1
|
Redolfi Riva E, Özkan M, Contreras E, Pawar S, Zinno C, Escarda-Castro E, Kim J, Wieringa P, Stellacci F, Micera S, Navarro X. Beyond the limiting gap length: peripheral nerve regeneration through implantable nerve guidance conduits. Biomater Sci 2024; 12:1371-1404. [PMID: 38363090 DOI: 10.1039/d3bm01163a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Peripheral nerve damage results in the loss of sensorimotor and autonomic functions, which is a significant burden to patients. Furthermore, nerve injuries greater than the limiting gap length require surgical repair. Although autografts are the preferred clinical choice, their usage is impeded by their limited availability, dimensional mismatch, and the sacrifice of another functional donor nerve. Accordingly, nerve guidance conduits, which are tubular scaffolds engineered to provide a biomimetic environment for nerve regeneration, have emerged as alternatives to autografts. Consequently, a few nerve guidance conduits have received clinical approval for the repair of short-mid nerve gaps but failed to regenerate limiting gap damage, which represents the bottleneck of this technology. Thus, it is still necessary to optimize the morphology and constituent materials of conduits. This review summarizes the recent advances in nerve conduit technology. Several manufacturing techniques and conduit designs are discussed, with emphasis on the structural improvement of simple hollow tubes, additive manufacturing techniques, and decellularized grafts. The main objective of this review is to provide a critical overview of nerve guidance conduit technology to support regeneration in long nerve defects, promote future developments, and speed up its clinical translation as a reliable alternative to autografts.
Collapse
Affiliation(s)
- Eugenio Redolfi Riva
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Melis Özkan
- Institute of Materials, école Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, école Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Estefania Contreras
- Integral Service for Laboratory Animals (SIAL), Faculty of Veterinary, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
| | - Sujeet Pawar
- Institute of Materials, école Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ciro Zinno
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Enrique Escarda-Castro
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jaehyeon Kim
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Paul Wieringa
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Francesco Stellacci
- Institute of Materials, école Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials, Department of Bioengineering and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Silvestro Micera
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, école Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Institute Guttmann Foundation, Hospital of Neurorehabilitation, Badalona, Spain
| |
Collapse
|
2
|
Frostadottir D, Chemnitz A, Johansson OT LJ, Holst J, Dahlin LB. Evaluation of Processed Nerve Allograft in Peripheral Nerve Surgery: A Systematic Review and Critical Appraisal. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e5088. [PMID: 37383478 PMCID: PMC10299771 DOI: 10.1097/gox.0000000000005088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/05/2023] [Indexed: 06/30/2023]
Abstract
Peripheral nerve injuries cause substantial problems when not treated properly. A specific problem is reconstruction of nerve defects, which can be treated in different ways. This study aimed to systematically review whether processed nerve allograft (PNA) is justified in reconstruction of a nerve defect in patients after posttraumatic or iatrogenic peripheral nerve injury and to compare PNA with other established methods. Methods A systematic review with a focused question, PICO (patient, intervention, comparison, outcome) and constraints, was performed. A structured literature search, including several databases, was done to evaluate the existing evidence for outcomes and postoperative complications related to PNA. The certainty of evidence was classified according to Grading of Recommendations, Assessment, Development and Evaluations. Results No conclusions, concerning differences in outcome of nerve reconstruction using PNA compared with the use of nerve autograft or conduits, could be drawn. The level of certainty for all evaluated outcomes was very low (⊕◯◯◯). Most published studies lack a control group to patients treated with PNA; being only descriptive, making it difficult to compare PNA with established methods without substantial risk of bias. For studies including a control group, the scientific evidence was of very low certainty, due to a low number of included patients, and large, undefined loss of patients during follow-up, rendering a high risk of bias. Finally, the authors often had financial disclosures. Conclusion Properly conducted randomized controlled trial studies on the use of PNA in reconstruction of peripheral nerve injuries are needed to establish recommendations in clinical practice.
