1
|
Liu N, Wu Q, Liu Y, Li J, Ji P, Fu G. Application of Nanomaterials in the Treatment and Diagnosis of Ophthalmology Diseases. Curr Stem Cell Res Ther 2021; 16:95-103. [PMID: 32039688 DOI: 10.2174/1574888x15666200210104449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 11/22/2022]
Abstract
Eye diseases often lead to impaired vision and seriously affect the daily life of patients. Local administration of ophthalmic drugs is one of the most important approaches for the treatment of ophthalmic diseases. However, due to the special biochemical environment of the ocular tissue and the existence of many barriers, the bioavailability of conventional ophthalmic preparations in the eye is very low. Nanomaterials can be utilized as carriers of drugs, which can improve the absorption, distribution, metabolism and bioavailability of drugs in eyes. Nanomaterials have also the advantages of small size, simple preparation, good degradability, strong targeting, and little stimulation to biological tissues, providing an innovative and practical method for the drug delivery of ophthalmic diseases. In addition, nanomaterials can be used as an auxiliary means for early diagnosis of ophthalmic diseases by improving the specificity and accuracy of detection methods. Nanomaterials help clinicians and researchers delve deeper into the physiology and pathology of the eye at the nanoscale. We summarize the application of nanomaterials in the diagnosis and treatment of ophthalmic diseases in this review.
Collapse
Affiliation(s)
- Nanxin Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Qingqing Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Yunfei Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Jiao Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Gang Fu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| |
Collapse
|
2
|
Czechowska K, Tárnok A. New on the block: The workshop reports. Cytometry A 2019; 95:595-597. [PMID: 31207047 DOI: 10.1002/cyto.a.23800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022]
Affiliation(s)
| | - Attila Tárnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany.,Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.,Department of Precision Instrument, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Cardigos J, Ferreira Q, Crisóstomo S, Moura-Coelho N, Cunha JP, Pinto LA, Ferreira JT. Nanotechnology-Ocular Devices for Glaucoma Treatment: A Literature Review. Curr Eye Res 2018; 44:111-117. [PMID: 30309248 DOI: 10.1080/02713683.2018.1536218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Nanotechnology enabled the development of materials and devices with great utility in different fields of medicine. By using engineered-based nano-devices and structures, human biological systems may be controlled and repaired at a molecular scale, ultimately leading to a biological benefit. In particular, in the field of glaucoma treatment, nanotechnology may, for example, enhance drug residence time on the ocular surface and ocular bioavailability, as well as improve surgical success by both optimizing postoperative scarring and providing a wider safety window. Further studies are still needed to entirely explain the pharmacodynamics of nanotechnology-based therapeutic approaches and prove their biological consequences in human eyes. This review aims to summarize the literature concerning the advances in nanotechnology, specifically regarding ocular devices applied to the treatment of glaucoma.
Collapse
Affiliation(s)
- Joana Cardigos
- a Departamento de Oftalmologia , Centro Hospitalar Lisboa Central , Lisboa , Portugal
| | | | - Sara Crisóstomo
- a Departamento de Oftalmologia , Centro Hospitalar Lisboa Central , Lisboa , Portugal
| | - Nuno Moura-Coelho
- a Departamento de Oftalmologia , Centro Hospitalar Lisboa Central , Lisboa , Portugal
| | - João Paulo Cunha
- a Departamento de Oftalmologia , Centro Hospitalar Lisboa Central , Lisboa , Portugal.,c NOVA Medical School/Faculdade de Ciências Médicas da Universidade Nova de Lisboa , Lisboa , Portugal
| | - Luís Abegão Pinto
- d Departamento de Oftalmologia , Centro Hospitalar Lisboa Norte , Lisboa , Portugal.,e Centro de Estudos das Ciências da Visão , Faculdade de Medicina da Universidade de Lisboa , Lisboa , Portugal
| | - Joana Tavares Ferreira
- a Departamento de Oftalmologia , Centro Hospitalar Lisboa Central , Lisboa , Portugal.,c NOVA Medical School/Faculdade de Ciências Médicas da Universidade Nova de Lisboa , Lisboa , Portugal
| |
Collapse
|
4
|
White-Schenk D, Shi R, Leary JF. Nanomedicine strategies for treatment of secondary spinal cord injury. Int J Nanomedicine 2015; 10:923-38. [PMID: 25673988 PMCID: PMC4321603 DOI: 10.2147/ijn.s75686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neurological injury, such as spinal cord injury, has a secondary injury associated with it. The secondary injury results from the biological cascade after the primary injury and affects previous uninjured, healthy tissue. Therefore, the mitigation of such a cascade would benefit patients suffering a primary injury and allow the body to recover more quickly. Unfortunately, the delivery of effective therapeutics is quite limited. Due to the inefficient delivery of therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. Based on their material properties, they can help treat disease by delivering drugs to specific tissues, enhancing detection methods, or a mixture of both. Incorporating nanomedicine into the treatment of neuronal injury and disease would likely push nanomedicine into a new light. This review highlights the various pathological issues involved in secondary spinal cord injury, current treatment options, and the improvements that could be made using a nanomedical approach.
