1
|
Le TH, Lee HJ, Tran QN. Glutathione Fluorescence Sensing Based on a Co-Doped Carbon Dot/Manganese Dioxide Nanocoral Composite. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238677. [PMID: 36500172 PMCID: PMC9736791 DOI: 10.3390/ma15238677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 05/14/2023]
Abstract
Glutathione (GSH) is an antioxidant thiol that has a vital role in the pathogenesis of various human diseases such as cardiovascular disease and cancer. Hence, it is necessary to study effective methods of GSH evaluation. In our work, an effective GSH sensor based on a nitrogen and phosphorus co-doped carbon dot (NPCD)-MnO2 nanocoral composite was fabricated. In addition to utilizing the strong fluorescence of the NPCDs, we utilized the reductant ability of the NPCDs themselves to form MnO2 and then the NPCD-MnO2 nanocoral composite from MnO4-. The characteristics of the nanocoral composite were analyzed using various electron microscopy techniques and spectroscopic techniques. The overlap between the absorption spectrum of MnO2 and the fluorescence emission spectrum of the NPCDs led to effective fluorescence resonance energy transfer (FRET) in the nanocoral composite, causing a decrease in the fluorescent intensity of the NPCDs. A linear recovery of the fluorescent intensity of the NPCDs was observed with the GSH level raising from 20 to 250 µM. Moreover, our GSH sensor showed high specificity and sensing potential in real samples with acceptable results.
Collapse
|
2
|
Shaw DS, Honeychurch KC. Nanosensor Applications in Plant Science. BIOSENSORS 2022; 12:675. [PMID: 36140060 PMCID: PMC9496508 DOI: 10.3390/bios12090675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 12/28/2022]
Abstract
Plant science is a major research topic addressing some of the most important global challenges we face today, including energy and food security. Plant science has a role in the production of staple foods and materials, as well as roles in genetics research, environmental management, and the synthesis of high-value compounds such as pharmaceuticals or raw materials for energy production. Nanosensors-selective transducers with a characteristic dimension that is nanometre in scale-have emerged as important tools for monitoring biological processes such as plant signalling pathways and metabolism in ways that are non-destructive, minimally invasive, and capable of real-time analysis. A variety of nanosensors have been used to study different biological processes; for example, optical nanosensors based on Förster resonance energy transfer (FRET) have been used to study protein interactions, cell contents, and biophysical parameters, and electrochemical nanosensors have been used to detect redox reactions in plants. Nanosensor applications in plants include nutrient determination, disease assessment, and the detection of proteins, hormones, and other biological substances. The combination of nanosensor technology and plant sciences has the potential to be a powerful alliance and could support the successful delivery of the 2030 Sustainable Development Goals. However, a lack of knowledge regarding the health effects of nanomaterials and the high costs of some of the raw materials required has lessened their commercial impact.
Collapse
Affiliation(s)
- Daniel S. Shaw
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
- Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Kevin C. Honeychurch
- Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
3
|
Wang T, Hu Y, Liang M, Song L, Li T, Zhang X, Li N, Huang X. Synthesis of a cerium-based nanomaterial with superior oxidase-like activity for colorimetric determination of glutathione in food samples. Mikrochim Acta 2022; 189:132. [PMID: 35239046 DOI: 10.1007/s00604-022-05197-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/20/2022] [Indexed: 11/26/2022]
Abstract
Enzyme-like nanomaterials have received significant attention for their high stability and low cost. However, most nanomaterials require complicated synthesis processes, limiting the range of their potential applications. In this study, a novel cerium-based nanomaterial was fabricated in a facile manner from a mixture of dipicolinic acid (DPA), guanosine 5'-monophosphate (GMP), and cerium acetate under ambient conditions. The obtained nanomaterial, designated as DPA-Ce-GMP, exhibited superior oxidase-like activity owing to the mixed valence (Ce3+/Ce4+) of cerium ions. DPA-Ce-GMP efficiently catalyzed the oxidation of 3,3,5,5-tetramethylbenzidine (TMB), achieving a color reaction without requiring hydrogen peroxide. Thus, DPA-Ce-GMP was incorporated into a simple, rapid, and sensitive colorimetric sensor for glutathione (GSH) detection. Within this sensor, TMB oxidation is inhibited by the reducibility of GSH. The sensor exhibits a linear response over two concentration ranges (0.05-10 and 10-40 μM), and its detection limit is 17.1 nM (3σ/slope). The proposed sensor was successfully applied to GSH quantification in food samples. The developed sensor provides an efficient biomimic oxidase for GSH detection in real samples. Facile approach to prepare cerium-based nanomaterial with superior oxidase-like activity for colorimetric detection of glutathione in food samples.
