1
|
Iranikhah M, Nazari R, Fasihi-Ramandi M, Taheri RA, Zargar M. Immunogenicity of Brucella Trivalent Immunogen-Containing Polyethyleneimine Nanostructure Targeted with LPS in a Mouse Model. Curr Microbiol 2024; 81:383. [PMID: 39343859 DOI: 10.1007/s00284-024-03824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/26/2024] [Indexed: 10/01/2024]
Abstract
Brucella is a facultative intracellular gram-negative coccobacillus. It is nonsporulating and reproduced in macrophage phagosomes. The use of nanostructures as drug and vaccine carriers has recently received attention due to their ability to control the release profile and protect the drug molecules. This study presents a suitable nano-polyethyleneimine formulation to be used as an immunoadjuvant and LPS along with trivalent candidate antigens of TF, BP26, and omp31 to selectively stimulate the immune response. After designing and evaluating the immunogenic structure by databases and bioinformatics software, recombinant protein cloning and gene expression were performed in Escherichia coli BL21 bacteria. This protein was extracted from the cultured cells, purified by Ni-NTA column. After placing the antigen inside the polyethyleneimine nanostructure, various properties of the nanoparticles, including their size, zeta potential, and retention rate for injection and inhalation of mice, diffusion efficacy, and antigen binding evaluation were evaluated. Mice were treated with different groups of antigens and nanoparticles on days 0, 10, 24, and 38. Two weeks after the last injection, the level of cytokines were investigated in spleen cells, including IFN-γ, IL-4, and IL-12. The serum concentration of IgG2a and IgG1 antibodies were also assessed. The response was consistent with significant production of IgG1, IgG2a, IFN-γ21, IL-12, and IL-4 compared to the controls (P < 0.05). Compared to the positive and negative control groups, recombinant protein and nanoparticles showed a good response in subsequent injections with live bacterial strains. The present study also revealed the potential of the developed recombinant protein as a candidate in the design and manufacture of subunit vaccines against Brucella species. This protein stimulates cellular and humoral immune responses compared to the positive control groups. These findings can be useful in the prevention and control of brucellosis and pave the way for further research by researchers around the world.
Collapse
Affiliation(s)
| | - Razieh Nazari
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran.
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tahran, Iran
| | - Mohsen Zargar
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| |
Collapse
|
2
|
Peter CM, da Silva Barcelos L, Ferreira MRA, Waller SB, Frühauf MI, Botton NY, Conceição FR, de Lima M, de Oliveira Hübner S, Barichello JM, Fischer G. Immunogenicity of an inactivated vaccine for intravaginal application against bovine alphaherpesvirus type 5 (BoHV-5). Mol Immunol 2023; 155:69-78. [PMID: 36731192 DOI: 10.1016/j.molimm.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
The present study was carried out to evaluate the intravaginal vaccine potential against bovine alphaherpesvirus type 5 (BoHV-5). Sixty three cows were divided into seven groups (n: 9) and inoculated intravaginally (VA) or intramuscularly (IM) with inactivated BoHV-5, associated with the recombinant B subunit of the heat-labile enterotoxin of E. coli (rLTB), 2-hydroxyethylcellulose (Drug Delivery System A - DDS-A) or Poloxamer 407 (Drug Delivery System B - DDS-B) as follows: G1 (DDS-A + BoHV-5 + rLTB), G2 (DDS-A + BoHV-5), G3 (DDS-B + BoHV-5 + rLTB), G4 (DDS-B + BoHV-5), G5 (BoHV-5 + rLTB), G6 (Negative control) e G7 (Positive control). The local and systemic humoral responses were measured by indirect ELISA (IgA and IgG) and serum neutralization tests, and the cellular response was measured by a quantitative direct ELISA (IL-2 and IFN-Gamma). The results showed the group inoculated by the IM route, G5, demonstrated the highest levels of IgG in the vaginal mucosa among the experimental groups (p < 0.05). In the groups tested with polymers (G1 and G3) in the vaginal mucosa, even higher levels of IgG were seen in comparison to the positive control (G7; p < 0.01). Higher levels of IgA were also noted in relation to the other groups (p < 0.05) on days 30, 60 and 90 post-inoculations. The groups G1 and G3 also provided higher titers of neutralizing antibodies (Log2) in relation to other treatments (p < 0.01) 90 days after inoculation. In the nasal mucosa, there was an increase in the levels of IgA and IgG with the use of vaccines from groups G1 and G3, in relation to the positive control, G7 (p < 0.05) at 60 and 90 days after the first inoculation. Moreover, neutralizing antibodies titers were detected at 60 and 90 days by serum neutralization. The inclusion of the evaluated polymers resulted in a superior response (p < 0.05) of immunoglobulins and IL-2 and IFN-Gamma in relation to the treatment using only rLTB (G5). This data demonstrates the capabilities of a vaccine with an intravaginal application in cattle to stimulate a local and systemic immune response.