Collapse
Affiliation(s)
- Drifa Frostadottir
- From the Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
- Department of Translational Medicine—Hand Surgery, Lund University, Malmö, Sweden
| | - Anette Chemnitz
- From the Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| | | | - Jan Holst
- Department of Vascular Disease, Skåne University Hospital, Malmö, Sweden
- Department of Research and Education, HTA syd, Skåne University Hospital, Lund, Sweden
| | - Lars B. Dahlin
- From the Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
- Department of Translational Medicine—Hand Surgery, Lund University, Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Seixas SF, Forte GC, Magnus GA, Stanham V, Mattiello R, Silva JB. Effect of Tacrolimus and Cyclosporine Immunosuppressants on Peripheral Nerve Regeneration: Systematic Review and Meta-analysis. Rev Bras Ortop 2022; 57:207-213. [PMID: 35652029 PMCID: PMC9142254 DOI: 10.1055/s-0041-1736467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Peripheral nerve damage is an important cause of seeking medical attention. It occurs when the continuity of structures is interrupted and the propagation of nervous impulses is blocked, affecting the functional capacity of individuals. To assess the effects of the immunosuppressants tacrolimus and cyclosporine on the regeneration of peripheral nerves, a systematic review of the literature was carried out. The articles included were published until September 2018 and proposed to evaluate the effects of the immunosuppressants tacrolimus and cyclosporine on nerve regeneration and neuroprotection, available in the MEDLINE, EMBASE, Cochrane Library, Web of Science, Oxford Pain Relief Database, and LILACS databases. The research analysed a total of 56 articles, of which 22 were included in the meta-analysis. Statistical analysis suggests the protective effect of tacrolimus in the regeneration of the number of myelinated axons (95% confidence interval [CI]: 0.93–2.39;
p
< 0.01); however, such effect was not observed in relation to cyclosporine (95%CI: - 0.38–1.18;
p
= 0.08) It also suggests that there is a significant relationship between the use of tacrolimus and myelin thickness (95%CI= 2.00–5.71;
p
< 0. 01). The use of immunosuppressants in the regeneration of peripheral nerve damage promotes an increase in the number of myelinated axons in general, regardless of the administered dose. In addition, it ensures greater myelin thickness, muscle weight and recovery of the sciatic functional index. However, heterogeneity was high in most analyses performed.
Collapse
Affiliation(s)
- Stéphanie Farias Seixas
- Serviço de Cirurgia da Mão e Microcirurgia Reconstrutiva, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Gabriele Carra Forte
- Departamento de Radiologia, Pontifícia Universidade Católica do Rio Grande do Sul, RS, Brasil
| | - Gabriela Agne Magnus
- Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS Brasil
| | - Valentina Stanham
- Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS Brasil
| | - Rita Mattiello
- Programa de Pós-graduação em Pediatria e Saúde da Criança; Programa de Pós-graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Jefferson Braga Silva
- Serviço de Cirurgia da Mão e Microcirurgia Reconstrutiva, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
4
|
Controlling the Spatiotemporal Release of Nerve Growth Factor by Chitosan/Polycaprolactone Conduits for Use in Peripheral Nerve Regeneration. Int J Mol Sci 2022; 23:ijms23052852. [PMID: 35269991 PMCID: PMC8911064 DOI: 10.3390/ijms23052852] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Tubular polymeric structures have been recognized in the treatment of peripheral nerves as comparable to autologous grafting. The best therapeutic outcomes are obtained with conduits releasing therapeutic molecules. In this study, a new approach for the incorporation of biologically active agent-loaded microspheres into the structure of chitosan/polycaprolactone conduits was developed. The support of a polycaprolactone helix formed by 3D melt extrusion was coated with dopamine in order to adsorb nerve growth factor-loaded microspheres. The complex analysis of the influence of process factors on the coverage efficiency of polycaprolactone helix by nerve grow factor-loaded microspheres was analyzed. Thus, the PCL helix characterized with the highest adsorption of microspheres was subjected to nerve growth factor release studies, and finally incorporated into chitosan hydrogel deposit through the process of electrophoretic deposition. It was demonstrated by chemical and physical tests that the chitosan/polycaprolactone conduit meets the requirements imposed on peripheral nerve implants, particularly mimicking mechanical properties of surrounding soft tissue. Moreover, the conduit may support regrowing nerves for a prolonged period, as its structure and integrity persist upon incubation in lysozyme-contained PBS solution up to 28 days at body temperature. In vitro cytocompatibility toward mHippoE-18 embryonic hippocampal cells of the chitosan/polycaprolactone conduit was proven. Most importantly, the developed conduits stimulate axonal growth and support monocyte activation, the latter is advantageous especially at early stages of nerve regeneration. It was demonstrated that, through the described approach for controlling spatiotemporal release of nerve growth factors, these biocompatible structures adjusted to the specific peripheral nerve injury case can be manufactured.
Collapse
|
5
|
Contreras E, Bolívar S, Nieto-Nicolau N, Fariñas O, López-Chicón P, Navarro X, Udina E. A novel decellularized nerve graft for repairing peripheral nerve long gap injury in the rat. Cell Tissue Res 2022; 390:355-366. [PMID: 36114915 PMCID: PMC9722790 DOI: 10.1007/s00441-022-03682-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/26/2022] [Indexed: 01/19/2023]
Abstract
Decellularized nerve allografts are an alternative to autograft for repairing severe nerve injuries, since they have higher availability and do not induce rejection. In this study, we have assessed the regenerative potential of a novel decellularization protocol for human and rat nerves for repairing nerve resections, compared to the gold standard autograft. A 15-mm gap in the sciatic nerve was repaired with decellularized rat allograft (DC-RA), decellularized human xenograft (DC-HX), or fresh autograft (AG). Electrophysiology tests were performed monthly to evaluate muscle reinnervation, whereas histological and immunohistochemical analyses of the grafts were evaluated at 4 months. A short-term study was also performed to compare the differences between the two decellularized grafts (DC-RA and DC-HX) in early phases of regeneration. The decellularization process eliminated cellularity while preserving the ECM and endoneurial tubules of both rat and human nerves. Higher amount of reinnervation was observed in the AG group compared to the DC-RA group, while only half of the animals of the DC-HX showed distal muscle reinnervation. The number of regenerating myelinated axons in the mid-graft was similar between AG and DC-RA and lower in DC-HX graft, but significantly lower in both DC grafts distally. At short term, fibroblasts repopulated the DC-RA graft, supporting regenerated axons, whereas an important fibrotic reaction was observed around DC-HX grafts. In conclusion, the decellularized allograft sustained regeneration through a long gap in the rat although at a slower rate compared to the ideal autograft, whereas regeneration was limited or even failed when using a decellularized xenograft.