Collapse
Affiliation(s)
- Désirée White-Schenk
- Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette, IN, USA ; Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, IN, USA
| | - Riyi Shi
- Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette, IN, USA ; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA ; Department of Basic Medical Sciences, Lynn School of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - James F Leary
- Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette, IN, USA ; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA ; Department of Basic Medical Sciences, Lynn School of Veterinary Medicine, Purdue University, West Lafayette, IN, USA ; Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
5
|
Al-Halafi AM. Nanocarriers of nanotechnology in retinal diseases. Saudi J Ophthalmol 2014; 28:304-9. [PMID: 25473348 DOI: 10.1016/j.sjopt.2014.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/29/2014] [Accepted: 02/24/2014] [Indexed: 12/21/2022] Open
Abstract
We are approaching a new era of retinal pharmacotherapy where new drugs are rapidly being worked out for the treatment of posterior-segment disease. Recent development in ocular drug delivery systems research has provided new insights into drug development, and the use of nanoparticles for drug delivery is thus a promising excellent approach for advanced therapy of ocular diseases. The primary goal is to develop a variety of drug delivery systems to complement and further enhance the efficacy of the available new medications. The ideal sustained release technology will provide a high level of safety with continuous release over an extended period of time while maintaining almost total drug bioactivity. The use of nanocarriers, such as cyclodextrin nanoparticle suspension, liposomes, nanospheres and, nanoemulsions for gene therapy of retinal diseases has been highlighted in this review.
Collapse
Affiliation(s)
- Ali M Al-Halafi
- Department of Surgery, Ophthalmology Division, Security Forces Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Abstract
While nanoparticles are usually designed for targeted drug delivery, they can also simultaneously provide diagnostic information by a variety of in vivo imaging methods. These diagnostic capabilities make use of specific properties of nanoparticle core materials. Near-infrared fluorescent probes provide optical detection of cells targeted by real-time nanoparticle-distribution studies within the organ compartments of live, anesthetized animals. By combining different imaging modalities, we can start with deep-body imaging by magnetic resonance imaging or computed tomography, and by using optical imaging, get down to the resolution required for real-time fluorescence-guided surgery.
Collapse
Affiliation(s)
- Jaehong Key
- Weldon School of Biomedical Engineering, West Lafayette, IN, USA ; Birck Nanotechnology Center, West Lafayette, IN, USA ; Bindley Bioscience Center, West Lafayette, IN, USA
| | - James F Leary
- Weldon School of Biomedical Engineering, West Lafayette, IN, USA ; Birck Nanotechnology Center, West Lafayette, IN, USA ; Bindley Bioscience Center, West Lafayette, IN, USA ; College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
7
|
Nanotechnology-Based Biosensors and Diagnostics: Technology Push versus Industrial/Healthcare Requirements. BIONANOSCIENCE 2012. [DOI: 10.1007/s12668-012-0047-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Zarbin MA, Montemagno C, Leary JF, Ritch R. Regenerative nanomedicine and the treatment of degenerative retinal diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 4:113-37. [DOI: 10.1002/wnan.167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marco A. Zarbin
- Institute of Ophthalmology and Visual Science, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Carlo Montemagno
- College of Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - James F. Leary
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN Purdue University, School of Veterinary Medicine, West Lafayette, IN, USA
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye & Ear Infirmary, New York, NY, USA
| |
Collapse
|
9
|
Zarbin MA, Montemagno C, Leary JF, Ritch R. Nanotechnology in ophthalmology. Can J Ophthalmol 2010; 45:457-76. [DOI: 10.3129/i10-090] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|