1
|
Yen BL, Wang LT, Wang HH, Hung CP, Hsu PJ, Chang CC, Liao CY, Sytwu HK, Yen ML. Excess glucose alone depress young mesenchymal stromal/stem cell osteogenesis and mitochondria activity within hours/days via NAD +/SIRT1 axis. J Biomed Sci 2024; 31:49. [PMID: 38735943 PMCID: PMC11089752 DOI: 10.1186/s12929-024-01039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND The impact of global overconsumption of simple sugars on bone health, which peaks in adolescence/early adulthood and correlates with osteoporosis (OP) and fracture risk decades, is unclear. Mesenchymal stromal/stem cells (MSCs) are the progenitors of osteoblasts/bone-forming cells, and known to decrease their osteogenic differentiation capacity with age. Alarmingly, while there is correlative evidence that adolescents consuming greatest amounts of simple sugars have the lowest bone mass, there is no mechanistic understanding on the causality of this correlation. METHODS Bioinformatics analyses for energetics pathways involved during MSC differentiation using human cell information was performed. In vitro dissection of normal versus high glucose (HG) conditions on osteo-/adipo-lineage commitment and mitochondrial function was assessed using multi-sources of non-senescent human and murine MSCs; for in vivo validation, young mice was fed normal or HG-added water with subsequent analyses of bone marrow CD45- MSCs. RESULTS Bioinformatics analyses revealed mitochondrial and glucose-related metabolic pathways as integral to MSC osteo-/adipo-lineage commitment. Functionally, in vitro HG alone without differentiation induction decreased both MSC mitochondrial activity and osteogenesis while enhancing adipogenesis by 8 h' time due to depletion of nicotinamide adenine dinucleotide (NAD+), a vital mitochondrial co-enzyme and co-factor to Sirtuin (SIRT) 1, a longevity gene also involved in osteogenesis. In vivo, HG intake in young mice depleted MSC NAD+, with oral NAD+ precursor supplementation rapidly reversing both mitochondrial decline and osteo-/adipo-commitment in a SIRT1-dependent fashion within 1 ~ 5 days. CONCLUSIONS We found a surprisingly rapid impact of excessive glucose, a single dietary factor, on MSC SIRT1 function and osteogenesis in youthful settings, and the crucial role of NAD+-a single molecule-on both MSC mitochondrial function and lineage commitment. These findings have strong implications on future global OP and disability risks in light of current worldwide overconsumption of simple sugars.
Collapse
Affiliation(s)
- B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan.
| | - Li-Tzu Wang
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, No.1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing Street, Taipei, 11042, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No.250, Wuxing Street, Taipei, 11042, Taiwan
| | - Hsiu-Huang Wang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan
| | - Chin-Pao Hung
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, No.1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan
| | - Chia-Chi Chang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), No.161, Section 6, Minquan East Road, Taipei, 11490, Taiwan
| | - Chien-Yu Liao
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), No.35, Keyan Road, Zhunan, 35053, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, NHRI, No.35, Keyan Road, Zhunan, 35053, Taiwan
- Graduate Institute of Microbiology & Immunology, NDMC, No.161, Section 6, Minquan East Road, Taipei, 11490, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, No.1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan.
| |
Collapse
|
2
|
Suaifan GARY, Alkhawaja B, Shehadeh MB, Sharmaa M, Hor Kuan C, Okechukwu PN. Glucosamine substituted sulfonylureas: IRS-PI3K-PKC-AKT-GLUT4 insulin signalling pathway intriguing agent. RSC Med Chem 2024; 15:695-703. [PMID: 38389876 PMCID: PMC10880904 DOI: 10.1039/d3md00647f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/30/2023] [Indexed: 02/24/2024] Open
Abstract
Normally, skeletal muscle accounts for 70-80% of insulin-stimulated glucose uptake in the postprandial hyperglycemia state. Consequently, abnormalities in glucose uptake by skeletal muscle or insulin resistance (IR) are deemed as initial metabolic defects in the pathogenesis of type 2 diabetes mellitus (T2DM). Globally, T2DM is growing in exponential proportion. The majority of T2DM patients are treated with sulfonylureas in combination with other drugs to improve insulin sensitivity. Glycosylated sulfonylureas (sulfonylurea-glucosamine analogues) are modified analogues of sulfonylurea that have been previously reported to possess antidiabetic activity. The aim of this study was to evaluate the impact of glycosylated sulfonylureas on the insulin signalling pathway at the molecular level using L6 skeletal muscle cell (in vitro) and extracted soleus muscle (ex vivo) models. To create an in vitro model, insulin resistance was established utilizing a high insulin-glucose approach in differentiated L6 muscle cells from Rattus norvegicus. Additionally, for the ex vivo model, extracted soleus muscles, adult Sprague-Dawley rats were subjected to a solution containing 25 mmol L-1 glucose and 100 mmol L-1 insulin for 24 hours to induce insulin resistance. After insulin resistance, compounds under investigation and standard medicines (metformin and glimepiride) were tested. The differential expression of PI3K, IRS-1, PKC, AKT2, and GLUT4 genes involved in the insulin signaling pathway was evaluated using qPCR. The evaluated glycosylated sulfonylurea analogues exhibited a significant increase in the gene expression of insulin-dependent pathways both in vitro and ex vivo, confirming the rejuvenation of the impaired insulin signaling pathway genes. Altogether, glycosylated sulfonylurea analogues described in this study represent potential therapeutic anti-diabetic drugs.