Collapse
Affiliation(s)
- Estefanía Contreras
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, and CIBERNED, ISCIII, 08913 Bellaterra, Spain
| | - Sara Bolívar
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, and CIBERNED, ISCIII, 08913 Bellaterra, Spain
| | - Núria Nieto-Nicolau
- Barcelona Tissue Bank, Banc de Sang I Teixits (BST), Barcelona, Spain ,Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - Oscar Fariñas
- Barcelona Tissue Bank, Banc de Sang I Teixits (BST), Barcelona, Spain ,Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - Patrícia López-Chicón
- Barcelona Tissue Bank, Banc de Sang I Teixits (BST), Barcelona, Spain ,Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, and CIBERNED, ISCIII, 08913 Bellaterra, Spain
| | - Esther Udina
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, and CIBERNED, ISCIII, 08913 Bellaterra, Spain
| |
Collapse
|
6
|
Zhang RC, Du WQ, Zhang JY, Yu SX, Lu FZ, Ding HM, Cheng YB, Ren C, Geng DQ. Mesenchymal stem cell treatment for peripheral nerve injury: a narrative review. Neural Regen Res 2021; 16:2170-2176. [PMID: 33818489 PMCID: PMC8354135 DOI: 10.4103/1673-5374.310941] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Peripheral nerve injuries occur as the result of sudden trauma and lead to reduced quality of life. The peripheral nervous system has an inherent capability to regenerate axons. However, peripheral nerve regeneration following injury is generally slow and incomplete that results in poor functional outcomes such as muscle atrophy. Although conventional surgical procedures for peripheral nerve injuries present many benefits, there are still several limitations including scarring, difficult accessibility to donor nerve, neuroma formation and a need to sacrifice the autologous nerve. For many years, other therapeutic approaches for peripheral nerve injuries have been explored, the most notable being the replacement of Schwann cells, the glial cells responsible for clearing out debris from the site of injury. Introducing cultured Schwann cells to the injured sites showed great benefits in promoting axonal regeneration and functional recovery. However, there are limited sources of Schwann cells for extraction and difficulties in culturing Schwann cells in vitro. Therefore, novel therapeutic avenues that offer maximum benefits for the treatment of peripheral nerve injuries should be investigated. This review focused on strategies using mesenchymal stem cells to promote peripheral nerve regeneration including exosomes of mesenchymal stem cells, nerve engineering using the nerve guidance conduits containing mesenchymal stem cells, and genetically engineered mesenchymal stem cells. We present the current progress of mesenchymal stem cell treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Rui-Cheng Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wen-Qi Du
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jing-Yuan Zhang
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong Province, China
| | - Shao-Xia Yu
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong Province, China
| | - Fang-Zhi Lu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hong-Mei Ding
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yan-Bo Cheng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chao Ren
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong Province, China
| | - De-Qin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
7
|
Philips C, Cornelissen M, Carriel V. Evaluation methods as quality control in the generation of decellularized peripheral nerve allografts. J Neural Eng 2019; 15:021003. [PMID: 29244032 DOI: 10.1088/1741-2552/aaa21a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nowadays, the high incidence of peripheral nerve injuries and the low success ratio of surgical treatments are driving research to the generation of novel alternatives to repair critical nerve defects. In this sense, tissue engineering has emerged as a possible alternative with special attention to decellularization techniques. Tissue decellularization offers the possibility to obtain a cell-free, natural extracellular matrix (ECM), characterized by an adequate 3D organization and proper molecular composition to repair different tissues or organs, including peripheral nerves. One major problem, however, is that there are no standard quality control methods to evaluate decellularized tissues. Therefore, in this review, a brief description of current strategies for peripheral nerve repair is given, followed by an overview of different decellularization methods used for peripheral nerves. Furthermore, we extensively discuss the available and currently used methods to demonstrate the success of tissue decellularization in terms of the cell removal, preservation of essential ECM molecules and maintenance or modification of biomechanical properties. Finally, orientative guidelines for the evaluation of decellularized peripheral nerve allografts are proposed.
