1
|
Zhang S, Bai X, Ren LY, Sun HH, Tang HP, Vaario LM, Xu J, Zhang YJ. Dynamic evolution of eukaryotic mitochondrial and nuclear genomes: a case study in the gourmet pine mushroom Tricholoma matsutake. Environ Microbiol 2021; 23:7214-7230. [PMID: 34587365 DOI: 10.1111/1462-2920.15792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/25/2021] [Indexed: 01/26/2023]
Abstract
Fungi, as eukaryotic organisms, contain two genomes, the mitochondrial genome and the nuclear genome, in their cells. How the two genomes evolve and correlate to each other is debated. Herein, taking the gourmet pine mushroom Tricholoma matsutake as an example, we performed comparative mitogenomic analysis using samples collected from diverse locations and compared the evolution of the two genomes. The T. matsutake mitogenome encodes 49 genes and is rich of repetitive and non-coding DNAs. Six genes were invaded by up to 11 group I introns, with one cox1 intron cox1P372 showing presence/absence dynamics among different samples. Bioinformatic analyses suggested limited or no evidence of mitochondrial heteroplasmy. Interestingly, hundreds of mitochondrial DNA fragments were found in the nuclear genome, with several larger than 500 nt confirmed by PCR assays and read count comparisons, indicating clear evidence of transfer of mitochondrial DNA into the nuclear genome. Nuclear DNA of T. matsutake showed a higher mutation rate than mitochondrial DNA. Furthermore, we found evidence of incongruence between phylogenetic trees derived from mitogenome and nuclear DNA sequences. Together, our results reveal the dynamic genome evolution of the gourmet pine mushroom.
Collapse
Affiliation(s)
- Shu Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xue Bai
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Li-Yuan Ren
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Hui-Hui Sun
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Hui-Ping Tang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Lu-Min Vaario
- Department of Forest Science, University of Helsinki, Helsinki, FI-00014, Finland
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Yong-Jie Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
2
|
Li Q, Li L, Feng H, Tu W, Bao Z, Xiong C, Wang X, Qing Y, Huang W. Characterization of the Complete Mitochondrial Genome of Basidiomycete Yeast Hannaella oryzae: Intron Evolution, Gene Rearrangement, and Its Phylogeny. Front Microbiol 2021; 12:646567. [PMID: 34122362 PMCID: PMC8193148 DOI: 10.3389/fmicb.2021.646567] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
In this study, the mitogenome of Hannaella oryzae was sequenced by next-generation sequencing (NGS) and successfully assembled. The H. oryzae mitogenome comprised circular DNA molecules with a total size of 26,444 bp. We found that the mitogenome of H. oryzae partially deleted the tRNA gene transferring cysteine. Comparative mitogenomic analyses showed that intronic regions were the main factors contributing to the size variations of mitogenomes in Tremellales. Introns of the cox1 gene in Tremellales species were found to have undergone intron loss/gain events, and introns of the H. oryzae cox1 gene may have different origins. Gene arrangement analysis revealed that H. oryzae contained a unique gene order different from other Tremellales species. Phylogenetic analysis based on a combined mitochondrial gene set resulted in identical and well-supported topologies, wherein H. oryzae was closely related to Tremella fuciformis. This study represents the first report of mitogenome for the Hannaella genus, which will allow further study of the population genetics, taxonomy, and evolutionary biology of this important phylloplane yeast and other related species.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Huiyu Feng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xu Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yuan Qing
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
3
|
Huang W, Feng H, Tu W, Xiong C, Jin X, Li P, Wang X, Li Q. Comparative Mitogenomic Analysis Reveals Dynamics of Intron Within and Between Tricholoma Species and Phylogeny of Basidiomycota. Front Genet 2021; 12:534871. [PMID: 33659021 PMCID: PMC7917209 DOI: 10.3389/fgene.2021.534871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/18/2021] [Indexed: 01/28/2023] Open
Abstract
The genus of Tricholoma is a group of important ectomycorrhizal fungi. The overlapping of morphological characteristics often leads to the confusion of Tricholoma species classification. In this study, the mitogenomes of five Tricholoma species were sequenced based on the next-generation sequencing technology, including T. matsutake SCYJ1, T. bakamatsutake, T. terreum, T. flavovirens, and T. saponaceum. These five mitogenomes were all composed of circular DNA molecules, with sizes ranging from 49,480 to 103,090 bp. Intergenic sequences were considered to be the main factor contributing to size variations of Tricholoma mitogenomes. Comparative mitogenomic analysis showed that the introns of the Agaricales mitogenome experienced frequent loss/gain events. In addition, potential gene transfer was detected between the mitochondrial and nuclear genomes of the five species of Tricholoma. Evolutionary analysis showed that the rps3 gene of the Tricholoma species was under positive selection or relaxed selection in the evolutionary process. In addition, large-scale gene rearrangements were detected between some Tricholoma species. Phylogenetic analysis using the Bayesian inference and maximum likelihood methods based on a combined mitochondrial gene set yielded identical and well-supported tree topologies. This study promoted the understanding of the genetics, evolution, and phylogeny of the Tricholoma genus and related species.
