1
|
Benito JB, Porter ML, Niemiller ML. Comparative mitogenomic analysis of subterranean and surface amphipods (Crustacea, Amphipoda) with special reference to the family Crangonyctidae. BMC Genomics 2024; 25:298. [PMID: 38509489 PMCID: PMC10956265 DOI: 10.1186/s12864-024-10111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/09/2024] [Indexed: 03/22/2024] Open
Abstract
Mitochondrial genomes play important roles in studying genome evolution, phylogenetic analyses, and species identification. Amphipods (Class Malacostraca, Order Amphipoda) are one of the most ecologically diverse crustacean groups occurring in a diverse array of aquatic and terrestrial environments globally, from freshwater streams and lakes to groundwater aquifers and the deep sea, but we have a limited understanding of how habitat influences the molecular evolution of mitochondrial energy metabolism. Subterranean amphipods likely experience different evolutionary pressures on energy management compared to surface-dwelling taxa that generally encounter higher levels of predation and energy resources and live in more variable environments. In this study, we compared the mitogenomes, including the 13 protein-coding genes involved in the oxidative phosphorylation (OXPHOS) pathway, of surface and subterranean amphipods to uncover potentially different molecular signals of energy metabolism between surface and subterranean environments in this diverse crustacean group. We compared base composition, codon usage, gene order rearrangement, conducted comparative mitogenomic and phylogenomic analyses, and examined evolutionary signals of 35 amphipod mitogenomes representing 13 families, with an emphasis on Crangonyctidae. Mitogenome size, AT content, GC-skew, gene order, uncommon start codons, location of putative control region (CR), length of rrnL and intergenic spacers differed between surface and subterranean amphipods. Among crangonyctid amphipods, the spring-dwelling Crangonyx forbesi exhibited a unique gene order, a long nad5 locus, longer rrnL and rrnS loci, and unconventional start codons. Evidence of directional selection was detected in several protein-encoding genes of the OXPHOS pathway in the mitogenomes of surface amphipods, while a signal of purifying selection was more prominent in subterranean species, which is consistent with the hypothesis that the mitogenome of surface-adapted species has evolved in response to a more energy demanding environment compared to subterranean amphipods. Overall, gene order, locations of non-coding regions, and base-substitution rates points to habitat as an important factor influencing the evolution of amphipod mitogenomes.
Collapse
Affiliation(s)
- Joseph B Benito
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Megan L Porter
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Matthew L Niemiller
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
2
|
Salabao L, Plevoets T, Frédérich B, Lepoint G, Kochzius M, Schön I. Describing novel mitochondrial genomes of Antarctic amphipods. Mitochondrial DNA B Resour 2022; 7:810-818. [PMID: 35573593 PMCID: PMC9103263 DOI: 10.1080/23802359.2022.2073837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
To date, only one mitogenome from an Antarctic amphipod has been published. Here, novel complete mitochondrial genomes (mitogenomes) of two morphospecies are assembled, namely, Charcotia amundseni and Eusirus giganteus. For the latter species, we have assembled two mitogenomes from different genetic clades of this species. The lengths of Eusirus and Charcotia mitogenomes range from 15,534 to 15,619 base pairs and their mitogenomes are composed of 13 protein coding genes, 22 transfer RNAs, 2 ribosomal RNAs, and 1 putative control region CR. Some tRNAs display aberrant structures suggesting that minimalization is also ongoing in amphipod mitogenomes. The novel mitogenomes of the two Antarctic species have features distinguishing them from other amphipod mitogenomes such as a lower AT-richness in the whole mitogenomes and a negative GC- skew in both strands of protein coding genes. The genetically most variable mitochondrial regions of amphipods are nad6 and atp8, while cox1 shows low nucleotide diversity among closely and more distantly related species. In comparison to the pancrustacean mitochondrial ground pattern, E. giganteus shows a translocation of the nad1 gene, while cytb and nad6 genes are translocated in C. amundseni. Phylogenetic analysis based on mitogenomes illustrates that Eusirus and Charcotia cluster together with other species belonging to the same amphipod superfamilies. In the absence of reference nuclear genomes, mitogenomes can be useful to develop markers for studying population genetics or evolutionary relationships at higher taxonomic levels.