Collapse
Affiliation(s)
- Charlot Philips
- Tissue Engineering and Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
8
|
Philips C, Campos F, Roosens A, Sánchez-Quevedo MDC, Declercq H, Carriel V. Qualitative and Quantitative Evaluation of a Novel Detergent-Based Method for Decellularization of Peripheral Nerves. Ann Biomed Eng 2018; 46:1921-1937. [PMID: 29987538 DOI: 10.1007/s10439-018-2082-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/22/2018] [Indexed: 01/02/2023]
Abstract
Tissue engineering is an emerging strategy for the development of nerve substitutes for peripheral nerve repair. Especially decellularized peripheral nerve allografts are interesting alternatives to replace the gold standard autografts. In this study, a novel decellularization protocol was qualitatively and quantitatively evaluated by histological, biochemical, ultrastructural and mechanical methods and compared to the protocol described by Sondell et al. and a modified version of the protocol described by Hudson et al. Decellularization by the method described by Sondell et al. resulted in a reduction of the cell content, but was accompanied by a loss of essential extracellular matrix (ECM) molecules such as laminin and glycosaminoglycans. This decellularization also caused disruption of the endoneurial tubes and an increased stiffness of the nerves. Decellularization by the adapted method of Hudson et al. did not alter the ECM composition of the nerves, but an efficient cell removal could not be obtained. Finally, decellularization by the method developed in our lab by Roosens et al. led to a successful removal of nuclear material, while maintaining the nerve ultrastructure and ECM composition. In addition, the resulting ECM scaffold was found to be cytocompatible, allowing attachment and proliferation of adipose-derived stem cells. These results show that our decellularization combining Triton X-100, DNase, RNase and trypsin created a promising scaffold for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Charlot Philips
- Tissue Engineering and Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B3, 6th floor, 9000, Ghent, Belgium.
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - Annelies Roosens
- Tissue Engineering and Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B3, 6th floor, 9000, Ghent, Belgium
| | - María Del Carmen Sánchez-Quevedo
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - Heidi Declercq
- Tissue Engineering and Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B3, 6th floor, 9000, Ghent, Belgium
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| |
Collapse
|
9
|
Lin T, Liu S, Chen S, Qiu S, Rao Z, Liu J, Zhu S, Yan L, Mao H, Zhu Q, Quan D, Liu X. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Acta Biomater 2018; 73:326-338. [PMID: 29649641 DOI: 10.1016/j.actbio.2018.04.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022]
Abstract
Decellularized matrix hydrogels derived from tissues or organs have been used for tissue repair due to their biocompatibility, tunability, and tissue-specific extracellular matrix (ECM) components. However, the preparation of decellularized peripheral nerve matrix hydrogels and their use to repair nerve defects have not been reported. Here, we developed a hydrogel from porcine decellularized nerve matrix (pDNM-G), which was confirmed to have minimal DNA content and retain collagen and glycosaminoglycans content, thereby allowing gelatinization. The pDNM-G exhibited a nanofibrous structure similar to that of natural ECM, and a ∼280-Pa storage modulus at 10 mg/mL similar to that of native neural tissues. Western blot and liquid chromatography tandem mass spectrometry analysis revealed that the pDNM-G consisted mostly of ECM proteins and contained primary ECM-related proteins, including fibronectin and collagen I and IV). In vitro experiments showed that pDNM-G supported Schwann cell proliferation and preserved cell morphology. Additionally, in a 15-mm rat sciatic nerve defect model, pDNM-G was combined with electrospun poly(lactic-acid)-co-poly(trimethylene-carbonate)conduits to bridge the defect, which did not elicit an adverse immune response and promoted the activation of M2 macrophages associated with a constructive remodeling response. Morphological analyses and electrophysiological and functional examinations revealed that the regenerative outcomes achieved by pDNM-G were superior to those by empty conduits and closed to those using rat decellularized nerve matrix allograft scaffolds. These findings indicated that pDNM-G, with its preserved ECM composition and nanofibrous structure, represents a promising biomaterial for peripheral nerve regeneration. STATEMENT OF SIGNIFICANCE Decellularized nerve allografts have been widely used to treat peripheral nerve injury. However, given their limited availability and lack of bioactive factors, efforts have been made to improve the efficacy of decellularized nerve allograft for nerve regeneration, with limited success. Xenogeneic decellularized tissue matrices or hydrogels have been widely used for surgical applications owing to their ease of harvesting and low immunogenicity. Moreover, decellularized tissue matrix hydrogels show good biocompatibility and are highly tunable. In this study, we prepared a porcine decellularized nerve matrix (pDNM-G) and evaluated its potential for promoting nerve regeneration. Our results demonstrate that pDNM-G can support Schwann cell proliferation and peripheral nerve regeneration by means of residual primary extracellular matrix components and nano-fibrous structure features.