Collapse
Affiliation(s)
- Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Huiyu Feng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ping Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xu Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
4
|
Tang X, Ding X, Hou YL. Comparative analysis of transcriptomes revealed the molecular mechanism of development of Tricholoma matsutake at different stages of fruiting bodies. Food Sci Biotechnol 2020; 29:939-951. [PMID: 32582456 DOI: 10.1007/s10068-020-00732-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 11/27/2022] Open
Abstract
The purpose of the study is to investigate the molecular mechanisms of development of Tricholoma matsutake fruiting body at the primordial stage (TM-1), the intermediate stage (TM-2) and the mature stage (TM-3) using RNA-Seq sequencing technology. The analysis of gene expression level revealed that the Spn2 and Eef1a1 gene were the key genes in the primordial stage of T. matsutake by regulating cytokinesis, protein synthesis, and cell growth. And the Ubc, Atp6, Cytb, and Pth2 gene were the key genes in the mature stage of T. matsutake by regulating energy metabolism and protein synthesis. Differential expression genes (DEGs) analysis results showed that Cdc28, Rad53, Dun1, Pho85 and Pho81 were the key DEGs regulating cell cycle genes of T. matsutake from primordial stage to intermediate stage. And APC, Cyr1, Cdc45, Spo11 and Rec8 genes were the key DEGs for the meiosis and sporogenesis of T. matsutake from the intermediate stage to the mature stage.
Collapse
Affiliation(s)
- Xian Tang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China
| | - Xiang Ding
- College of Environmental Science and Engineering, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China
| | - Yi-Ling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China
| |
Collapse
|
5
|
Min B, Yoon H, Park J, Oh YL, Kong WS, Kim JG, Choi IG. Unusual genome expansion and transcription suppression in ectomycorrhizal Tricholoma matsutake by insertions of transposable elements. PLoS One 2020; 15:e0227923. [PMID: 31978083 PMCID: PMC6980582 DOI: 10.1371/journal.pone.0227923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022] Open
Abstract
Genome sequencing of Tricholoma matsutake revealed its unusually large size as 189.0 Mbp, which is a consequence of extraordinarily high transposable element (TE) content. We identified that 702 genes were surrounded by TEs, and 83.2% of these genes were not transcribed at any developmental stage. This observation indicated that the insertion of TEs alters the transcription of the genes neighboring these TEs. Repeat-induced point mutation, such as C to T hypermutation with a bias over "CpG" dinucleotides, was also recognized in this genome, representing a typical defense mechanism against TEs during evolution. Many transcription factor genes were activated in both the primordia and fruiting body stages, which indicates that many regulatory processes are shared during the developmental stages. Small secreted protein genes (<300 aa) were dominantly transcribed in the hyphae, where symbiotic interactions occur with the hosts. Comparative analysis with 37 Agaricomycetes genomes revealed that IstB-like domains (PF01695) were conserved across taxonomically diverse mycorrhizal genomes, where the T. matsutake genome contained four copies of this domain. Three of the IstB-like genes were overexpressed in the hyphae. Similar to other ectomycorrhizal genomes, the CAZyme gene set was reduced in T. matsutake, including losses in the glycoside hydrolase genes. The T. matsutake genome sequence provides insight into the causes and consequences of genome size inflation.
Collapse
Affiliation(s)
- Byoungnam Min
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Hyeokjun Yoon
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Julius Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Youn-Lee Oh
- Mushroom Research Division, National Institute of Horticulture and Herbal Science (NIHHS), Rural Development Administration (RDA), Eumseong, Korea
| | - Won-Sik Kong
- Mushroom Research Division, National Institute of Horticulture and Herbal Science (NIHHS), Rural Development Administration (RDA), Eumseong, Korea
- * E-mail: (IC); (WK); (JK)
| | - Jong-Guk Kim
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Korea
- * E-mail: (IC); (WK); (JK)
| | - In-Geol Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
- * E-mail: (IC); (WK); (JK)
| |
Collapse
|
6
|
Li Q, Wang Q, Jin X, Chen Z, Xiong C, Li P, Liu Q, Huang W. Characterization and comparative analysis of six complete mitochondrial genomes from ectomycorrhizal fungi of the Lactarius genus and phylogenetic analysis of the Agaricomycetes. Int J Biol Macromol 2019; 121:249-260. [DOI: 10.1016/j.ijbiomac.2018.10.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023]
|
7
|
Li Q, Wang Q, Chen C, Jin X, Chen Z, Xiong C, Li P, Zhao J, Huang W. Characterization and comparative mitogenomic analysis of six newly sequenced mitochondrial genomes from ectomycorrhizal fungi (Russula) and phylogenetic analysis of the Agaricomycetes. Int J Biol Macromol 2018; 119:792-802. [PMID: 30076929 DOI: 10.1016/j.ijbiomac.2018.07.197] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/06/2023]
Abstract
In this study, the mitochondrial genomes of six Russula species were sequenced using next generation sequencing. The six mitogenomes were all composed of circular DNA molecules, with lengths ranging from 40,961 bp to 69,423 bp. The length and number of protein coding genes (PCGs), GC content, AT skew, and GC skew varied among the six mitogenomes. The increased number and total size of introns likely contributed to the size expansion of mitogenomes in some Russula species. Gene synteny analysis revealed some gene rearrangements among the six mitochondrial genomes. The nad4L gene had the lowest K2P genetic distance of the 15 core PCGs among the six Russula species, indicating that this gene was highly conserved. The Ka/Ks values for all 15 core PCGs were <1, suggesting that they were all subject to purifying selection. Phylogenetic analyses based on two gene datasets (15 core PCGs, and 15 core PCGs + rnl + rns) recovered identical and well-supported trees. In addition, cox1 was identified as a potential single-gene molecular marker for the phylogenetic analysis of relationships among Agaricomycetes species. This study provides the first report of mitogenomes from the Russulaceae family and facilitates the investigation of population genetics and evolution of other ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Qiang Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Qiangfeng Wang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Zuqin Chen
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Ping Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Jian Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China.
| |
Collapse
|