Collapse
Affiliation(s)
- Louraine Salabao
- Laboratory of Functional and Evolutionary Morphology, FOCUS, University of Liège, Liège, Belgium
- Centre for Environmental Sciences, Zoology: Toxicology and Biodiversity, Diepenbeek, Belgium
| | - Tim Plevoets
- Unit Animal Sciences - ILVO Marine Research, Flanders Research Institute for Agriculture, Fisheries and Food, Oostende, Belgium
| | - Bruno Frédérich
- Laboratory of Functional and Evolutionary Morphology, FOCUS, University of Liège, Liège, Belgium
| | - Gilles Lepoint
- Laboratory of Trophic and Isotopes Ecology, FOCUS, University of Liège, Liège, Belgium
| | - Marc Kochzius
- Marine Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Isa Schön
- Centre for Environmental Sciences, Zoology: Toxicology and Biodiversity, Diepenbeek, Belgium
- OD Nature, Freshwater Biology, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| |
Collapse
|
3
|
Romanova EV, Bukin YS, Mikhailov KV, Logacheva MD, Aleoshin VV, Sherbakov DY. Hidden cases of tRNA gene duplication and remolding in mitochondrial genomes of amphipods. Mol Phylogenet Evol 2019; 144:106710. [PMID: 31846708 DOI: 10.1016/j.ympev.2019.106710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022]
Abstract
The evolution of tRNA genes in mitochondrial (mt) genomes is a complex process that includes duplications, degenerations, and transpositions, as well as a specific process of identity change through mutations in the anticodon (tRNA gene remolding or tRNA gene recruitment). Using amphipod-specific tRNA models for annotation, we show that tRNA duplications are more common in the mt genomes of amphipods than what was revealed by previous annotations. Seventeen cases of tRNA gene duplications were detected in the mt genomes of amphipods, and ten of them were tRNA genes that underwent remolding. The additional tRNA gene findings were verified using phylogenetic analysis and genetic distance analysis. The majority of remolded tRNA genes (seven out of ten cases) were found in the mt genomes of endemic amphipod species from Lake Baikal. All additional mt tRNA genes arose independently in the Baikalian amphipods, indicating the unusual plasticity of tRNA gene evolution in these species assemblages. The possible reasons for the unusual abundance of additional tRNA genes in the mt genomes of Baikalian amphipods are discussed. The amphipod-specific tRNA models developed for MiTFi refine existing predictions of tRNA genes in amphipods and reveal additional cases of duplicated tRNA genes overlooked by using less specific Metazoa-wide models. The application of these models for mt tRNA gene prediction will be useful for the correct annotation of mt genomes of amphipods and probably other crustaceans.
Collapse
Affiliation(s)
- Elena V Romanova
- Laboratory of Molecular Systematics, Limnological Institute, Irkutsk, Russian Federation.
| | - Yurij S Bukin
- Laboratory of Molecular Systematics, Limnological Institute, Irkutsk, Russian Federation; Faculty of Biology and Soil Studies, Irkutsk State University, Irkutsk, Russian Federation
| | - Kirill V Mikhailov
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation; Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Maria D Logacheva
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation; Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir V Aleoshin
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation; Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitry Yu Sherbakov
- Laboratory of Molecular Systematics, Limnological Institute, Irkutsk, Russian Federation; Faculty of Biology and Soil Studies, Irkutsk State University, Irkutsk, Russian Federation
| |
Collapse
|
4
|
Li JY, Zeng C, Yan GY, He LS. Characterization of the mitochondrial genome of an ancient amphipod Halice sp. MT-2017 (Pardaliscidae) from 10,908 m in the Mariana Trench. Sci Rep 2019; 9:2610. [PMID: 30796230 PMCID: PMC6385184 DOI: 10.1038/s41598-019-38735-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/11/2018] [Indexed: 01/02/2023] Open
Abstract
Small amphipods (Halice sp. MT-2017) with body length <1 cm were collected from the Challenger Deep (~10,920 m below sea level). The divergence time of their lineage was approximately 109 Mya, making this group ancient compared to others under study. The mitochondrial genome of Halice sp. shared the usual gene components of metazoans, comprising 13 protein coding genes (PCGs), 22 transfer RNAs (tRNAs), and 2 ribosomal RNAs (rRNAs). The arrangement of these genes, however, differed greatly from that of other amphipods. Of the 15 genes that were rearranged with respect to the pancrustacean gene pattern, 12 genes (2 PCGs, 2 rRNAs, and 8 tRNAs) were both translocated and strand-reversed. In contrast, the mitochondrial genomes in other amphipods never show so many reordered genes, and in most instances, only tRNAs were involved in strand-reversion-coupled translocation. Other characteristics, including reversed strand nucleotide composition bias, relatively higher composition of non-polar amino acids, and lower evolutionary rate, were also identified. Interestingly, the latter two features were shared with another hadal amphipod, Hirondellea gigas, suggesting their possible associations with the adaptation to deep-sea extreme habitats. Overall, our data provided a useful resource for future studies on the evolutionary and adaptive mechanisms of hadal faunas.