Collapse
Affiliation(s)
- Ghadeer A R Y Suaifan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan Amman 11942 Jordan
| | - Bayan Alkhawaja
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 11196 Jordan
| | - Mayadah B Shehadeh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan Amman 11942 Jordan
| | - Mridula Sharmaa
- Department of Food and Nutrition, Faculty of Applied Sciences, UCSI University Kuala Lumpur 56000 Malaysia
| | - Chan Hor Kuan
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University Kuala Lumpur 56000 Malaysia
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 11196 Jordan
| | - Patrick Nwabueze Okechukwu
- Department of Food and Nutrition, Faculty of Applied Sciences, UCSI University Kuala Lumpur 56000 Malaysia
| |
Collapse
|
3
|
Liu S, Wang X, Kai Y, Tian C, Guo S, He L, Zhai D, Song X. Clinical significance of high mobility group box 1/toll-like receptor 4 in obese diabetic patients. Endocr J 2022; 69:235-242. [PMID: 34657898 DOI: 10.1507/endocrj.ej21-0381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
High mobility group box 1 (HMGB1) is an alarmin that may link to obesity and type 2 diabetes mellitus (T2DM). The present study analyzed the correlation between HMGB1/ Toll-like receptor 4 (TLR4) and certain biochemical parameters in obese (OB) diabetic patients. 40 normal glucose tolerant subjects (NGT) and 40 patients with newly diagnosed T2DM were enrolled. All patients were further divided into non-obese NGT (NGT-NOB), obese NGT (NGT-OB), non-obese T2DM (T2DM-NOB) and obese T2DM (T2DM-OB) groups according to body mass index (BMI).The levels of HMGB1 in serum were quantified using ELISA, whereas the mRNA expression levels of TLR4 in peripheral blood mononuclear cells were assessed using reverse transcription-quantitative PCR. The results suggested that the levels of HMGB1 and TLR4 were higher in NGT-OB and T2DM-NOB groups compared with those in NGT-NOB group. Similarly, the levels of these two markers were higher in T2DM-OB group compared with those in NGT-OB group. Correlation analysis indicated that the levels of HMGB1 and TLR4 were positively correlated with triglyceride (TG), fasting plasma glucose (FPG) levels and BMI, whereas a negative correlation between HMGB1 and high density lipoprotein (HDL) was noted. Linear regression analysis suggested that HMGB1 was associated with FPG and TG levels, whereas TLR4 was strongly associated with TG levels and BMI. The results demonstrated that the expression levels of HMGB1 and TLR4 in patients with T2DM or obesity were increased, which were associated with glycolipid metabolism disorders. Therefore, the HMGB1/TLR4 may serve a role in inflammatory process associated with obesity and T2DM.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Blood Transfusion, the Third Affiliated Hospital of Xinxiang Medical University, Henan Xinxiang, 453003, China
| | - Xianchun Wang
- Clinical laboratory, the Third Affiliated Hospital of Xinxiang Medical University, Henan Xinxiang, 453003, China
| | - Yue Kai
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Henan Xinxiang, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Henan Xinxiang, 453000, China
| | - Chenrui Tian
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Henan Xinxiang, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Henan Xinxiang, 453000, China
| | - Sheng Guo
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Henan Xinxiang, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Henan Xinxiang, 453000, China
| | - Ling He
- Department of Ophthalmology, the 371 Affiliated Hospital of Xinxiang Medical University, Henan Xinxiang, 453003, China
| | - Desheng Zhai
- Department of Epidemiology and Biostatistics, School of Public Health, Xinxiang Medical University, Henan Xinxiang, 453003, China
| | - Xiangfeng Song
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Henan Xinxiang, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Henan Xinxiang, 453000, China
| |
Collapse
|