1
|
Zhang Q, Tang S, Li J, Fan C, Xing L, Luo K. Integrative transcriptomic and metabolomic analyses provide insight into the long-term submergence response mechanisms of young Salix variegata stems. PLANTA 2021; 253:88. [PMID: 33813651 DOI: 10.1007/s00425-021-03604-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The mechanisms underlying long-term complete submergence tolerance in S. variegata involve enhanced oxidative stress responses, strengthened ethylene and ABA signaling, synthesis of raffinose family oligosaccharides, unsaturated fatty acids, and specific stress-related amino acids. Salix variegata Franch. is a riparian shrub species that can tolerate long-term complete submergence; however, the molecular mechanisms underlying this trait remain to be elucidated. In this study, we subjected S. variegata plants to complete submergence for 60 d and collected stems to perform transcriptomic and metabolomic analyses, as well as quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays. Results revealed that photosynthesis and the response to light stimulus were inhibited during submergence and recovered after desubmergence. Ethylene and abscisic acid (ABA) signaling could be important for the long-term submergence tolerance of S. variegata. Jasmonic acid (JA) signaling also participated in the response to submergence. Raffinose family oligosaccharides, highly unsaturated fatty acids, and specific stress-related amino acids accumulated in response to submergence, indicating that they may protect plants from submergence damage, as they do in response to other abiotic stressors. Several organic acids were produced in S. variegata plants after submergence, which may facilitate coping with the toxicity induced by submergence. After long-term submergence, cell wall reorganization and phenylpropanoid metabolic processes (the synthesis of specific phenolics and flavonoids) were activated, which may contribute to long-term S. variegata submergence tolerance; however, the detailed mechanisms require further investigation. Several transcription factors (TFs), such as MYB, continuously responded to submergence, indicating that they may play important roles in the responses and adaption to submergence. Genes related to oxidative stress tolerance were specifically expressed after desubmergence, potentially contributing to recovery of S. variegata plants within a short period of time.
Collapse
Affiliation(s)
- Qingwei Zhang
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Tiansheng Road No. 2, Beibei, Chongqing, 400715, China.
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Shaohu Tang
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Tiansheng Road No. 2, Beibei, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jianqiu Li
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Tiansheng Road No. 2, Beibei, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunfen Fan
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Tiansheng Road No. 2, Beibei, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Keming Luo
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Tiansheng Road No. 2, Beibei, Chongqing, 400715, China.
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Responses of Swamp Cypress (Taxodium distichum) and Chinese Willow (Salix matsudana) Roots to Periodic Submergence in Mega-Reservoir: Changes in Organic Acid Concentration. FORESTS 2021. [DOI: 10.3390/f12020203] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Organic acids are critical as secondary metabolites for plant adaption in a stressful situation. Oxalic acid, tartaric acid, and malic acid can improve plant tolerance under waterlogged conditions. Two prominent woody species (Taxodium distichum-Swamp cypress and Salix matsudana-Chinese willow) have been experiencing long-term winter submergence and summer drought in the Three Gorges Reservoir. The objectives of the present study were to explore the responses of the roots of two woody species during flooding as reflected by root tissue concentrations of organic acids. Potted sample plants were randomly divided into three treatment groups: control, moderate submergence, and deep submergence. The concentrations of oxalic acid, tartaric acid, and malic acid in the main root and lateral roots of the two species were determined at four stages. The results showed that T. distichum and S. matsudana adapted well to the water regimes of the reservoir, with a survival rate of 100% during the experiment period. After experiencing a cycle of submergence and emergence, the height and base diameter of the two species showed increasing trends. Changes in base diameter showed insignificant differences between submergence treatments, and only height was significant under deep submergence. The concentrations of three organic acids in the roots of two species were influenced by winter submergence. After emergence in spring, two species could adjust their organic acid metabolisms to the normal level. Among three organic acids, tartaric acid showed the most sensitive response to water submergence, which deserved more studies in the future. The exotic species, T. distichum, had a more stable metabolism of organic acids to winter flooding. However, the native species, S. matsudana, responded more actively to long-term winter flooding. Both species can be considered in vegetation restoration, but it needs more observations for planting around 165 m above sea level, where winter submergence is more than 200 days.
Collapse
|
3
|
Ye XQ, Meng JL, Zeng B, Wu M. Improved flooding tolerance and carbohydrate status of flood-tolerant plant Arundinella anomala at lower water temperature. PLoS One 2018; 13:e0192608. [PMID: 29561845 PMCID: PMC5862403 DOI: 10.1371/journal.pone.0192608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 01/28/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Operation of the Three Gorges Reservoir (TGR, China) imposes a new water fluctuation regime, including a prolonged winter submergence in contrast to the natural short summer flooding of the rivers. The contrasting water temperature regimes may remarkably affect the survival of submerged plants in the TGR. Plant survival in such prolonged flooding might depend on the carbohydrate status of the plants. Therefore, we investigated the effects of water temperature on survival and carbohydrate status in a flood-tolerant plant species and predicted that both survival and carbohydrate status would be improved by lower water temperatures. METHODOLOGY A growth chamber experiment with controlled water temperature were performed with the flood-tolerant species Arundinella anomala from the TGR region. The plants were submerged (80 cm deep water above soil surface) with a constant water temperature at 30°C, 20°C or 10°C. The water temperature effects on survival, plant biomass and carbohydrate content (glucose, fructose and sucrose and starch) in the viable and dead tissues were investigated. PRINCIPAL FINDINGS The results showed that the survival percentage of A.anomala plants was greatly dependent on water temperature. The two-month submergence survival percentage was 100% at 10°C, 40% at 20°C and 0% at 30°C. Decreasing the water temperature led to both later leaf death and slower biomass loss. Temperature decrease also induced less reduction in glucose, fructose and sucrose in the roots and leaves (before decay, p < 0.05), but only marginally significant in the stems (p < 0.05). However, the starch content level did not differ significantly between the water temperature treatments (p > 0.05). Different water temperatures did not alter the carbon pool size in the stems, leaves and whole plants (p > 0.05), but a clear difference was found in the roots (p < 0.05), with a larger pool size at a lower temperature. CONCLUSIONS/SIGNIFICANCE We concluded that (1) A. anomala is characterized by high flooding tolerance and sustained capability to mobilize carbohydrate pool. (2) The survival percentage and carbohydrate status of submerged A. anomala plants were remarkably improved by lower water temperatures. The survival of submergence seemed to be closely associated with the sugar content and carbohydrate pool size of the roots, which contained the lowest amount of carbohydrates. Three Gorges reservoir impoundment in winter is beneficial to the survival of submerged A. anomala in riparian area of the reservoir due to the low water temperature.
Collapse
Affiliation(s)
- Xiao qi Ye
- Institute of Subtropical Forestry, Chinese Academy of Forestry/ Research Station of Hangzhou Bay Wetlands Ecosystem, National Forestry Bureau, Fuyang, China
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Jin liu Meng
- Institute of Subtropical Forestry, Chinese Academy of Forestry/ Research Station of Hangzhou Bay Wetlands Ecosystem, National Forestry Bureau, Fuyang, China
| | - Bo Zeng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
- * E-mail:
| | - Ming Wu
- Institute of Subtropical Forestry, Chinese Academy of Forestry/ Research Station of Hangzhou Bay Wetlands Ecosystem, National Forestry Bureau, Fuyang, China
| |
Collapse
|