Collapse
Affiliation(s)
- Tao Lin
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Sheng Liu
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Shihao Chen
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Shuai Qiu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Zilong Rao
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Jianghui Liu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Shuang Zhu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Liwei Yan
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Haiquan Mao
- Institute for NanoBioTechnology, and Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, USA
| | - Qingtang Zhu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China.
| | - Daping Quan
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China.
| | - Xiaolin Liu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China.
| |
Collapse
|
10
|
Repair of nerve injury by implanting prostheses obtained from isogenic acellular nerve segments. Rev Esp Cir Ortop Traumatol (Engl Ed) 2017. [DOI: 10.1016/j.recote.2017.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
García-Medrano B, Mesuro Domínguez N, Simón Pérez C, Garrosa García M, Gayoso Del Villar S, Mayo Íscar A, Gayoso Rodríguez MJ, Martín Ferrero MA. Repair of nerve injury by implanting prostheses obtained from isogenic acellular nerve segments. Rev Esp Cir Ortop Traumatol (Engl Ed) 2017; 61:359-366. [PMID: 28760548 DOI: 10.1016/j.recot.2017.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 05/22/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION When a nerve section with a significant gap occurs, it is necessary to use a prosthesis to suture it. To date an autologous nerve segment graft appears to be the best treatment; but it has several important disadvantages. Our goal is to study the effectiveness of an isogenic acellular nerve prosthesis comparing a simple suture with tubulisation. MATERIAL AND METHOD Four groups of Wistar rats were used. The animals in Group 0 served as donors of nerve segments to graft. Group 1 received the implant with an end-to-end suture. In group 2, the implant was sutured inside an ɛ-caprolactone tube. Group 3 received it in a polylactic-co-glycolic acid tube. We evaluated the motor function (sciatic index and step test in motion), and the regeneration length by histological study of regeneration, after a maximum of 3 weeks. RESULTS Regeneration was uneven in the three groups. In all groups, there were implants with regenerated nerve fibres at the maximum studied length (15mm) and others where regeneration was scarce. The mean regeneration length was greater in the direct end-to-end suture group (G1), although the regeneration speed was similar in the three groups. Group 1 showed the highest percentage of regeneration, but the variability of results prevents this difference reaching statistical significance. We found no significant differences between the two groups with polymer tubes. CONCLUSION For the implantation of isogenic acellular nerve prosthesis, under our experimental conditions, the direct end-to-end suture was more effective than when it isprotected with biopolymer tubes.
Collapse
Affiliation(s)
- B García-Medrano
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínico Universitario de Valladolid, Valladolid, España.
| | - N Mesuro Domínguez
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Valladolid, Valladolid, España
| | - Cl Simón Pérez
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínico Universitario de Valladolid, Valladolid, España
| | - M Garrosa García
- Estadística e Investigación Operativa, Universidad de Medicina de Valladolid, Valladolid, España
| | - S Gayoso Del Villar
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Valladolid, Valladolid, España
| | - A Mayo Íscar
- Estadística e Investigación Operativa, Universidad de Medicina de Valladolid, Valladolid, España
| | - M J Gayoso Rodríguez
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Valladolid, Valladolid, España
| | - M A Martín Ferrero
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínico Universitario de Valladolid, Valladolid, España
| |
Collapse
|
12
|
Abstract
A nerve injury has a profound impact on the patient’s daily life due to the impaired sensory and motor function, impaired dexterity, sensitivity to cold as well as eventual pain problems. To perform an appropriate treatment of nerve injuries, a correct diagnosis must be made, where the injury is properly classified, leading to an optimal surgical approach and technique, where timing of surgery is also important for the outcome. Knowledge about the nerve regeneration process, where delicate processes occur in neurons, non-neuronal cells (i.e. Schwann cells) and other cells in the peripheral as well as the central nervous systems, is crucial for the treating surgeon. The surgical decision to perform nerve repair and/or reconstruction depends on the type of injury, the condition of the wound as well as the vascularity of the wound. To reconnect injured nerve ends, various techniques can be used, which include both epineurial and fascicular nerve repair, and if a nerve defect is caused by the injury, a nerve reconstruction procedure has to be performed, including bridging the defect using nerve-grafts or nerve transfer techniques. The patients must be evaluated properly and regularly after the surgical procedure and appropriate rehabilitation programmes are useful to improve the final outcome.
