1
|
Cushman CJ, Ibrahim AF, Smith AD, Hernandez EJ, MacKay B, Zumwalt M. Local and Systemic Peptide Therapies for Soft Tissue Regeneration: A Narrative Review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:399-413. [PMID: 39351323 PMCID: PMC11426299 DOI: 10.59249/tknm3388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Background: The musculoskeletal system, due to inherent structure and function, lends itself to contributing toward joint pain, whether from inflammatory disorders such as rheumatoid arthritis, degenerative diseases such as osteoarthritis, or trauma causing soft tissue injury. Administration of peptides for treatment of joint pain or inflammation is an emerging line of therapy that seeks to offer therapeutic benefits while remaining safe and relatively non-invasive. Purpose: The purpose of this study is to review the current literature on existing oral peptide agents, intra-articular peptide agents, and new developments in human trials to assess route of administration (RoA) for drug delivery in terms of soft tissue regeneration. Study Design: Narrative Review. Methods: A comprehensive literature search was conducted using the PubMed database. The search included medical subject headings (MeSH) terms related to peptide therapy, soft tissue regeneration, and RoA. Inclusion criteria comprised articles focusing on the mechanisms of action of peptides, clinical or biochemical outcomes, and review articles. Exclusion criteria included insufficient literature or studies not meeting the set evidence level. Conclusion: The review identified various peptides demonstrating efficacy in soft tissue repair. Oral and intra-articular peptides showed distinct advantages in soft tissue regeneration, with intra-articular routes providing localized effects and oral routes offering systemic benefits. However, both routes have limitations in bioavailability and absorption. Still in their infancy, further inquiries/research into the properties and efficacy of emerging peptides will be necessary before widespread use. As a viable alternative prior to surgical intervention, peptide treatments present as promising candidates for positive outcomes in soft tissue regeneration.
Collapse
Affiliation(s)
- Caroline J Cushman
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Andrew F Ibrahim
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Alexander D Smith
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Evan J Hernandez
- Department of Orthopaedic Surgery, Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas, USA
| | - Brendan MacKay
- Department of Orthopaedic Surgery, Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas, USA
| | - Mimi Zumwalt
- Department of Orthopaedic Surgery, Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas, USA
| |
Collapse
|
2
|
Min JH, Sarlus H, Harris RA. Glycyl-l-histidyl-l-lysine prevents copper- and zinc-induced protein aggregation and central nervous system cell death in vitro. Metallomics 2024; 16:mfae019. [PMID: 38599632 PMCID: PMC11135135 DOI: 10.1093/mtomcs/mfae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/09/2024] [Indexed: 04/12/2024]
Abstract
Common features of neurodegenerative diseases are oxidative and inflammatory imbalances as well as the misfolding of proteins. An excess of free metal ions can be pathological and contribute to cell death, but only copper and zinc strongly promote protein aggregation. Herein we demonstrate that the endogenous copper-binding tripeptide glycyl-l-histidyl-l-lysine (GHK) has the ability to bind to and reduce copper redox activity and to prevent copper- and zinc-induced cell death in vitro. In addition, GHK prevents copper- and zinc-induced bovine serum albumin aggregation and reverses aggregation through resolubilizing the protein. We further demonstrate the enhanced toxicity of copper during inflammation and the ability of GHK to attenuate this toxicity. Finally, we investigated the effects of copper on enhancing paraquat toxicity and report a protective effect of GHK. We therefore conclude that GHK has potential as a cytoprotective compound with regard to copper and zinc toxicity, with positive effects on protein solubility and aggregation that warrant further investigation in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Heela Sarlus
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| |
Collapse
|
3
|
He X, Gao X, Guo Y, Xie W. Research Progress on Bioactive Factors against Skin Aging. Int J Mol Sci 2024; 25:3797. [PMID: 38612608 PMCID: PMC11011925 DOI: 10.3390/ijms25073797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The relentless pursuit of effective strategies against skin aging has led to significant interest in the role of bioactive factors, particularly secondary metabolites from natural sources. The purpose of this study is to meticulously explore and summarize the recent advancements in understanding and utilization of bioactive factors against skin aging, with a focus on their sources, mechanisms of action, and therapeutic potential. Skin, the largest organ of the body, directly interacts with the external environment, making it susceptible to aging influenced by factors such as UV radiation, pollution, and oxidative stress. Among various interventions, bioactive factors, including peptides, amino acids, and secondary metabolites, have shown promising anti-aging effects by modulating the biological pathways associated with skin integrity and youthfulness. This article provides a comprehensive overview of these bioactive compounds, emphasizing collagen peptides, antioxidants, and herbal extracts, and discusses their effectiveness in promoting collagen synthesis, enhancing skin barrier function, and mitigating the visible signs of aging. By presenting a synthesis of the current research, this study aims to highlight the therapeutic potential of these bioactive factors in developing innovative anti-aging skin care solutions, thereby contributing to the broader field of dermatological research and offering new perspectives for future studies. Our findings underscore the importance of the continued exploration of bioactive compounds for their potential to revolutionize anti-aging skin care and improve skin health and aesthetics.
