1
|
López-Albors O, Llamas-López PJ, Ortuño JÁ, Latorre R, García-Vázquez FA. In vivo measurement of pH and CO 2 levels in the uterus of sows through the estrous cycle and after insemination. Sci Rep 2021; 11:3194. [PMID: 33542361 PMCID: PMC7862298 DOI: 10.1038/s41598-021-82620-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
The pH-CO2-HCO3- system is a ubiquitous biological regulator with important functional implications for reproduction. Knowledge of the physiological values of its components is relevant for reproductive biology and the optimization of Assisted Reproductive Technologies (ARTs). However, in situ measurements of these parameters in the uterus are scarce or null. This study describes a non-invasive method for in situ time-lapse recording of pH and CO2 within the uterus of non-anesthetized sows. Animals were at three different reproductive conditions, estrous with no insemination and two hours after insemination, and diestrous. From pH and CO2 data, HCO3- concentration was estimated. The non-invasive approach to the porcine uterus with novel optical probes allowed the obtaining of in situ physiological values of pH, CO2, and HCO3-. Variable oscillatory patterns of pH, CO2 and HCO3- were found independently of the estrous condition. Insemination did not immediately change the levels of uterine pH, CO2 (%) and HCO3- concentration, but all the values were affected by the estrous cycle decreasing significantly at diestrous condition. This study contributes to a better understanding of the in vivo regulation of the pH-CO2-HCO3- system in the uterus and may help to optimize the protocols of sperm treatment for in vitro fertilization.
Collapse
Affiliation(s)
- Octavio López-Albors
- grid.10586.3a0000 0001 2287 8496Department of Anatomy and Comparative Pathology, University of Murcia, 30100 Murcia, Spain ,International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Pedro José Llamas-López
- grid.10586.3a0000 0001 2287 8496Department of Physiology, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Joaquín Ángel Ortuño
- grid.10586.3a0000 0001 2287 8496Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain
| | - Rafael Latorre
- grid.10586.3a0000 0001 2287 8496Department of Anatomy and Comparative Pathology, University of Murcia, 30100 Murcia, Spain ,International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Francisco Alberto García-Vázquez
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain ,grid.10586.3a0000 0001 2287 8496Department of Physiology, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain ,grid.452553.0Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
2
|
Chiaramonte N, Maach S, Biliotti C, Angeli A, Bartolucci G, Braconi L, Dei S, Teodori E, Supuran CT, Romanelli MN. Synthesis and carbonic anhydrase activating properties of a series of 2-amino-imidazolines structurally related to clonidine 1. J Enzyme Inhib Med Chem 2021; 35:1003-1010. [PMID: 32336172 PMCID: PMC7241460 DOI: 10.1080/14756366.2020.1749602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Carbonic Anhydrase (CA, EC 4.2.1.1) activating properties of histamine have been known for a long time. This compound has been extensively modified but only in few instances the imidazole ring has been replaced with other heterocycles. It was envisaged that the imidazoline ring could be a bioisoster of the imidazole moiety. Indeed, we report that clonidine, a 2-aminoimidazoline derivative, was found able to activate several human CA isoforms (hCA I, IV, VA, VII, IX, XII and XIII), with potency in the micromolar range, while it was inactive on hCA II. A series of 2-aminoimidazoline, structurally related to clonidine, was then synthesised and tested on selected hCA isoforms. The compounds were inactive on hCA II while displayed activating properties on hCA I, VA, VII and XIII, with KA values in the micromolar range. Two compounds (10 and 11) showed some preference for the hCA VA or VII isoforms.