Collapse
Affiliation(s)
- Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
- Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yuwen Hu
- College of Food Science, Sichuan Agricultural University, Yaan, 625000, Sichuan, China
| | - Mengying Liang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
- Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
- Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
- Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiya Zhang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
- Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Ning Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
- Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
- Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
4
|
“Turn on” Fluorescence Sensor of Glutathione Based on Inner Filter Effect of Co-Doped Carbon Dot/Gold Nanoparticle Composites. Int J Mol Sci 2021; 23:ijms23010190. [PMID: 35008614 PMCID: PMC8745766 DOI: 10.3390/ijms23010190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
Glutathione (GSH) is a thiol that plays a significant role in nutrient metabolism, antioxidant defense and the regulation of cellular events. GSH deficiency is related to variety of diseases, so it is useful to develop novel approaches for GSH evaluation and detection. In this study we used nitrogen and phosphorus co-doped carbon dot-gold nanoparticle (NPCD–AuNP) composites to fabricate a simple and selective fluorescence sensor for GSH detection. We employed the reductant potential of the nitrogen and phosphorus co-doped carbon dots (NPCDs) themselves to form AuNPs, and subsequently NPCD–AuNP composites from Au3+. The composites were characterized by using a range of spectroscopic and electron microscopic techniques, including electrophoretic light scattering and X-ray diffraction. The overlap of the fluorescence emission spectrum of NPCDs and the absorption spectrum of AuNPs resulted in an effective inner filter effect (IFE) in the composite material, leading to a quenching of the fluorescence intensity. In the presence of GSH, the fluorescence intensity of the composite was recovered, which increased proportionally to increasing the GSH concentration. In addition, our GSH sensing method showed good selectivity and sensing potential in human serum with a limit of detection of 0.1 µM and acceptable results.
Collapse
|
5
|
Wang X, Huang Z, Wang C, Qi C, Gu Z, Li E, Qin JG, Chen L. A Comparative Study on Growth and Metabolism of Eriocheir sinensis Juveniles Under Chronically Low and High pH Stress. Front Physiol 2020; 11:885. [PMID: 32792987 PMCID: PMC7385324 DOI: 10.3389/fphys.2020.00885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 06/29/2020] [Indexed: 01/27/2023] Open
Abstract
This study elucidates the effects of chronic pH stress on the growth and metabolic response of juvenile Chinese mitten crab Eriocheir sinensis. Crabs were exposed under normal pH (control, pH = 8.0 ± 0.20), low pH (pH = 6.5 ± 0.20), and high pH (pH = 9.5 ± 0.20) in an 8-week trial. Both low and high pH suppressed weight gain but low pH had more adverse effects. No difference was observed on survival, crude lipid, and protein. Acidic stress significantly reduced protein efficiency. The malondialdehyde (MDA) content in hepatopancreas was highest at low pH. The superoxide dismutase (SOD) activity in hepatopancreas and total hemocyte counts (THC) in the stress groups were higher than that in the control. Crabs under high pH had the highest ACP and AKP activities, but there was no significant difference between the control and low pH groups. In the transcriptome analysis, 500.0M clean reads were obtained from the control, low pH, and high pH groups, and assembled into 83,025 transcripts. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed to obtain the significantly changed pathways involving differently expressed genes. Ten and eight pathways in metabolism were significantly changed in low pH vs control and high pH vs control groups, respectively. According to the reported functions of these pathways, most of them participated in carbohydrate metabolism. The metabolism pathway analysis indicates the increases of stress resistance, glucose metabolism, and molting activities under chronically pH stress. This study suggests that low pH has more negative impact on crab growth, and oxidative phosphorylation is the main source of energy source under low pH stress, while aerobic glycolysis supplies most energy under high pH stress.
Collapse
Affiliation(s)
- Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhipeng Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Chunling Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Changle Qi
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhimin Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China.,Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, China
| | - Jian G Qin
- Department of Biological Sciences, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
6
|
Hanko M, Švorc Ľ, Planková A, Mikuš P. Overview and recent advances in electrochemical sensing of glutathione - A review. Anal Chim Acta 2019; 1062:1-27. [PMID: 30947984 DOI: 10.1016/j.aca.2019.02.052] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
Abstract
The present paper is aimed at providing an overview of the recent advances in the electrochemical sensing of glutathione (GSH), an important electrochemically and biologically active molecule, for the period 2012-2018. Herein, the analytical performances of newly developed electrochemical methods, procedures and protocols for GSH sensing are comprehensively and critically discussed with respect to the type of method, electrodes used (new electrode modifications, advanced materials and formats), sample matrices, and basic validation parameters obtained (limit of detection, linear dynamic range, precision, selectivity/evaluation of interferences). This paper considers electrochemical methods used alone as well as the hyphenated methods with electrochemical detection (ECD), such as HPLC-ECD or CE-ECD. The practical applicability of the platforms developed for GSH detection and quantification is mostly focused on pharmaceutical and biomedical analysis. The most significant electrochemical approaches for GSH detection in multicomponent analyte samples and multicomponent matrices and for real-time in vivo GSH analysis are highlighted. The great variability in the electrochemical techniques, electrode approaches, and obtainable performance parameters, discussed in this review, brought new insights not only on current GSH and glutathione disulfide (GSSG) determinations, but, along with this, on the advances in electrochemical analysis from a more general point of view.
Collapse
Affiliation(s)
- Michal Hanko
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Ľubomír Švorc
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Analytical Chemistry, Radlinského 9, SK-812 37, Bratislava, Slovak Republic
| | - Alexandra Planková
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Peter Mikuš
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic; Comenius University in Bratislava, Faculty of Pharmacy, Toxicological and Antidoping Center, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic.
| |
Collapse
|
7
|
Martinkova P, Kostelnik A, Pohanka M. Nanomaterials as Pseudocatalysts in the Construction of Electrochemical Nonenzymatic Sensors for Healthcare: A Review. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1542434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Pavla Martinkova
- Faculty of Military Health Science, University of Defense, Hradec Kralove, Czech Republic
| | - Adam Kostelnik
- Faculty of Military Health Science, University of Defense, Hradec Kralove, Czech Republic
| | - Miroslav Pohanka
- Faculty of Military Health Science, University of Defense, Hradec Kralove, Czech Republic
| |
Collapse
|