1
|
Su L, Gou J, Zhou C, Li J, Wu J, Shen L, Jia Y. Knockdown of circ_0076305 decreases the paclitaxel resistance of non-small cell lung cancer cells by regulating TMPRSS4 via miR-936. Toxicol Res (Camb) 2024; 13:tfae102. [PMID: 38993483 PMCID: PMC11234199 DOI: 10.1093/toxres/tfae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Background Paclitaxel (PTX) is a commonly used as a chemotherapeutic drug for non-small cell lung cancer (NSCLC). Exploring the underlying mechanism of PTX resistance is of great significance for NSCLC treatment. Methods The expression levels of RNA and protein were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot assays. The targeted relationship was confirmed by dual-luciferase reporter assay and RNA-pull down assay. The PTX resistance and cell proliferation were assessed by cell counting kit-8 (CCK-8) assay and 5-Ethynyl-2'-deoxyuridine (EDU) assay, respectively. Cell migration and invasion were analyzed by transwell assays. Cell apoptosis was analyzed by flow cytometry, and cell glycolysis was analyzed using the commercial kits. The role of circular RNA_0076305 (circ_0076305) in regulating the PTX sensitivity in vivo was explored in xenograft tumor model. Results Circ_0076305 was up-regulated in PTX-resistant NSCLC tissues and cells. Mechanically, circ_0076305 bound to microRNA-936 (miR-936), and miR-936 targeted transmembrane serine protease 4 (TMPRSS4). Circ_0076305 could up-regulate TMPRSS4 expression by sponging miR-936 in NSCLC cells. miR-936 knockdown or TMPRSS4 overexpression reversed the anti-tumor effects of circ_0076305 knockdown in NSCLC cells with PTX treatment. Circ_0076305 silencing increased the PTX sensitivity of xenograft tumors in vivo. Conclusion Circ_0076305 silencing promoted PTX sensitivity by targeting miR-936/TMPRSS4 axis in NSCLC cells.
Collapse
Affiliation(s)
- Lin Su
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing 400030, China
| | - Jiaxue Gou
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing 400030, China
| | - Chunyan Zhou
- Department of Pharmacy, Kashgar District Second People's Hospital, No. 1, Health Road, Kashgar, Xinjiang Uygur Autonomous Region 844000, China
| | - Jieping Li
- Center of Hematologic Oncology, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing 400030, China
| | - Jing Wu
- Center of Hematologic Oncology, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing 400030, China
| | - Lili Shen
- Center of Radiation Oncology, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing 400030, China
| | - Yimin Jia
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing 400030, China
| |
Collapse
|
2
|
Tao J, Xue C, Cao M, Ye J, Sun Y, Chen H, Guan Y, Zhang W, Zhang W, Yao Y. Protein disulfide isomerase family member 4 promotes triple-negative breast cancer tumorigenesis and radiotherapy resistance through JNK pathway. Breast Cancer Res 2024; 26:1. [PMID: 38167446 PMCID: PMC10759449 DOI: 10.1186/s13058-023-01758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Despite radiotherapy ability to significantly improve treatment outcomes and survival in triple-negative breast cancer (TNBC) patients, acquired resistance to radiotherapy poses a serious clinical challenge. Protein disulfide isomerase exists in endoplasmic reticulum and plays an important role in promoting protein folding and post-translational modification. However, little is known about the role of protein disulfide isomerase family member 4 (PDIA4) in TNBC, especially in the context of radiotherapy resistance. METHODS We detected the presence of PDIA4 in TNBC tissues and paracancerous tissues, then examined the proliferation and apoptosis of TNBC cells with/without radiotherapy. As part of the validation process, xenograft tumor mouse model was used. Mass spectrometry and western blot analysis were used to identify PDIA4-mediated molecular signaling pathway. RESULTS Based on paired clinical specimens of TNBC patients, we found that PDIA4 expression was significantly higher in tumor tissues compared to adjacent normal tissues. In vitro, PDIA4 knockdown not only increased apoptosis of tumor cells with/without radiotherapy, but also decreased the ability of proliferation. In contrast, overexpression of PDIA4 induced the opposite effects on apoptosis and proliferation. According to Co-IP/MS results, PDIA4 prevented Tax1 binding protein 1 (TAX1BP1) degradation by binding to TAX1BP1, which inhibited c-Jun N-terminal kinase (JNK) activation. Moreover, PDIA4 knockdown suppressed tumor growth xenograft model in vivo, which was accompanied by an increase in apoptosis and promoted tumor growth inhibition after radiotherapy. CONCLUSIONS The results of this study indicate that PDIA4 is an oncoprotein that promotes TNBC progression, and targeted therapy may represent a new and effective anti-tumor strategy, especially for patients with radiotherapy resistance.