Collapse
Affiliation(s)
- Jun-Yuan Li
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cong Zeng
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-Yong Yan
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Sheng He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China.
| |
Collapse
|
5
|
Romanova EV, Aleoshin VV, Kamaltynov RM, Mikhailov KV, Logacheva MD, Sirotinina EA, Gornov AY, Anikin AS, Sherbakov DY. Evolution of mitochondrial genomes in Baikalian amphipods. BMC Genomics 2016; 17:1016. [PMID: 28105939 PMCID: PMC5249044 DOI: 10.1186/s12864-016-3357-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Amphipods (Crustacea) of Lake Baikal are a very numerous and diverse group of invertebrates generally believed to have originated by adaptive radiation. The evolutionary history and phylogenetic relationships in Baikalian amphipods still remain poorly understood. Sequencing of mitochondrial genomes is a relatively feasible way for obtaining a set of gene sequences suitable for robust phylogenetic inferences. The architecture of mitochondrial genomes also may provide additional information on the mechanisms of evolution of amphipods in Lake Baikal. RESULTS Three complete and four nearly complete mitochondrial genomes of Baikalian amphipods were obtained by high-throughput sequencing using the Illumina platform. A phylogenetic inference based on the nucleotide sequences of all mitochondrial protein coding genes revealed the Baikalian species to be a monophyletic group relative to the nearest non-Baikalian species with a completely sequenced mitochondrial genome - Gammarus duebeni. The phylogeny of Baikalian amphipods also suggests that the shallow-water species Eulimnogammarus has likely evolved from a deep-water ancestor, however many other species have to be added to the analysis to test this hypothesis. The gene order in all mitochondrial genomes of studied Baikalian amphipods differs from the pancrustacean ground pattern. Mitochondrial genomes of four species possess 23 tRNA genes, and in three genomes the extra tRNA gene copies have likely undergone remolding. Widely varying lengths of putative control regions and other intergenic spacers are typical for the mitochondrial genomes of Baikalian amphipods. CONCLUSIONS The mitochondrial genomes of Baikalian amphipods display varying organization suggesting an intense rearrangement process during their evolution. Comparison of complete mitochondrial genomes is a potent approach for studying the amphipod evolution in Lake Baikal.
Collapse
Affiliation(s)
- Elena V. Romanova
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Vladimir V. Aleoshin
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994 Russian Federation
| | - Ravil M. Kamaltynov
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Kirill V. Mikhailov
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994 Russian Federation
| | - Maria D. Logacheva
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994 Russian Federation
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420012 Russian Federation
| | - Elena A. Sirotinina
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Alexander Yu. Gornov
- Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Anton S. Anikin
- Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Dmitry Yu. Sherbakov
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
- Faculty of Biology and Soil Studies, Irkutsk State University, Irkutsk, 664003 Russian Federation
| |
Collapse
|
6
|
Schön I, Martens K. Ostracod (Ostracoda, Crustacea) genomics - Promises and challenges. Mar Genomics 2016; 29:19-25. [PMID: 27020380 DOI: 10.1016/j.margen.2016.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 01/18/2023]
Abstract
Ostracods are well-suited model organisms for evolutionary research. Classic genetic techniques have mostly been used for phylogenetic studies on Ostracoda and were somewhat affected by the lack of large numbers of suitable markers. Genomic methods with their huge potential have so far rarely been applied to this group of crustaceans. We provide relevant examples of genomic studies on other organisms to propose future avenues of genomic ostracod research. At the same time, we suggest solutions to the potential problems in ostracods that the application of genomic techniques might present.