Cite this article: EFORT Open Rev 2017;2. DOI: 10.1302/2058-5241.2.160071. Originally published online at www.efortopenreviews.org
Collapse
Affiliation(s)
- Lars B Dahlin
- Department of Translational Medicine - Hand Surgery, Lund University, and Skåne University Hospital, Malmö, Sweden
| | - Mikael Wiberg
- Department of Surgical and Perioperative Science, University Hospital, and Department of Integrative Medical Biology, Umeå University, Sweden
| |
Collapse
|
13
|
Ngadiman NHA, Noordin MY, Idris A, Kurniawan D. A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions. Proc Inst Mech Eng H 2017; 231:597-616. [DOI: 10.1177/0954411917699021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The potential of electrospinning process to fabricate ultrafine fibers as building blocks for tissue engineering scaffolds is well recognized. The scaffold construct produced by electrospinning process depends on the quality of the fibers. In electrospinning, material selection and parameter setting are among many factors that contribute to the quality of the ultrafine fibers, which eventually determine the performance of the tissue engineering scaffolds. The major challenge of conventional electrospun scaffolds is the nature of electrospinning process which can only produce two-dimensional electrospun mats, hence limiting their applications. Researchers have started to focus on overcoming this limitation by combining electrospinning with other techniques to fabricate three-dimensional scaffold constructs. This article reviews various polymeric materials and their composites/blends that have been successfully electrospun for tissue engineering scaffolds, their mechanical properties, and the various parameters settings that influence the fiber morphology. This review also highlights the secondary processes to electrospinning that have been used to develop three-dimensional tissue engineering scaffolds as well as the steps undertaken to overcome electrospinning limitations.
Collapse
Affiliation(s)
| | - MY Noordin
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Ani Idris
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Denni Kurniawan
- Department of Mechanical Engineering, Curtin University, Miri, Malaysia
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul, Korea
| |
Collapse
|
14
|
Jiang LF, Chen O, Chu TG, Ding J, Yu Q. T Lymphocyte Subsets and Cytokines in Rats Transplanted with Adipose-Derived Mesenchymal Stem Cells and Acellular Nerve for Repairing the Nerve Defects. J Korean Neurosurg Soc 2015; 58:101-6. [PMID: 26361524 PMCID: PMC4564740 DOI: 10.3340/jkns.2015.58.2.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/13/2015] [Accepted: 03/23/2015] [Indexed: 11/27/2022] Open
Abstract
Objective The aim of this study was to explore the immunity in rats transplanted with adipose-derived mesenchymal stem cells (ADSCs) and acellular nerve (ACN) for repairing sciatic nerve defects. Methods ADSCs were isolated from the adipose tissues of Wistar rats. Sprague-Dawley rats were used to establish a sciatic nerve defect model and then divided into four groups, according to the following methods : Group A, allogenic nerve graft; Group B, allograft with ACN; Group C, allograft ADSCs+ACN, and Group D, nerve autograft. Results At the day before transplantation and 3, 7, 14, and 28 days after transplantation, orbital venous blood of the Sprague-Dawley rats in each group was collected to detect the proportion of CD3+, CD4+, and CD8+ subsets using flow cytometry and to determine the serum concentration of interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) using enzyme-linked immunosorbent assay (ELISA). At each postoperative time point, the proportion of CD3+, CD4+, and CD8+ subsets and the serum concentration of IL-2, TNF-α, and IFN-γ in group C were all near to those in group B and group D, in which no statistically significant difference was observed. As compared with group A, the proportion of CD3+, CD4+, and CD8+ subsets and the serum concentration of IL-2, TNF-α, and IFN-γ were significantly reduced in group C (p<0.05). Conclusion The artificial nerve established with ADSCs and ACN has no obvious allograft rejection for repairing rat nerve defects.
Collapse
Affiliation(s)
- Liang-Fu Jiang
- Department of Hand & Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ou Chen
- Department of Orthopaedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Zhejiang, China
| | - Ting-Gang Chu
- Department of Hand & Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jian Ding
- Department of Hand & Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Qing Yu
- Department of Hand & Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
15
|
A comparative study of acellular nerve xenografts and allografts in repairing rat facial nerve defects. Mol Med Rep 2015; 12:6330-6. [DOI: 10.3892/mmr.2015.4123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 06/26/2015] [Indexed: 11/05/2022] Open
|
16
|
Athymic rat model for studying acellular human allograft. J Neurosci Methods 2015; 249:92-8. [PMID: 25936851 DOI: 10.1016/j.jneumeth.2015.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/15/2015] [Accepted: 04/23/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although human acellular nerve allograft is a promising nerve repair tool, optimizing graft application and understanding effective graft dimensions has been hampered by lack of an appropriate animal model. Rodent nerve acellular allograft can be tested in the utilitarian rodent nerve repair model, but testing different size options is limited by the size of the rodent donor animal. Human acellular nerve allograft offers the variety of sizes desired for more complete study but poses a high risk of rejection as xenograft tissue in the rodent model. Athymic nude rats are less prone to reject xenograft tissue due to their immunocompromised state and may offer an animal model for testing human acellular allograft. METHODS Fifteen athymic nude and 15 Sprague-Dawley rats underwent unilateral excision and repair of a 10mm tibial nerve segment using 10mm of human acellular nerve graft. Testing at 3 months consisted of muscle force measurements, wet muscle weight, and histological assessment from the middle of the nerve grafts. RESULTS Athymic rats repaired with human acellular xenograft demonstrated higher reinnervated muscle weight Gross inspection of the xenograft in euthymic rats revealed a brown and scarred center and histological inspection demonstrated larger axon diameters, and higher midgraft axon counts in the grafts of athymic rats. COMPARISON WITH EXISTING METHODS The athymic rat has been used in many studies that require an immunocompromised host, including implantation of foreign nervous tissue. Previous attempts at implanting acellular nerve xenograft into immunocompetent rats have yielded suboptimal results when compared to allograft. This study is the first to test acellular human nerve allograft in an athymic rat. CONCLUSION The nerve regeneration was better in human acellular nerve allograft implanted into immunocompromised athymic rats when compared to euthymic rats supporting a potential role of this model in studying acellular human nerve tissue.