Collapse
Affiliation(s)
- Niccolò Chiaramonte
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| | - Soumia Maach
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| | - Caterina Biliotti
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| | - Andrea Angeli
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| | - Gianluca Bartolucci
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| | - Laura Braconi
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| | - Silvia Dei
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| | - Elisabetta Teodori
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| | - Maria Novella Romanelli
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Xiao H, Wang Y, Jia X, Yang L, Wang X, Guo X, Zhang Z. Tris(4-hydroxyphenyl)ethane (THPE), a trisphenol compound, is antiestrogenic and can retard uterine development in CD-1 mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113962. [PMID: 32004960 DOI: 10.1016/j.envpol.2020.113962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/26/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Tris (4-hydroxyphenyl)ethane (THPE), a trisphenol compound widely used as a branching agent and raw material in plastics, adhesives, and coatings is rarely regarded with concern. However, inspection of in vitro data suggests that THPE is an antagonist of estrogen receptors (ERs). Accordingly, we aimed to evaluate the antiestrogenicity of THPE in vivo and tested its effect via oral gavage on pubertal development in female CD-1 mice. Using uterotrophic assays, we found that THPE either singly, or combined with 17β-estradiol (E2) (400 μg/kg bw/day) suppressed the uterine weights at low doses (0.1, 0.3, and 1 mg/kg bw/day) in 3-day treatment of weaning mice. When mice were treated with THPE during adolescence (for 10 days beginning on postnatal day 24), their uterine development was significantly retarded at doses of at least 0.1 mg/kg bw/day, manifest as decreased uterine weight, atrophic endometrial stromal cells and thinner columnar epithelial cells. Transcriptome analyses of uteri demonstrated that estrogen-responsive genes were significantly downregulated by THPE. Molecular docking shows that THPE fits well into the antagonist pocket of human ERα. These results indicate that THPE possesses strong antiestrogenicity in vivo and can disrupt normal female development in mice at very low dosages.
Collapse
Affiliation(s)
- Han Xiao
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Yue Wang
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Xiaojing Jia
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Lei Yang
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Xiaoning Wang
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Xuan Guo
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Zhaobin Zhang
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Giribabu N, Karim K, Salleh N. Effects of Marantodes pumilum (Kacip Fatimah) on vaginal pH and expression of vacoular ATPase and carbonic anhydrase in the vagina of sex-steroid deficient female rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 49:95-105. [PMID: 30217266 DOI: 10.1016/j.phymed.2018.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 04/27/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND In sex-steroid deficiency, increased in the pH of vaginal fluid is due to low estrogen levels. HYPOTHESIS Consumption of Marantodes pumilum leaves helps to ameliorate increased in vaginal fluid pH in sex-steroid deficient condition. PURPOSE To investigate changes in vaginal fluid pH and expression of proteins that participate in pH changes i.e vacoular (V)-ATPases and carbonic anhydrases (CA) in the vagina following M. pumilum leaves consumption. METHODS Ovariectomized adult female rats were treated orally with M. pumilum leaves extract (MPE) at 100, 250 and 500 mg/kg.b.w and estradiol at 0.2 µg/kg/b.w for 28 days. At the end of the treatment, vaginal fluid pH was measured in anesthetised rats by using micropH probe. Following sacrificed, levels of V-ATPase and CA proteins and mRNAs in the vagina were identified by Western blotting and real-time PCR, respectively. Protein distribution was visualized by immunohistochemistry. RESULTS Administration of MPE causes the pH of vaginal fluid to decrease and expression and distribution of vaginal V-ATPase A & B and CA II, III, IX, XII and XIII to increase. CONCLUSIONS The decrease in vaginal fluid pH following MPE treatment suggested that this herb has potential to be used to ameliorate vaginal fluid pH changes in sex-steroid deficient condition.