Collapse
Affiliation(s)
- Isa Schön
- Royal Belgian Institute of Natural Sciences, OD Nature, ATECO, Freshwater Biology, Vautierstraat 29, B-1000 Brussels, Belgium; University of Hasselt, Research Group Zoology, Agoralaan Building D, B-3590 Diepenbeek, Belgium.
| | - Koen Martens
- Royal Belgian Institute of Natural Sciences, OD Nature, ATECO, Freshwater Biology, Vautierstraat 29, B-1000 Brussels, Belgium; University of Ghent, Department of Biology, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
7
|
Transcriptome of the Antarctic amphipod Gondogeneia antarctica and its response to pollutant exposure. Mar Genomics 2015; 24 Pt 3:253-4. [PMID: 26264254 DOI: 10.1016/j.margen.2015.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 11/24/2022]
Abstract
Gondogeneia antarctica is widely distributed off the western Antarctic Peninsula and is a key species in the Antarctic food web. In this study, we performed Illumina sequencing to produce a total of 4,599,079,601 (4.6Gb) nucleotides and a comprehensive transcript dataset for G. antarctica. Over 46 million total reads were assembled into 20,749 contigs, and 12,461 annotated genes were predicted by Blastx. The RNA-seq results after exposure to three pollutants showed that 658, 169 and 367 genes that were potential biomarkers of responses to pollutants for this species were specifically upregulated after exposure to PCBs (Polychlorinated biphenyls), PFOS (Perfluorooctanesulfonic acid) and PFOA (Perfluorooctanoic acid), respectively. These data represent the first transcriptome resource for the Antarctic amphipod G. antarctica and provide a useful resource for studying Antarctic marine species.
Collapse
|
8
|
Pons J, Bauzà-Ribot MM, Jaume D, Juan C. Next-generation sequencing, phylogenetic signal and comparative mitogenomic analyses in Metacrangonyctidae (Amphipoda: Crustacea). BMC Genomics 2014; 15:566. [PMID: 24997985 PMCID: PMC4112215 DOI: 10.1186/1471-2164-15-566] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/26/2014] [Indexed: 11/16/2022] Open
Abstract
Background Comparative mitochondrial genomic analyses are rare among crustaceans below the family or genus level. The obliged subterranean crustacean amphipods of the family Metacrangonyctidae, found from the Hispaniola (Antilles) to the Middle East, including the Canary Islands and the peri-Mediterranean region, have an evolutionary history and peculiar biogeography that can respond to Tethyan vicariance. Indeed, recent phylogenetic analysis using all protein-coding mitochondrial sequences and one nuclear ribosomal gene have lent support to this hypothesis (Bauzà-Ribot et al. 2012). Results We present the analyses of mitochondrial genome sequences of 21 metacrangonyctids in the genera Metacrangonyx and Longipodacrangonyx, covering the entire geographical range of the family. Most mitogenomes were attained by next-generation sequencing techniques using long-PCR fragments sequenced by Roche FLX/454 or GS Junior pyro-sequencing, obtaining a coverage depth per nucleotide of up to 281×. All mitogenomes were AT-rich and included the usual 37 genes of the metazoan mitochondrial genome, but showed a unique derived gene order not matched in any other amphipod mitogenome. We compare and discuss features such as strand bias, phylogenetic informativeness, non-synonymous/synonymous substitution rates and other mitogenomic characteristics, including ribosomal and transfer RNAs annotation and structure. Conclusions Next-generation sequencing of pooled long-PCR amplicons can help to rapidly generate mitogenomic information of a high number of related species to be used in phylogenetic and genomic evolutionary studies. The mitogenomes of the Metacrangonyctidae have the usual characteristics of the metazoan mitogenomes (circular molecules of 15,000-16,000 bp, coding for 13 protein genes, 22 tRNAs and two ribosomal genes) and show a conserved gene order with several rearrangements with respect to the presumed Pancrustacean ground pattern. Strand nucleotide bias appears to be reversed with respect to the condition displayed in the majority of crustacean mitogenomes since metacrangonyctids show a GC-skew at the (+) and (-) strands; this feature has been reported also in the few mitogenomes of Isopoda (Peracarida) known thus far. The features of the rRNAs, tRNAs and sequence motifs of the control region of the Metacrangonyctidae are similar to those of the few crustaceans studied at present. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-566) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joan Pons
- IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, c/Miquel Marquès 21, 07190 Esporles, Spain.