Collapse
Affiliation(s)
- Cristina Mendes Peter
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Lariane da Silva Barcelos
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marcos Roberto Alves Ferreira
- Applied Immunology Laboratory. Technological Development Center, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Stefanie Bressan Waller
- Applied Immunology Laboratory. Technological Development Center, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Matheus Iuri Frühauf
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Nadálin Yandra Botton
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabricio Rochedo Conceição
- Applied Immunology Laboratory. Technological Development Center, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marcelo de Lima
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Silvia de Oliveira Hübner
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - José Mario Barichello
- Pharmaceutical Development and Production Laboratory, Center for Pharmaceutical and Food Chemical Sciences, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Geferson Fischer
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
3
|
Synthetic selenium nanoparticles as co-adjuvant improved immune responses against methicillin-resistant Staphylococcus aureus. World J Microbiol Biotechnol 2023; 39:16. [PMID: 36401129 PMCID: PMC9676803 DOI: 10.1007/s11274-022-03455-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of hospital-acquired infections worldwide, which is resistant to many antibiotics, resulting in significant mortality in societies. Vaccination is a well-known approach to preventing disease. Autolysin, a surface-associated protein in S. aureus with multiple functions, is a suitable candidate for vaccine development. As a co-adjuvant, selenium nanoparticles (SeNPs) can increase the immune system, presumably resulting in increased vaccine efficacy. The present study evaluated the immunogenicity and defense of recombinant autolysin formulated in SeNPs and Alum adjuvants against MRSA. r-Autolysin was expressed and purified by the Ni-NTA affinity chromatography. SeNPs were synthetically obtained from sodium dioxide, followed by an assessment of shape and size using SEM and DLS. Balb/c mice were injected subcutaneously with 20 mg of r-autolysin formulated in Alum and SeNps adjuvants three times with the proper control group in 2 weeks intervals. Cytokine profile and isotyping ELISA were conducted to determine the type of induced immunity. Opsonophagocytosis tests assessed the functional activity of the vaccine, and the bacterial burden from the infected tissues was determined. Results showed that mice receiving SeNps and r-Autolysin had higher levels of total IgG and isotypes (IgG1 and IgG2a) and increased cytokine levels (IFN-γ, TNF-α, IL-12, and IL-4) as compared with those only receiving autolysin and PBS as a control. More importantly, mice immunized with SeNps and r-Autolysin exhibited a decrease in mortality and bacterial burden compared to the control group. We concluded that SeNps could stimulate immune responses and can be used as an adjuvant element in vaccine formulation.
