1
|
Chen G, Yu L, Shi F, Shen J, Zhang Y, Liu G, Mei X, Li X, Xu X, Xue C, Chang Y. A comprehensive review of sulfated fucan from sea cucumber: Antecedent and prospect. Carbohydr Polym 2024; 341:122345. [PMID: 38876715 DOI: 10.1016/j.carbpol.2024.122345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
Sulfated fucan from sea cucumber is mainly consists of L-fucose and sulfate groups. Recent studies have confirmed that the structure of sulfated fucan mainly consists of repeating units, typically tetrasaccharides. However, there is growing evidence indicating the presence of irregular domains with heterogeneous units that have not been extensively explored. Moreover, as a key contributor to the nutritional benefits of sea cucumbers, sulfated fucan demonstrates a range of biological activities, such as anti-inflammatory, anticancer, hypolipidemic, anti-hyperglycemic, antioxidant, and anticoagulant properties. These biological activities are profoundly influenced by the structural features of sulfated fucan including molecular weight and distribution patterns of sulfate groups. The latest research indicates that sulfated fucan is dispersed in the extracellular matrix of the body wall of sea cucumbers. This article aimed to review the research progress on the in-situ distribution, structures, structural elucidation strategies, functions, and structure-activity relationships of sulfated fucan, especially in the last decade. It also provided insights into the major challenges and potential solutions in the research and development of sulfated fucan. Moreover, the fucanase and carbohydrate binding modules are anticipated to play pivotal roles in advancing this field.
Collapse
Affiliation(s)
- Guangning Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Long Yu
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Feifei Shi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xinyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiaoqi Xu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
2
|
Sakayanathan P, Loganathan C, Thayumanavan P. Protection of pancreatic beta cells against high glucose-induced toxicity by astaxanthin-s-allyl cysteine diester: alteration of oxidative stress and apoptotic-related protein expression. Arch Physiol Biochem 2024; 130:316-324. [PMID: 35482540 DOI: 10.1080/13813455.2022.2064878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/18/2022] [Accepted: 04/05/2022] [Indexed: 11/02/2022]
Abstract
Purpose: High glucose (HG)-induced oxidative stress is associated with apoptosis in pancreatic β-cells. The protective effect of astaxanthin-s-allyl cysteine diester (AST-SAC) against HG-induced oxidative stress in pancreatic β-cells (βTC-tet cell line) in in vitro was studied.Materials and Methods: βTC-tet cell line was exposed to HG in the presence and absence of AST-SAC. Various parameters such as cell viability, reactive oxygen species generation, mitochondrial membrane potential, DNA fragmentation and expression of proteins involved in apoptosis [p53, B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X (Bax), cytochrome c and caspase 3] were studied.Results: Pre-treatment of βTC-tet cells with AST-SAC (4, 8 and 12 μg/ml) in the presence of HG (25 mM) protected the viability of the cells in a dose-dependent manner. AST-SAC treatment mitigated the oxidative stress thereby preventing the mitochondrial dysfunction, DNA damage and apoptosis in βTC-tet cells against HG toxicity. Treatment with AST-SAC prevented the increased expression of p53 under HG conditions. Further, AST-SAC treatment maintained the level of pro-apoptotic (Bax, cleaved caspase-3 and cytochrome c) and anti-apoptotic (Bcl-2) proteins to that of the control level under HG exposed conditions in βTC-tet cells.Conclusion: Altogether, AST-SAC alleviated HG-induced oxidative damage and apoptosis in pancreatic β-cells by enhancing the antioxidant status and altering apoptotic-related protein expression.