| | | | | | | |
Collapse
|
9
|
Rivarola-Duarte L, Otto C, Jühling F, Schreiber S, Bedulina D, Jakob L, Gurkov A, Axenov-Gribanov D, Sahyoun AH, Lucassen M, Hackermüller J, Hoffmann S, Sartoris F, Pörtner HO, Timofeyev M, Luckenbach T, Stadler PF. A first glimpse at the genome of the Baikalian amphipod Eulimnogammarus verrucosus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:177-89. [PMID: 24677529 DOI: 10.1002/jez.b.22560] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 01/06/2014] [Indexed: 11/07/2022]
Abstract
Eulimnogammarus verrucosus is an amphipod endemic to the unique ecosystem of Lake Baikal and serves as an emerging model in ecotoxicological studies. We report here on a survey sequencing of its genome as a first step to establish sequence resources for this species. From a single lane of paired-end sequencing data, we estimated the genome size as nearly 10 Gb and we obtained an overview of the repeat content. At least two-thirds of the genome are non-unique DNA, and a third of the genomic DNA is composed of just five families of repetitive elements, including low-complexity sequences. Attempts to use off-the-shelf assembly tools failed on the available low-coverage data both before and after removal of highly repetitive components. Using a seed-based approach we nevertheless assembled short contigs covering 33 pre-microRNAs and the homeodomain-containing exon of nine Hox genes. The absence of clear evidence for paralogs implies that a genome duplication did not contribute to the large genome size. We furthermore report the assembly of the mitochondrial genome using a new, guided "crystallization" procedure. The initial results presented here set the stage for a more complete sequencing and analysis of this large genome.
Collapse
Affiliation(s)
- Lorena Rivarola-Duarte
- Department of Bioanalytical Ecotoxicology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany; Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhao JW. The complete mitochondrial genome of the Thymallus grubii (Amur grayling). MITOCHONDRIAL DNA 2014; 26:799-800. [PMID: 24409850 DOI: 10.3109/19401736.2013.855899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, we reported the complete sequence of mitochondrial genome of Thymallus grubii. The complete mitochondrial genome sequence was determined to be 16,662 bp in length and contain 13 protein-coding genes, 22 tRNA genes, 2 ribosomal genes, the control region and the origin of light-strand replication. In control region, only four CSBs (CSB-1, CSB-2, CSB-3 and CSB-F) were identified.
Collapse
Affiliation(s)
- Ji-Wei Zhao
- a Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Harbin , People's Republic of China
| |
Collapse
|
11
|
Shen X, Sun MA, Tian M, Zhao FQ, Chu KH. The first mitochondrial genome from Mysida (Crustacea: Malacostraca) reveals an unusual gene arrangement. ACTA ACUST UNITED AC 2013; 26:252-4. [PMID: 24021004 DOI: 10.3109/19401736.2013.823185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This is the first report to present the Neomysis orientalis mitochondrial genome as a representative from the order Mysida. While mitochondrial protein-coding genes (PCGs) commonly use several alternatives to ATN as start codons, all 13 PCGs in N. orientalis mitochondrial genome initiate with ATG or ATA. Five PCGs (atp6. atp8. cob. nad4 and nad4L) start with ATG, while the other genes (cox1-3. nad1-3. nad5 and nad6) start with ATA. Only two PCGs (cox2 and nad2) in the N. orientalis mitochondrial genome end with incomplete stop codons (T- or TA-), and all the remaining ones have TAA or TAG stop codon. Only one PCG (nad4L) is encoded on the light strand and all other 12 PCGs are located at the heavy strand. Both rRNAs (srRNA and lrRNA) are encoded on the light strand. In common with 15 of the other 18 mitochondrial genomes from Peracarida, the major gene arrangement in the N. orientalis mitochondrial genome is different from the pancrustacean ground pattern. The largest conserved gene block in N. orientalis only contains two genes but those in the other 18 peracarid mitochondrial genomes contain more than five genes. Thus, the N. orientalis mitochondrial genome, as the first mitochondrial genome from the order Mysida, reveals an unusual gene arrangement that is unique compared with the other malacostracan mitochondrial genomes.
Collapse
Affiliation(s)
- Xin Shen
- Jiangsu Key Laboratory of Marine Biotechnology/College of Marine Science, Huaihai Institute of Technology , Lianyungang , China
| | | | | | | | | |
Collapse
|
12
|
The mitogenome of Gammarus duebeni (Crustacea Amphipoda): A new gene order and non-neutral sequence evolution of tandem repeats in the control region. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:201-11. [DOI: 10.1016/j.cbd.2012.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/21/2012] [Accepted: 02/27/2012] [Indexed: 11/23/2022]
|