilitation. Neurosci Biobehav Rev 2013; 41:3-15. [PMID: 24275274 DOI: 10.1016/j.neubiorev.2013.11.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 10/06/2013] [Accepted: 11/08/2013] [Indexed: 11/25/2022]
Abstract
Sensory substitution devices (SSDs) have come a long way since first developed for visual rehabilitation. They have produced exciting experimental results, and have furthered our understanding of the human brain. Unfortunately, they are still not used for practical visual rehabilitation, and are currently considered as reserved primarily for experiments in controlled settings. Over the past decade, our understanding of the neural mechanisms behind visual restoration has changed as a result of converging evidence, much of which was gathered with SSDs. This evidence suggests that the brain is more than a pure sensory-machine but rather is a highly flexible task-machine, i.e., brain regions can maintain or regain their function in vision even with input from other senses. This complements a recent set of more promising behavioral achievements using SSDs and new promising technologies and tools. All these changes strongly suggest that the time has come to revive the focus on practical visual rehabilitation with SSDs and we chart several key steps in this direction such as training protocols and self-train tools.
Collapse
Affiliation(s)
- Shachar Maidenbaum
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| | - Sami Abboud
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| | - Amir Amedi
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel; The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91220, Israel.
| |
Collapse
|
18
|
Voss P. Sensitive and critical periods in visual sensory deprivation. Front Psychol 2013; 4:664. [PMID: 24133469 PMCID: PMC3783842 DOI: 10.3389/fpsyg.2013.00664] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/05/2013] [Indexed: 11/13/2022] Open
Abstract
While the demonstration of crossmodal plasticity is well established in congenital and early blind individuals, great debate still surrounds whether those who acquire blindness later in life can also benefit from such compensatory changes. No proper consensus has been reached despite the fact that a proper understanding of the developmental time course of these changes, and whether their occurrence is limited to—or within—specific time windows, is crucial to our understanding of the crossmodal phenomena. An extensive review of the literature reveals that while the majority of investigations to date have examined the crossmodal plasticity available to late blind individuals in quantitative terms, recent findings rather suggest that this reorganization also likely changes qualitatively compared to what is observed in early blindness. This obviously could have significant repercussions not only for the training and rehabilitation of blind individuals, but for the development of appropriate neuroprostheses designed to aid and potentially restore vision. Important parallels will also be drawn with the current state of research on deafness, which is particularly relevant given in the development of successful neuroprostheses (e.g., cochlear implants) for providing auditory input to the central nervous system otherwise aurally deafferented. Lastly, this paper will address important inconsistencies across the literature concerning the definition of distinct blind groups based on the age of blindness onset, and propose several alternatives to using such a categorization.
Collapse
Affiliation(s)
- Patrice Voss
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University Montreal, QC, Canada ; International Laboratory for Brain, Music and Sound Research Montreal, QC, Canada
| |
Collapse
|
19
|
Renier L, De Volder AG, Rauschecker JP. Cortical plasticity and preserved function in early blindness. Neurosci Biobehav Rev 2013; 41:53-63. [PMID: 23453908 DOI: 10.1016/j.neubiorev.2013.01.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 01/09/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
The "neural Darwinism" theory predicts that when one sensory modality is lacking, as in congenital blindness, the target structures are taken over by the afferent inputs from other senses that will promote and control their functional maturation (Edelman, 1993). This view receives support from both cross-modal plasticity experiments in animal models and functional imaging studies in man, which are presented here.
Collapse
Affiliation(s)
- Laurent Renier
- Université catholique de Louvain, Institute of Neuroscience (IoNS), Avenue Hippocrate, 54, UCL-B1.5409, B-1200 Brussels, Belgium.