Collapse
|
4
|
Haghighi M, Khorasani A, Karimi P, Keshavarz R, Mahdavi M. Different Formulations of Inactivated SARS-CoV-2 Vaccine Candidates in Human Compatible Adjuvants: Potency Studies in Mice Showed Different Platforms of Immune Responses. Viral Immunol 2022; 35:663-672. [PMID: 36534465 DOI: 10.1089/vim.2022.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several inactivated SARS-CoV-2 vaccines have been approved for human use, but are not highly potent. In this study, different formulations of the inactivated SARS-CoV-2 virus were developed in Alum, Montanide 51VG, and Montanide ISA720VG adjuvants, followed by assessment of immune responses. The SARS-CoV-2 virus was inactivated with formalin and formulated in the adjuvants. BALB/c mice were immunized subcutaneously with 4 μg of vaccines on days 0 and 14; (IL-4) and (IFN-g), cytotoxic T lymphocyte (CTL) activity, and specific immunoglobulin G (IgG) titer and IgG1, IgG2a, and IgG2a/IgG1 ratio, and anti-receptor-binding domain (RBD) IgG response were assessed 2 weeks after the final immunization. Immunization with SARS-CoV-2-Montanide ISA51VG showed a significant increase in the IFN-γ cytokine versus SARS-CoV-2-Alum, SARS-CoV-2-Montanide ISA720VG, and control groups (p < 0.0033). Cytokine IL-4 response in SARS-CoV-2-Alum group showed a significant increase compared with SARS-CoV-2-Montanide ISA51VG, SARS-CoV-2-Montanide ISA720VG, and control groups (p < 0.0206). In addition, SARS-CoV-2-Montanide ISA51VG vaccine induced the highest IFN-γ/IL-4 cytokine ratio versus other groups (p < 0.0004). CTL activity in SARS-CoV-2-Montanide ISA51VG and SARS-CoV-2-Montanide ISA720VG groups showed a significant increase compared with SARS-CoV-2-Alum and control groups (p < 0.0075). Specific IgG titer in SARS-CoV-2-Montanide ISA51 VG and SARS-CoV-2-Montanide ISA720VG showed a significant increase compared with SARS-CoV-2-Alum and control groups (p < 0.0143). Results from specific IgG1and IgG2a in SARS-CoV-2-Alum, SARS-CoV-2-Montanide ISA51VG, and SARS-CoV-2-Montanide ISA720VG vaccine showed a significant increase compared with phosphate buffer saline (PBS) group (p < 0.0001), but SARS-CoV-2-Montanide ISA51VG and SARS-CoV-2-Montanide ISA 720VG groups showed the highest IgG2a/IgG1 ratio and a significant increase compared with SARS-CoV-2-Alum group (p < 0.0379). Moreover, inactivated SARS-CoV-2+Alum and SARS-CoV-2-Montanide ISA 720VG groups demonstrated a significant increase in anti-RBD IgG response versus the SARS-CoV-2-Montanide ISA51VG group. It seems that the type of vaccine formulation is a critical parameter, influencing the immunologic pattern and vaccine potency and human-compatible oil-based adjuvants were more potent than Alum adjuvant in the vaccine formulation.
Collapse
Affiliation(s)
- Melika Haghighi
- Department of FMD Vaccine Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akbar Khorasani
- Department of FMD Vaccine Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Pegah Karimi
- Department of Biochemistry, Faculty of Basic Sciences, Islamic Azad University, Tehran, Iran
| | - Rouhollah Keshavarz
- PPD Tuberculin Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Immunotherapy Group, The Institute of Pharmaceutical Science (TIPS), Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
5
|
Firdaus FZ, Skwarczynski M, Toth I. Developments in Vaccine Adjuvants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:145-178. [PMID: 34918245 DOI: 10.1007/978-1-0716-1892-9_8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines, including subunit, recombinant, and conjugate vaccines, require the use of an immunostimulator/adjuvant for maximum efficacy. Adjuvants not only enhance the strength and longevity of immune responses but may also influence the type of response. In this chapter, we review the adjuvants that are available for use in human vaccines, such as alum, MF59, AS03, and AS01. We extensively discuss their composition, characteristics, mechanism of action, and effects on the immune system. Additionally, we summarize recent trends in adjuvant discovery, providing a brief overview of saponins, TLRs agonists, polysaccharides, nanoparticles, cytokines, and mucosal adjuvants.
Collapse
Affiliation(s)
- Farrhana Ziana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
6
|
Rahimkhani A, Haghighat S, Noorbazargan H, Mahdavi M. Improvement of hepatitis B vaccine to induce IFN-γ cytokine response: A new formulation. Microb Pathog 2021; 160:105184. [PMID: 34508828 DOI: 10.1016/j.micpath.2021.105184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/20/2020] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection is limited through vaccination against HBsAg formulated in the Alum adjuvant. However, this alum-formulated vaccine fails to be preventive in some cases, also known as non-responders. Recent studies have shown the immunomodulatory effect of α-tocopherol in various models. Here, we developed a new formulation for HBsAg using α-tocopherol, followed by assessment of immune responses. Experimental BALB/c mice were immunized with a commercial alum-based vaccine or the one formulated in α-tocopherol at different doses. Mice were immunized subcutaneously with 5 μg of HBsAg with different formulations three times with 2-week intervals. Specific total IgG, IgG1, and IgG2a isotypes of antibodies were measured by ELISA. Immunologic cytokines, such as IFN-γ, IL-4, IL-2, and TNF-α, were also evaluated through commercial ELISA kits. Our results showed that the new α-tocopherol-formulated vaccine had the ability to reinforce specific total IgG responses. Moreover, α-tocopherol in the HBsAg vaccine increased IFN-γ, IL-2, and TNF-α cytokines at higher concentrations; however, the vaccine suppressed IL-4 cytokine release. At a lower concentration of α-tocopherol, the IL-4 cytokine response increased without a positive effect on IFN-γ and TNF-α cytokine response. It seems that α-tocopherol can change the immune responses against HBsAg; however, the type of response depends on the dose of α-tocopherol used in the vaccine formulation.