Collapse
Affiliation(s)
- Jinqiu Tao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Cailin Xue
- Division of Hepatobilliary Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Meng Cao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Jiahui Ye
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yulu Sun
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Hao Chen
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yinan Guan
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Weijie Zhang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Yongzhong Yao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
3
|
Noratto G, Layosa MA, Lage NN, Atienza L, Ivanov I, Mertens-Talcott SU, Chew BP. Antitumor potential of dark sweet cherry sweet (Prunus avium) phenolics in suppressing xenograft tumor growth of MDA-MB-453 breast cancer cells. J Nutr Biochem 2020; 84:108437. [PMID: 32615370 DOI: 10.1016/j.jnutbio.2020.108437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022]
Abstract
This study investigated in vivo the antitumor activity of dark sweet cherry (DSC) whole extracted phenolics (WE) and fractions enriched in anthocyanins (ACN) or proanthocyanidins (PCA) in athymic mice xenografted with MDA-MB-453 breast cancer cells. Mice were gavaged with WE, ACN or PCA extracts (150 mg/kg body weight/day) for 36 days. Results showed that tumor growth was suppressed at similar levels by WE, ACN and PCA compared to control group (C) without signs of toxicity or significant changes in mRNA oncogenic biomarkers in tumors or mRNA invasive biomarker in distant organs. Tumor protein analyses showed that WE, ACN and PCA induced at similar levels the stress-regulated ERK1/2 phosphorylation, known to be linked to apoptosis induction. However, ACN showed enhanced antitumor activity through down-regulation of total oncogenic and stress-related Akt, STAT3, p38, JNK and NF-kB proteins. In addition, immunohistochemistry analysis of Ki-67 revealed inhibition of tumor cell proliferation with potency WE ≥ ACN ≥ PCA. Differential quantitative proteomic high-resolution nano-HPLC tandem mass spectrometry analysis of tumors from ACN and C groups revealed the identity of 66 proteins associated with poor breast cancer prognosis that were expressed only in C group (61 proteins) or differentially up-regulated (P<.05) in C group (5 proteins). These findings revealed ACN-targeted proteins associated to tumor growth and invasion and the potential of DSC ACN for breast cancer treatment. Results lead to a follow-up study with highly immunodeficient mice/invasive cell line subtype and advanced tumor development to validate the anti-invasive activity of DSC anthocyanins.
Collapse
Affiliation(s)
- Giuliana Noratto
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA.
| | - Marjorie A Layosa
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA; Institute of Human Nutrition and Food, College of Human Ecology, University of the Philippines Los Baños, Laguna, Philippines
| | - Nara N Lage
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA; Research Center in Biological Sciences, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Liezl Atienza
- Institute of Human Nutrition and Food, College of Human Ecology, University of the Philippines Los Baños, Laguna, Philippines
| | - Ivan Ivanov
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | | | - Boon P Chew
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Assani G, Segbo J, Yu X, Yessoufou A, Xiong Y, Zhou F, Zhou Y. Downregulation of TMPRSS4 Enhances Triple-Negative Breast Cancer Cell Radiosensitivity Through Cell Cycle and Cell Apoptosis Process Impairment. Asian Pac J Cancer Prev 2019; 20:3679-3687. [PMID: 31870109 PMCID: PMC7173382 DOI: 10.31557/apjcp.2019.20.12.3679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Indexed: 12/09/2022] Open
Abstract
Background: Radioresistance remains a challenge for cancer radiotherapy. The present study aims to investigate the role of TMPRSS4 in triple negative breast cancer (TNBC) cell radiosensitivity. Materials and Methods: After transfection of MDA-MD-468 triple negative breast cancer cells line by using the lentivirus vector, the effect of TMPRSS4 down-regulation on TNBC radiosensitivity was evaluated by using cloning assay and CCK-8 assay. The CCK-8 assay was also used for performing cell proliferation analysis. Western blot was carried out to detect the expression of certain proteins related to cell cycle pathways (cyclin D1), cell apoptosis pathways (Bax, Bcl2, and Caspase3), DNA damage and DNA damage repair (TRF2, Ku80 , ˠH2AX) . The cell cycle and cell apoptosis were also investigated using flow cytometer analysis. Results: TMPRSS4 expression was down-regulated in MDA-MB-468 cells which enhanced MDA-MB-468 cells radiosensitivity. TMPRSS4 silencing also improved IR induced cell proliferation ability reduction and promoted cell arrested at G2/M phase mediated by 6 Gy IR associated with cyclin D1 expression inhibition. Moreover, TMPRSS4 inhibition enhanced TNBC apoptosis induced by 6 Gy IR following by over-expression of (Bax, Caspase3) and down-regulation of Bcl2 as the pro-apoptotic and anti-apoptotic proteins, respectively. Otherwise, TMPRSS4 down-regulation increases DNA damage induced by 6 Gy IR and delays DNA damage repair respectively illustrated by downregulation of TRF2 and permanent increase of Ku80 and ˠH2AX expression at 1 h and 10 h post-IR. Conclusion: Down-regulation of TMPRSS4 increases triple negative breast cancer cell radiosensitivity and the use of TMPRSS4 inhibitor can be encouraged for improving radiotherapy effectiveness in TNBC radioresistant patients.
Collapse
Affiliation(s)
- Ganiou Assani
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors; Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Julien Segbo
- University of Abomey Calavi, BP 526, Cotonou, Benin
| | - Xiaoyan Yu
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors; Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | | | - Yudi Xiong
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors; Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Fuxiang Zhou
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors; Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yunfeng Zhou
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors; Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|