Collapse
Affiliation(s)
- Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kamarulzaman Karim
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
5
|
Sayem ASM, Giribabu N, Muniandy S, Salleh N. Effects of thyroxine on expression of proteins related to thyroid hormone functions (TR-α, TR-β, RXR and ERK1/2) in uterus during peri-implantation period. Biomed Pharmacother 2017; 96:1016-1021. [DOI: 10.1016/j.biopha.2017.11.128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/18/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023] Open
|
6
|
Yang X, Guo Y, He J, Zhang F, Sun X, Yang S, Dong H. Estrogen and estrogen receptors in the modulation of gastrointestinal epithelial secretion. Oncotarget 2017; 8:97683-97692. [PMID: 29228643 PMCID: PMC5722595 DOI: 10.18632/oncotarget.18313] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/22/2017] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) epithelial ion transport is physiologically important in many aspects of humans, such as in maintaining fluid balance of whole body, and also plays a role in the development and progression of common GI disease. Estrogen and estrogen receptors have been shown to modulate the activity of epithelial ion secretion in GI tract. This review aims to address the current state of knowledge about the role of estrogen and estrogen receptors in modulation of GI epithelial secretion and to elucidate the underlying mechanisms. We highlight the recent findings regarding the importance of estrogen and estrogen receptors in GI epithelia protection and body fluid balance by modulation of gastrointestinal epithelial HCO3- and Cl- secretion, especially current information about the regulatory mechanisms of duodenal HCO3- secretion based on our study in this field. Since there are no reviews on this topic but only few papers to address the main issues, we hope to timely provide new perspectives for the association between estrogen and GI disease.
Collapse
Affiliation(s)
- Xin Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Yanjun Guo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Jialin He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Fenglian Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Xuemei Sun
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China.,Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, California, USA
| |
Collapse
|
7
|
McDonald PC, Chafe SC, Dedhar S. Overcoming Hypoxia-Mediated Tumor Progression: Combinatorial Approaches Targeting pH Regulation, Angiogenesis and Immune Dysfunction. Front Cell Dev Biol 2016; 4:27. [PMID: 27066484 PMCID: PMC4814851 DOI: 10.3389/fcell.2016.00027] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/18/2016] [Indexed: 12/22/2022] Open
Abstract
Hypoxia is an important contributor to the heterogeneity of the microenvironment of solid tumors and is a significant environmental stressor that drives adaptations which are essential for the survival and metastatic capabilities of tumor cells. Critical adaptive mechanisms include altered metabolism, pH regulation, epithelial-mesenchymal transition, angiogenesis, migration/invasion, diminished response to immune cells and resistance to chemotherapy and radiation therapy. In particular, pH regulation by hypoxic tumor cells, through the modulation of cell surface molecules such as extracellular carbonic anhydrases (CAIX and CAXII) and monocarboxylate transporters (MCT-1 and MCT-4) functions to increase cancer cell survival and enhance cell invasion while also contributing to immune evasion. Indeed, CAIX is a vital regulator of hypoxia mediated tumor progression, and targeted inhibition of its function results in reduced tumor growth, metastasis, and cancer stem cell function. However, the integrated contributions of the repertoire of hypoxia-induced effectors of pH regulation for tumor survival and invasion remain to be fully explored and exploited as therapeutic avenues. For example, the clinical use of anti-angiogenic agents has identified a conundrum whereby this treatment increases hypoxia and cancer stem cell components of tumors, and accelerates metastasis. Furthermore, hypoxia results in the infiltration of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Treg) and Tumor Associated Macrophages (TAMs), and also stimulates the expression of PD-L1 on tumor cells, which collectively suppress T-cell mediated tumor cell killing. Therefore, combinatorial targeting of angiogenesis, the immune system and pH regulation in the context of hypoxia may lead to more effective strategies for curbing tumor progression and therapeutic resistance, thereby increasing therapeutic efficacy and leading to more effective strategies for the treatment of patients with aggressive cancer.
Collapse
Affiliation(s)
- Paul C McDonald
- Department of Integrative Oncology, British Columbia Cancer Research Centre Vancouver, BC, Canada
| | - Shawn C Chafe
- Department of Integrative Oncology, British Columbia Cancer Research Centre Vancouver, BC, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, British Columbia Cancer Research CentreVancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|