Collapse
Affiliation(s)
- Anahita Rahimkhani
- Department of Microbiology, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, (IAUPS), Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, (IAUPS), Tehran, Iran
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Franco AR, Peri F. Developing New Anti-Tuberculosis Vaccines: Focus on Adjuvants. Cells 2021; 10:cells10010078. [PMID: 33466444 PMCID: PMC7824815 DOI: 10.3390/cells10010078] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that sits in the top 10 leading causes of death in the world today and is the current leading cause of death among infectious diseases. Although there is a licensed vaccine against TB, the Mycobacterium bovis bacilli Calmette–Guérin (BCG) vaccine, it has several limitations, namely its high variability of efficacy in the population and low protection against pulmonary tuberculosis. New vaccines for TB are needed. The World Health Organization (WHO) considers the development and implementation of new TB vaccines to be a priority. Subunit vaccines are promising candidates since they can overcome safety concerns and optimize antigen targeting. Nevertheless, these vaccines need adjuvants in their formulation in order to increase immunogenicity, decrease the needed antigen dose, ensure a targeted delivery and optimize the antigens delivery and interaction with the immune cells. This review aims to focus on adjuvants being used in new formulations of TB vaccines, namely candidates already in clinical trials and others in preclinical development. Although no correlates of protection are defined, most research lines in the field of TB vaccination focus on T-helper 1 (Th1) type of response, namely polyfunctional CD4+ cells expressing simultaneously IFN-γ, TNF-α, and IL-2 cytokines, and also Th17 responses. Accordingly, most of the adjuvants reviewed here are able to promote such responses. In the future, it might be advantageous to consider a wider array of immune parameters to better understand the role of adjuvants in TB immunity and establish correlates of protection.
Collapse
|
8
|
Grego EA, Siddoway AC, Uz M, Liu L, Christiansen JC, Ross KA, Kelly SM, Mallapragada SK, Wannemuehler MJ, Narasimhan B. Polymeric Nanoparticle-Based Vaccine Adjuvants and Delivery Vehicles. Curr Top Microbiol Immunol 2021; 433:29-76. [PMID: 33165869 PMCID: PMC8107186 DOI: 10.1007/82_2020_226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As vaccine formulations have progressed from including live or attenuated strains of pathogenic components for enhanced safety, developing new adjuvants to more effectively generate adaptive immune responses has become necessary. In this context, polymeric nanoparticles have emerged as a promising platform with multiple advantages, including the dual capability of adjuvant and delivery vehicle, administration via multiple routes, induction of rapid and long-lived immunity, greater shelf-life at elevated temperatures, and enhanced patient compliance. This comprehensive review describes advances in nanoparticle-based vaccines (i.e., nanovaccines) with a particular focus on polymeric particles as adjuvants and delivery vehicles. Examples of the nanovaccine approach in respiratory infections, biodefense, and cancer are discussed.
Collapse
Affiliation(s)
- Elizabeth A Grego
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Alaric C Siddoway
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Metin Uz
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Luman Liu
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - John C Christiansen
- Departments of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Kathleen A Ross
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Sean M Kelly
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Surya K Mallapragada
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Michael J Wannemuehler
- Departments of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Balaji Narasimhan
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA.