Collapse
Affiliation(s)
- Xin He
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.H.); (X.G.); (Y.G.)
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Xinyu Gao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.H.); (X.G.); (Y.G.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Yifan Guo
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.H.); (X.G.); (Y.G.)
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.H.); (X.G.); (Y.G.)
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
4
|
Wang K, Zhang S, Zhou X, Yang X, Li X, Wang Y, Fan P, Xiao Y, Sun W, Zhang P, Li W, Huang S. Unambiguous discrimination of all 20 proteinogenic amino acids and their modifications by nanopore. Nat Methods 2024; 21:92-101. [PMID: 37749214 DOI: 10.1038/s41592-023-02021-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/21/2023] [Indexed: 09/27/2023]
Abstract
Natural proteins are composed of 20 proteinogenic amino acids and their post-translational modifications (PTMs). However, due to the lack of a suitable nanopore sensor that can simultaneously discriminate between all 20 amino acids and their PTMs, direct sequencing of protein with nanopores has not yet been realized. Here, we present an engineered hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore containing a sole Ni2+ modification. It enables full discrimination of all 20 proteinogenic amino acids and 4 representative modified amino acids, Nω,N'ω-dimethyl-arginine (Me-R), O-acetyl-threonine (Ac-T), N4-(β-N-acetyl-D-glucosaminyl)-asparagine (GlcNAc-N) and O-phosphoserine (P-S). Assisted by machine learning, an accuracy of 98.6% was achieved. Amino acid supplement tablets and peptidase-digested amino acids from peptides were also analyzed using this strategy. This capacity for simultaneous discrimination of all 20 proteinogenic amino acids and their PTMs suggests the potential to achieve protein sequencing using this nanopore-based strategy.
Collapse
Affiliation(s)
- Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Xiao Zhou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Xian Yang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Xinyue Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yunqi Xiao
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Wen Sun
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Wenfei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Tucker M, Liao GY, Park JY, Rosenfeld M, Wezeman J, Mangalindan R, Ratner D, Darvas M, Ladiges W. Behavioral and neuropathological features of Alzheimer's disease are attenuated in 5xFAD mice treated with intranasal GHK peptide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567908. [PMID: 38045355 PMCID: PMC10690187 DOI: 10.1101/2023.11.20.567908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Efforts to find disease modifying treatments for Alzheimer's disease (AD) have met with limited success in part because the focus has been on testing drugs that target a specific pathogenic mechanism. Multiple pathways have been implicated in the pathogenesis of AD. Hence, the probability of more effective treatment for AD is likely increased by using an intervention that targets more than one pathway. The naturally occurring peptide GHK (glycyl-L-histidyl-L-lysine), as a GHK-Cu complex, supports angiogenesis, remodeling, and tissue repair, has anti-inflammatory and antioxidant properties, and has been shown to improve cognitive performance in aging mice. In order to test GHK-Cu as a neurotherapeutic for AD, male and female 5xFAD transgenic mice on the C57BL/6 background at 4 months of age were given 15 mg/kg GHK-Cu intranasally 3 times per week for 3 months until 7 months of age. Results showed that intranasal GHK-Cu treatment delayed cognitive impairment, reduced amyloid plaques, and lowered inflammation levels in the frontal cortex and hippocampus. These observations suggest additional studies are warranted to investigate the potential of GHK-Cu peptide as a promising treatment for AD.