Collapse
|
17
|
Zhang Y, Zhang H, Katiella K, Huang W. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair. Neural Regen Res 2014; 9:1358-64. [PMID: 25221592 PMCID: PMC4160866 DOI: 10.4103/1673-5374.137588] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2014] [Indexed: 12/01/2022] Open
Abstract
A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anastomosis, but superior to chemically extracted acellular allogeneic nerve bridging alone.
Collapse
Affiliation(s)
- Yanru Zhang
- Institute of International Education, Zhengzhou University, Zhengzhou, Henan Province, China ; Institute of Clinical Anatomy, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hui Zhang
- Department of Orthopedics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Kaka Katiella
- Institute of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wenhua Huang
- Institute of Clinical Anatomy, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
18
|
Combination of acellular nerve graft and schwann cells-like cells for rat sciatic nerve regeneration. Neural Plast 2014; 2014:139085. [PMID: 25114806 PMCID: PMC4120921 DOI: 10.1155/2014/139085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/28/2014] [Accepted: 06/16/2014] [Indexed: 01/30/2023] Open
Abstract
Objective. To investigate the effect of tissue engineering nerve on repair of rat sciatic nerve defect. Methods. Forty-five rats with defective sciatic nerve were randomly divided into three groups. Rats in group A were repaired by acellular nerve grafts only. Rats in group B were repaired by tissue engineering nerve. In group C, rats were repaired by autogenous nerve grafts. After six and twelve weeks, sciatic nerve functional index (SFI), neural electrophysiology (NEP), histological and transmission electron microscope observation, recovery ratio of wet weight of gastrocnemius muscle, regenerated myelinated nerve fibers number, nerve fiber diameter, and thickness of the myelin sheath were measured to assess the effect. Results. After six and twelve weeks, the recovery ratio of SFI and wet weight of gastrocnemius muscle, NEP, and the result of regenerated myelinated nerve fibers in groups B and C were superior to that of group A (P < 0.05), and the difference between groups B and C was not statistically significant (P > 0.05). Conclusion. The tissue engineering nerve composed of acellular allogenic nerve scaffold and Schwann cells-like cells can effectively repair the nerve defect in rats and its effect was similar to that of the autogenous nerve grafts.
Collapse
|
19
|
Repair of the Peripheral Nerve-Remyelination that Works. Brain Sci 2013; 3:1182-97. [PMID: 24961524 PMCID: PMC4061866 DOI: 10.3390/brainsci3031182] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/07/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022] Open
Abstract
In this review we summarize the events known to occur after an injury in the peripheral nervous system. We have focused on the Schwann cells, as they are the most important cells for the repair process and facilitate axonal outgrowth. The environment created by this cell type is essential for the outcome of the repair process. The review starts with a description of the current state of knowledge about the initial events after injury, followed by Wallerian degeneration, and subsequent regeneration. The importance of surgical repair, carried out as soon as possible to increase the chances of a good outcome, is emphasized throughout the review. The review concludes by describing the target re-innervation, which today is one of the most serious problems for nerve regeneration. It is clear, compiling this data, that even though regeneration of the peripheral nervous system is possible, more research in this area is needed in order to perfect the outcome.