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
9
|
Gilavand F, Marzban A, Ebrahimipour G, Soleimani N, Goudarzi M. Designation of chitosan nano-vaccine based on MxiH antigen of Shigella flexneri with increased immunization capacity. Carbohydr Polym 2019; 232:115813. [PMID: 31952611 DOI: 10.1016/j.carbpol.2019.115813] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/18/2019] [Accepted: 12/29/2019] [Indexed: 12/31/2022]
Abstract
Shigella flexneri is a gram-negative pathogen that causes shigellosis in humans and primates. MxiH antigen is known as one of the invasive factors in most Gram-negative bacteria consisting of a needle-like structure in the main backbone of the type 3 secretory system. Recombinant MxiH antigen was produced by E. coli BL21 and purified antigen was loaded into chitosan nanoparticles (CS-MxiH). After 20thand 55th of intranasal vaccinations, the titers of IgG, IgA, IL-4, and IFN-γ were evaluated. The results indicated the successful synthesis of CS nanoparticles followed by the effective loading of MxiH antigen. The results of animal experiments showed that the intranasal administration of CS-MxiH increased IgG and IgA compared to control groups. Increased levels of IL-4 and IFN-γ in groups immunized with CS-MxiH are probably due to the activation of plasmacytoid and myeloid cells presenting antigen in nasal epithelial mucosa and stimulating B cells.
Collapse
Affiliation(s)
- Farhad Gilavand
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Gholamhossein Ebrahimipour
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Neda Soleimani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Najminejad H, Kalantar SM, Mokarram AR, Dabaghian M, Abdollahpour-Alitappeh M, Ebrahimi SM, Tebianian M, Fasihi Ramandi M, Sheikhha MH. Bordetella pertussis antigens encapsulated into N-trimethyl chitosan nanoparticulate systems as a novel intranasal pertussis vaccine. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2605-2611. [PMID: 31240957 DOI: 10.1080/21691401.2019.1629948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mucosal immune system serves as the first line of defense against Bordetella pertussis. Intranasal vaccination, due to its potential to induce systemic and mucosal immune responses, appears to prevent the initial adherence and colonization of the bacteria at the first point of contact. In the present study, two B. pertussis antigens, pertussis Toxoid (PTd) and Filamentous hemagglutinin (FHA), which play a very significant role in virulence and protection against pertussis, were encapsulate into N-trimethyl chitosan (TMC) nanoparticulate systems. After preparation of TMC nanoparticles (NPs), the NPs were characterized and their ability to induce efficient immune responses against B. pertussis was studied in a mouse model. Our findings showed that PTd + FHA-loaded TMC NPs have strong ability to induce IL-4, IL-17, IFN-γ, IgG, and IgA in the mouse model. Results from this study suggest that nasal administration of the PTd + FHA-loaded TMC NPs induced not only a systemic immune response but also a local mucosal response, which may improve the efficacy of pertussis prevention through respiratory tract transmission.
Collapse
Affiliation(s)
- Hamid Najminejad
- a Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences , Yazd , Iran
| | - Seyed Mehdi Kalantar
- a Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences , Yazd , Iran
| | - Ali Rezaei Mokarram
- b Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI) , Karaj , Iran
| | - Mehran Dabaghian
- c Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | | | - Seyyed Mahmoud Ebrahimi
- c Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Majid Tebianian
- b Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI) , Karaj , Iran
| | - Mahdi Fasihi Ramandi
- e Molecular Biology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Mohammad Hasan Sheikhha
- a Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences , Yazd , Iran
| |
Collapse
|
11
|
Khademi F, Taheri RA, Yousefi Avarvand A, Vaez H, Momtazi-Borojeni AA, Soleimanpour S. Are chitosan natural polymers suitable as adjuvant/delivery system for anti-tuberculosis vaccines? Microb Pathog 2018; 121:218-223. [DOI: 10.1016/j.micpath.2018.05.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 02/08/2023]
|
12
|
Amini Y, Amel Jamehdar S, Sadri K, Zare S, Musavi D, Tafaghodi M. Different methods to determine the encapsulation efficiency of protein in PLGA nanoparticles. Biomed Mater Eng 2018; 28:613-620. [PMID: 29171972 DOI: 10.3233/bme-171705] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Effective encapsulation of drugs into the delivery systems could increase the efficiency of nanoparticles in prevention and treatment of diseases. OBJECTIVE The purpose of this study was to compare the different methods for determination of encapsulation efficiency of a model protein in the PLGA nanoparticles. METHODS The various direct methods include dichloromethane, acetonitrile, modified acetonitrile and NaOH based extraction and radioactive methods were used to directly calculate the encapsulation efficiency of the loaded protein in the PLGA nanoparticles. Furthermore, indirect methods include BCA, Fluorescent and radioactive methods were compared. RESULTS The encapsulation efficiencies determined by indirect methods include dichloromethane, acetonitrile, modified acetonitrile, NaOH based extraction and radioactive methods were 12.62% ± 1.97, 17.43% ± 2.51, 64.69% ± 4.31, 86.36% ± 2.25 and 90.15% ± 1.78, respectively. Moreover, the encapsulation efficiencies determined by indirect methods include BCA, fluorescent and radioactive methods were 81.46% ± 1.92, 88.23% ± 1.15 and 89.6% ± 1.9, respectively. CONCLUSIONS Among the results obtained by indirect methods, radioactive and fluorescent methods showed more reliable. Moreover, NaOH and radioactive methods were the most reliable methods among the direct methods.