Collapse
Affiliation(s)
| | - Chitra Loganathan
- Department of Biochemistry, Periyar University, Salem, India
- Research and Development center, Bioinnov Solutions LLP, Salem, India
| | | |
Collapse
|
3
|
Amin ML, Mawad D, Dokos S, Sorrell CC. Comparative Bioactivities of Chemically Modified Fucoidan and λ-Carrageenan toward Cells Encapsulated in Covalently Cross-Linked Hydrogels. Biomacromolecules 2024; 25:3131-3140. [PMID: 38554085 DOI: 10.1021/acs.biomac.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
The sulfated marine polysaccharides, fucoidan and λ-carrageenan, are known to possess anti-inflammatory, immunomodulatory, and cellular protective properties. Although they hold considerable promise for tissue engineering constructs, their covalent cross-linking in hydrogels and comparative bioactivities to cells are absent from the literature. Thus, fucoidan and λ-carrageenan were modified with methacrylate groups and were covalently cross-linked with the synthetic polymer poly(vinyl alcohol)-methacrylate (PVA-MA) to form 20 wt % biosynthetic hydrogels. Identical degrees of methacrylation were confirmed by 1H NMR, and covalent conjugation was determined by using a colorimetric 1,9-dimethyl-methylene blue (DMMB) assay. Pancreatic beta cells were encapsulated in the hydrogels, followed by culturing in the 3D environment for a prolonged period of 32 days and evaluation of the cellular functionality by live/dead, adenosine 5'-triphosphate (ATP) level, and insulin secretion. The results confirmed that fucoidan and λ-carrageenan exhibited ∼12% methacrylate substitution, which generated hydrogels with stable conjugation of the polysaccharides with PVA-MA. The cells encapsulated in the PVA-fucoidan hydrogels demonstrated consistently high ATP levels over the culture period. Furthermore, only cells in the PVA-fucoidan hydrogels retained glucose responsiveness, demonstrating comparatively higher insulin secretion in response to glucose. In contrast, cells in the PVA-λ-carrageenan and the PVA control hydrogels lost all glucose responsiveness. The present work confirms the superior effects of chemically modified fucoidan over λ-carrageenan on pancreatic beta cell survival and function in covalently cross-linked hydrogels, thereby illustrating the importance of differential polysaccharide structural features on their biological effects.
Collapse
Affiliation(s)
- Md Lutful Amin
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Hossain A, Dave D, Shahidi F. Sulfated polysaccharides in sea cucumbers and their biological properties: A review. Int J Biol Macromol 2023; 253:127329. [PMID: 37844809 DOI: 10.1016/j.ijbiomac.2023.127329] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
Sea cucumbers contain a wide range of biomolecules, including sulfated polysaccharides (SPs), with immense therapeutic and nutraceutical potential. SPs in sea cucumbers are mainly fucosylated chondroitin sulfate (FCS) and fucan sulfate (FS) which exhibit a series of pharmacological effects, including anticoagulant activity, in several biological systems. FCS is a structurally distinct glycosaminoglycan in the sea cucumber body wall, and its biological properties mainly depend on the degree of sulfation, position of sulfate group, molecular weight, and distribution of branches along the backbone. So far, FCS and FS have been recognized for their antithrombotic, anti-inflammatory, anticancer, antidiabetic, anti-hyperlipidemic, anti-obesity, and antioxidant potential. However, the functions of these SPs are mainly dependent on the species, origins, harvesting season, and extraction methods applied. This review focuses on the SPs of sea cucumbers and how their structural diversities affect various biological activities. In addition, the mechanism of actions of SPs, chemical structures, factors affecting their bioactivities, and their extraction methods are also discussed.
Collapse
Affiliation(s)
- Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada; Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John's, NL A1C 5R3, Canada.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
5
|
Hossain A, Dave D, Shahidi F. Northern Sea Cucumber ( Cucumaria frondosa): A Potential Candidate for Functional Food, Nutraceutical, and Pharmaceutical Sector. Mar Drugs 2020; 18:md18050274. [PMID: 32455954 PMCID: PMC7281287 DOI: 10.3390/md18050274] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
Sea cucumber (Cucumaria frondosa) is the most abundant and widely distributed species in the cold waters of North Atlantic Ocean. C. frondosa contains a wide range of bioactive compounds, mainly collagen, cerebrosides, glycosaminoglycan, chondroitin sulfate, saponins, phenols, and mucopolysaccharides, which demonstrate unique biological and pharmacological properties. In particular, the body wall of this marine invertebrate is the major edible part and contains most of the active constituents, mainly polysaccharides and collagen, which exhibit numerous biological activities, including anticancer, anti-hypertensive, anti-angiogenic, anti-inflammatory, antidiabetic, anti-coagulation, antimicrobial, antioxidation, and anti- osteoclastogenic properties. In particular, triterpene glycosides (frondoside A and other) are the most researched group of compounds due to their potential anticancer activity. This review summarizes the latest information on C. frondosa, mainly geographical distribution, landings specific to Canadian coastlines, processing, commercial products, trade market, bioactive compounds, and potential health benefits in the context of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
- Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John’s, NL A1C 5R3, Canada
- Correspondence: (D.D.); (F.S.)
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
- Correspondence: (D.D.); (F.S.)
| |
Collapse
|
6
|
The structure of a fucosylated chondroitin sulfate from the sea cucumber Cucumaria frondosa. Carbohydr Polym 2017; 165:7-12. [DOI: 10.1016/j.carbpol.2017.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 01/25/2023]
|