Collapse
|
20
|
Wood MD, Kemp SWP, Liu EH, Szynkaruk M, Gordon T, Borschel GH. Rat-derived processed nerve allografts support more axon regeneration in rat than human-derived processed nerve xenografts. J Biomed Mater Res A 2013; 102:1085-91. [DOI: 10.1002/jbm.a.34773] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Matthew D. Wood
- Division of Plastic and Reconstructive Surgery; The Hospital for Sick Children; 555 University Ave Toronto ON Canada M5G 1X8
- Program in Physiology and Experimental Medicine; The Hospital for Sick Children Research Institute; Elizabeth McMaster Building Toronto ON Canada M5G 1X8
| | - Stephen W. P. Kemp
- Division of Plastic and Reconstructive Surgery; The Hospital for Sick Children; 555 University Ave Toronto ON Canada M5G 1X8
- Program in Physiology and Experimental Medicine; The Hospital for Sick Children Research Institute; Elizabeth McMaster Building Toronto ON Canada M5G 1X8
| | - Edward H. Liu
- Division of Plastic and Reconstructive Surgery; The Hospital for Sick Children; 555 University Ave Toronto ON Canada M5G 1X8
| | - Mark Szynkaruk
- Division of Plastic and Reconstructive Surgery; The Hospital for Sick Children; 555 University Ave Toronto ON Canada M5G 1X8
- Program in Physiology and Experimental Medicine; The Hospital for Sick Children Research Institute; Elizabeth McMaster Building Toronto ON Canada M5G 1X8
| | - Tessa Gordon
- Division of Plastic and Reconstructive Surgery; The Hospital for Sick Children; 555 University Ave Toronto ON Canada M5G 1X8
- Program in Physiology and Experimental Medicine; The Hospital for Sick Children Research Institute; Elizabeth McMaster Building Toronto ON Canada M5G 1X8
| | - Gregory H. Borschel
- Division of Plastic and Reconstructive Surgery; The Hospital for Sick Children; 555 University Ave Toronto ON Canada M5G 1X8
- Program in Physiology and Experimental Medicine; The Hospital for Sick Children Research Institute; Elizabeth McMaster Building Toronto ON Canada M5G 1X8
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; 164 College Street Toronto Ontario Canada M5G 1X8
- Division of Plastic and Reconstructive Surgery; Department of Surgery, University of Toronto; 100 College Street Toronto Ontario Canada M5G 1X8
| |
Collapse
|
21
|
Xue H, Zhang XY, Liu JM, Song Y, Li YF, Chen D. Development of a chemically extracted acellular muscle scaffold seeded with amniotic epithelial cells to promote spinal cord repair. J Biomed Mater Res A 2012; 101:145-56. [DOI: 10.1002/jbm.a.34311] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 04/26/2012] [Accepted: 06/01/2012] [Indexed: 01/30/2023]
|
22
|
Chimutengwende-Gordon M, Khan W. Recent advances and developments in neural repair and regeneration for hand surgery. Open Orthop J 2012; 6:103-7. [PMID: 22431954 PMCID: PMC3293168 DOI: 10.2174/1874325001206010103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 09/30/2011] [Accepted: 10/02/2011] [Indexed: 11/22/2022] Open
Abstract
End-to-end suture of nerves and autologous nerve grafts are the 'gold standard' for repair and reconstruction of peripheral nerves. However, techniques such as sutureless nerve repair with tissue glues, end-to-side nerve repair and allografts exist as alternatives. Biological and synthetic nerve conduits have had some success in early clinical studies on reconstruction of nerve defects in the hand. The effectiveness of nerve regeneration could potentially be increased by using these nerve conduits as scaffolds for delivery of Schwann cells, stem cells, neurotrophic and neurotropic factors or extracellular matrix proteins. There has been extensive in vitro and in vivo research conducted on these techniques. The clinical applicability and efficacy of these techniques needs to be investigated fully.
Collapse
Affiliation(s)
- Mukai Chimutengwende-Gordon
- University College London Institute of Orthopaedic and Musculoskeletal Sciences, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
| | | |
Collapse
|
23
|
Hu C, Uchida T, Tercero C, Ikeda S, Ooe K, Fukuda T, Arai F, Negoro M, Kwon G. Development of biodegradable scaffolds based on magnetically guided assembly of magnetic sugar particles. J Biotechnol 2012; 159:90-8. [PMID: 22361001 DOI: 10.1016/j.jbiotec.2012.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 01/29/2012] [Accepted: 02/06/2012] [Indexed: 01/20/2023]
Abstract
Biodegradable scaffolds with controlled pore layout and porosity have great significance in tissue engineering for cell penetration, tissue ingrowth, vascularization, and nutrient delivery. Porogen leaching has been commonly used to control pore size, pore structure and porosity in the scaffold. In this paper we focus on the use/development of two magnetically guided porogen assembly methods using magnetic sugar particles (MSPs) for scaffold fabrication. First, a patterning device is utilized to align MSPs following designed templates. Then a magnetic sheet film is fabricated by mixing poly(vinyl alcohol, PVA) and NdFeB powder for steering the MSPs. After poly(l-lactide-co-ɛ-caprolactone) (PLCL) casting and removal of the sugar template, a scaffold with spherical pores is obtained. The surface and the inner structure of the scaffolds are evaluated using light and electron micrographs showing their interconnection of pores, pore wall morphology and porosity. Single layer scaffolds with the size of 8mm in width and 10mm in length were constructed with controllable pore diameters in the ranges of 105-150 μm, 250-300 μm and 425-500 μm.
Collapse
Affiliation(s)
- Chengzhi Hu
- Dept. of Micro-Nano Systems Engineering, Nagoya University, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Brooks DN, Weber RV, Chao JD, Rinker BD, Zoldos J, Robichaux MR, Ruggeri SB, Anderson KA, Bonatz EE, Wisotsky SM, Cho MS, Wilson C, Cooper EO, Ingari JV, Safa B, Parrett BM, Buncke GM. Processed nerve allografts for peripheral nerve reconstruction: A multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery 2011; 32:1-14. [DOI: 10.1002/micr.20975] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 11/10/2022]
|