Collapse
Affiliation(s)
- Yousef Amini
- Department of Microbiology, Faculty of Medicine, Zahedan University of Medical Science, Zahedan, Iran.,Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Amel Jamehdar
- Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Keyvan Sadri
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirwan Zare
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Danial Musavi
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Dabaghian M, Latifi AM, Tebianian M, NajmiNejad H, Ebrahimi SM. Nasal vaccination with r4M2e.HSP70c antigen encapsulated into N-trimethyl chitosan (TMC) nanoparticulate systems: Preparation and immunogenicity in a mouse model. Vaccine 2018; 36:2886-2895. [PMID: 29627234 DOI: 10.1016/j.vaccine.2018.02.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 12/15/2022]
Abstract
In this study, the potential of N-trimethyl chitosan (TMC) nanoparticles as a carrier system for the nasal delivery of the r4M2e.HSP70c, as an M2e-based universal recombinant influenza virus vaccine candidate, was investigated in mice. The anti-M2e specific cellular and humoral immune responses were assessed and the protective efficacy against a 90% lethal dose (LD90) of influenza A/PR/8/34 (H1N1) in a mice model was evaluated. Our results showed that the intranasal immunization of mice with r4M2e.HSP70c+TMC rather than the control groups, r4M2e+TMC, r4M2e and PBS (Phosphate buffer saline), significantly elevated both longevity and serum level of the total M2e-specific IgG antibody with a significant shift in the IgG2a/IgG1 ratio toward IgG2a, induced a Th1 skewed humoral and cellular immune responses, increased IFN-γ, IgG, and IgA in the bronchoalveolar lavage fluid (BALF), and promoted the proliferation of peripheral blood lymphocytes with lower morbidity and mortality rate against viral challenge. In conclusion, based on evidence to our finding, nasal vaccination with r4M2e.HSP70c antigen encapsulated into N-Trimethyl Chitosan (TMC) nanoparticulate system showed to induce a long lasting M2e-specific humoral and cellular immune responses and also provided full protection against a 90% lethal dose (LD90) of the influenza virus A/PR/8/34 (H1N1). It seems, protective immunity following intranasal administration of r4M2e could be resulted by the cooperation of both adjuvants, TMC and HSP70c.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Administration, Intranasal
- Animals
- Antibodies, Viral/analysis
- Bronchoalveolar Lavage Fluid/immunology
- Cell Proliferation
- Chitosan/administration & dosage
- Disease Models, Animal
- Drug Carriers/administration & dosage
- Female
- HSP72 Heat-Shock Proteins/administration & dosage
- HSP72 Heat-Shock Proteins/pharmacology
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Immunoglobulin A/analysis
- Immunoglobulin G/analysis
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/prevention & control
- Interferon-gamma/analysis
- Leukocytes, Mononuclear/immunology
- Mice, Inbred BALB C
- Nanoparticles/administration & dosage
- Serum/immunology
- Survival Analysis
- Treatment Outcome
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- Viral Matrix Proteins/administration & dosage
- Viral Matrix Proteins/immunology
Collapse
Affiliation(s)
- Mehran Dabaghian
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 14155-3651, Tehran, Iran; Biotechnology Department, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ali Mohammad Latifi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 14155-3651, Tehran, Iran
| | - Majid Tebianian
- Biotechnology Department, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Hamid NajmiNejad
- Yazd University of Medical Sciences and Health Services, Department of Genetics and Molecular Medicine, Yazd, Iran
| | - Seyyed Mahmoud Ebrahimi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 14155-3651, Tehran, Iran.
| |
Collapse
|