Collapse
Affiliation(s)
- Matthew Tucker
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle WA
| | - Gerald Yu Liao
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| | - Joo Young Park
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| | - Manuela Rosenfeld
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| | - Jackson Wezeman
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| | - Ruby Mangalindan
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| | - Dan Ratner
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle WA
| | - Martin Darvas
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle WA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| |
Collapse
|
6
|
Tucker M, Keely A, Park JY, Rosenfeld M, Wezeman J, Mangalindan R, Ratner D, Ladiges W. Intranasal GHK peptide enhances resilience to cognitive decline in aging mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567423. [PMID: 38014118 PMCID: PMC10680828 DOI: 10.1101/2023.11.16.567423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Brain aging and cognitive decline are aspects of growing old. Age-related cognitive impairment entails the early stages of cognitive decline, and is extremely common, affecting millions of older people. Investigation into early cognitive decline as a treatable condition is relevant to a wide range of cognitive impairment conditions, since mild age-related neuropathology increases risk for more severe neuropathology and dementia associated with Alzheimer's Disease. Recent studies suggest that the naturally occurring peptide GHK (glycyl-L-histidyl-L-lysine) in its Cu-bound form, has the potential to treat cognitive decline associated with aging. In order to test this concept, male and female C57BL/6 mice, 20 months of age, were given intranasal GHK-Cu, 15 mg/kg daily, for two months. Results showed that mice treated with intranasal GHK-Cu had an enhanced level of cognitive performance in spatial memory and learning navigation tasks, and expressed decreased neuroinflammatory and axonal damage markers compared to mice treated with intranasal saline. These observations suggest that GHK-Cu can enhance resilience to brain aging, and has translational implications for further testing in both preclinical and clinical studies using an atomizer device for intranasal delivery.
Collapse
Affiliation(s)
- Matthew Tucker
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle WA
| | - Addison Keely
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| | - Joo Young Park
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| | - Manuela Rosenfeld
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| | - Jackson Wezeman
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| | - Ruby Mangalindan
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| | - Dan Ratner
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle WA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| |
Collapse
|
7
|
Liuzzi GM, Petraglia T, Latronico T, Crescenzi A, Rossano R. Antioxidant Compounds from Edible Mushrooms as Potential Candidates for Treating Age-Related Neurodegenerative Diseases. Nutrients 2023; 15:nu15081913. [PMID: 37111131 PMCID: PMC10145943 DOI: 10.3390/nu15081913] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The last century has seen an increase in our life expectancy. As a result, various age-related diseases, such as neurodegenerative diseases (NDs), have emerged, representing new challenges to society. Oxidative stress (OS), a condition of redox imbalance resulting from excessive production of reactive oxygen species, represents a common feature that characterizes the brains of elderly people, thus contributing to NDs. Consequently, antioxidant supplementation or dietary intake of antioxidant-containing foods could represent an effective preventive and therapeutic intervention to maintain the integrity and survival of neurons and to counteract the neurodegenerative pathologies associated with aging. Food contains numerous bioactive molecules with beneficial actions for human health. To this purpose, a wide range of edible mushrooms have been reported to produce different antioxidant compounds such as phenolics, flavonoids, polysaccharides, vitamins, carotenoids, ergothioneine, and others, which might be used for dietary supplementation to enhance antioxidant defenses and, consequently, the prevention of age-related neurological diseases. In this review, we summarized the role of oxidative stress in age-related NDs, focusing on the current knowledge of the antioxidant compounds present in edible mushrooms, and highlighting their potential to preserve healthy aging by counteracting age-associated NDs.