| | - Anne G De Volder
- Université catholique de Louvain, Institute of Neuroscience (IoNS), Avenue Hippocrate, 54, UCL-B1.5409, B-1200 Brussels, Belgium
| | - Josef P Rauschecker
- Laboratory for Integrative Neuroscience and Cognition; Department of Neuroscience; Georgetown University, Medical Center; 3970 Reservoir Road, NW, Washington, DC 20007, USA
| |
Collapse
|
20
|
Qin W, Liu Y, Jiang T, Yu C. The development of visual areas depends differently on visual experience. PLoS One 2013; 8:e53784. [PMID: 23308283 PMCID: PMC3538632 DOI: 10.1371/journal.pone.0053784] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/05/2012] [Indexed: 11/29/2022] Open
Abstract
Visual experience plays an important role in the development of the visual cortex; however, recent functional imaging studies have shown that the functional organization is preserved in several higher-tier visual areas in congenitally blind subjects, indicating that maturation of visual areas depend unequally on visual experience. In this study, we aim to validate this hypothesis using a multimodality MRI approach. We found increased cortical thickness in the congenitally blind was present in the early visual areas and absent in the higher-tier ones, suggesting that the structural development of the visual cortex depends hierarchically on visual experience. In congenitally blind subjects, the decreased resting-state functional connectivity with the primary somatosensory cortex was more prominent in the early visual areas than in the higher-tier ones and were more pronounced in the ventral stream than in the dorsal one, suggesting that the development of functional organization of the visual cortex also depends differently on visual experience. Moreover, congenitally blind subjects showed normal or increased functional connectivity between ipsilateral higher-tier and early visual areas, suggesting an indirect corticocortical pathway through which somatosenroy information can reach the early visual areas. These findings support our hypothesis that the development of visual areas depends differently on visual experience.
Collapse
Affiliation(s)
- Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong Liu
- LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Tianzi Jiang
- LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, Beijing, China
- * E-mail: (CY); (TJ)
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- * E-mail: (CY); (TJ)
| |
Collapse
|
21
|
Striem-Amit E, Guendelman M, Amedi A. 'Visual' acuity of the congenitally blind using visual-to-auditory sensory substitution. PLoS One 2012; 7:e33136. [PMID: 22438894 PMCID: PMC3306374 DOI: 10.1371/journal.pone.0033136] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 02/04/2012] [Indexed: 11/17/2022] Open
Abstract
Sensory Substitution Devices (SSDs) convey visual information through sounds or touch, thus theoretically enabling a form of visual rehabilitation in the blind. However, for clinical use, these devices must provide fine-detailed visual information which was not yet shown for this or other means of visual restoration. To test the possible functional acuity conveyed by such devices, we used the Snellen acuity test conveyed through a high-resolution visual-to-auditory SSD (The vOICe). We show that congenitally fully blind adults can exceed the World Health Organization (WHO) blindness acuity threshold using SSDs, reaching the highest acuity reported yet with any visual rehabilitation approach. This demonstrates the potential capacity of SSDs as inexpensive, non-invasive visual rehabilitation aids, alone or when supplementing visual prostheses.
Collapse
Affiliation(s)
- Ella Striem-Amit
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | |
Collapse
|
22
|
|
23
|
Collignon O, Champoux F, Voss P, Lepore F. Sensory rehabilitation in the plastic brain. PROGRESS IN BRAIN RESEARCH 2011; 191:211-31. [PMID: 21741554 DOI: 10.1016/b978-0-444-53752-2.00003-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The purpose of this review is to consider new sensory rehabilitation avenues in the context of the brain's remarkable ability to reorganize itself following sensory deprivation. Here, deafness and blindness are taken as two illustrative models. Mainly, two promising rehabilitative strategies based on opposing theoretical principles will be considered: sensory substitution and neuroprostheses. Sensory substitution makes use of the remaining intact senses to provide blind or deaf individuals with coded information of the lost sensory system. This technique thus benefits from added neural resources in the processing of the remaining senses resulting from crossmodal plasticity, which is thought to be coupled with behavioral enhancements in the intact senses. On the other hand, neuroprostheses represent an invasive approach aimed at stimulating the deprived sensory system directly in order to restore, at least partially, its functioning. This technique therefore relies on the neuronal integrity of the brain areas normally dedicated to the deprived sense and is rather hindered by the compensatory reorganization observed in the deprived cortex. Here, we stress that our understanding of the neuroplastic changes that occur in sensory-deprived individuals may help guide the design and the implementation of such rehabilitative methods.
Collapse
Affiliation(s)
- Olivier Collignon
- Centre de Recherche en Neuropsychologie et Cognition, CERNEC, Université de Montréal, Montréal, Québec, Canada.
| | | | | | | |
Collapse
|