Collapse
Affiliation(s)
- Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Tania Petraglia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Aniello Crescenzi
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
8
|
Rosenfeld M, Nickel K, Ladiges W. GHK peptide prevents sleep-deprived learning impairment in aging mice. AGING PATHOBIOLOGY AND THERAPEUTICS 2023; 5:33-35. [PMID: 37035833 PMCID: PMC10081520 DOI: 10.31491/apt.2023.03.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Sleep deprivation is known to cause memory impairment and is associated with inflammation and cell damage linked to neurodegenerative diseases. GHK (glycyl-L-histidyl-L-lysine) is a naturally occurring tripeptide found in mammalian plasma. GHK has anti-inflammatory activity and can pass through the blood-brain barrier suggesting the potential to prevent neuroinflammation associated with sleep deprivation. In this study, mice were injected with 15 mg/kg GHK per day for five days and sleep deprived on the last two days of treatment. Sleep-deprived mice treated with GHK did not show the acute learning impairment seen in sleep-deprived mice treated with saline. GHK prevented an increase in MCP-1 and nitrotyrosine levels in the hippocampus of sleep-deprived mice suggesting that inflammatory and reactive nitrogen/oxygen species activity could be therapeutic targets for learning impairment associated with short-term sleep deprivation.
Collapse
Affiliation(s)
- Manuela Rosenfeld
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Katie Nickel
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Santabárbara J, Villagrasa B, Lopez-Anton R, la Cámara CD, Gracia-García P, Lobo A. Anxiety and Risk of Vascular Dementia in an Elderly Community Sample: The Role of Sex. Brain Sci 2020; 10:E265. [PMID: 32366003 PMCID: PMC7287941 DOI: 10.3390/brainsci10050265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 01/04/2023] Open
Abstract
Background: To assess the association between anxiety and risk of vascular dementia (VaD), as well as potential sex differences, in a community-based cohort. Methods: A random sample of 4057 dementia-free community participants aged 55 or older, from the longitudinal, community-based Zaragoza Dementia and Depression Project (ZARADEMP) study were followed for 4.5 years. Geriatric Mental State B (GMS)-Automated Geriatric Examination for Computer Assisted Taxonomy (AGECAT) was used for the assessment and diagnosis of anxiety, and a panel of research psychiatrists diagnosed the incident cases of VaD according to DSM-IV (Diagnostic and Statistical Manual of mental disordes). Multivariate survival analysis with competing risk regression model was performed. Results: In men, the incidence rate of VaD was significantly higher among anxiety subjects compared with non-anxiety subjects (incidence rate ratio (IRR) (95% confidence interval (CI)): 3.24 (1.13-9.35); p = 0.029), and no difference was observed in women (IRR (95%CI): 0.68 (0.19-2.23); p = 0.168). In the multivariate model, for men, cases of anxiety had 2.6-fold higher risk of VaD (subdistribution hazard ratio (SHR): 2.61; 95%CI: 0.88-7.74) when all potential confounding factors were controlled, with no statistical significance (p = 0.084), but a clinically relevant effect (Cohen's d: 0.74). No association was found in women. Conclusions: In men, but not in women, risk of VaD was higher among individuals with anxiety, with a clinically relevant effect. Potential anxiety-related preventive interventions for VaD might be tailored to men and women separately.
Collapse
Affiliation(s)
- Javier Santabárbara
- Department of Preventive Medicine and Public Health, Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain; (R.L.-A.); (C.D.l.C.); (A.L.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Ministry of Science and Innovation, 28029 Madrid, Spain;
| | - Beatriz Villagrasa
- Psychogeriatry Area, CASM Benito Menni, Sant Boi del Llobregat, 08830 Barcelona, Spain
| | - Raúl Lopez-Anton
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain; (R.L.-A.); (C.D.l.C.); (A.L.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Ministry of Science and Innovation, 28029 Madrid, Spain;
- Department of Psychology and Sociology, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Concepción De la Cámara
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain; (R.L.-A.); (C.D.l.C.); (A.L.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Ministry of Science and Innovation, 28029 Madrid, Spain;
- Psychiatry Service, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain
- Department of Medicine and Psychiatry, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Patricia Gracia-García
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Ministry of Science and Innovation, 28029 Madrid, Spain;
- Psychiatry Service, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
| | - Antonio Lobo
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain; (R.L.-A.); (C.D.l.C.); (A.L.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Ministry of Science and Innovation, 28029 Madrid, Spain;
- Department of Medicine and Psychiatry, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|