1
|
Mukherjee S, Chopra A, Karmakar S, Bhat SG. Periodontitis increases the risk of gastrointestinal dysfunction: an update on the plausible pathogenic molecular mechanisms. Crit Rev Microbiol 2025; 51:187-217. [PMID: 38602474 DOI: 10.1080/1040841x.2024.2339260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Periodontitis is an immuno-inflammatory disease of the soft tissues surrounding the teeth. Periodontitis is linked to many communicable and non-communicable diseases such as diabetes, cardiovascular disease, rheumatoid arthritis, and cancers. The oral-systemic link between periodontal disease and systemic diseases is attributed to the spread of inflammation, microbial products and microbes to distant organ systems. Oral bacteria reach the gut via swallowed saliva, whereby they induce gut dysbiosis and gastrointestinal dysfunctions. Some periodontal pathogens like Porphyromonas. gingivalis, Klebsiella, Helicobacter. Pylori, Streptococcus, Veillonella, Parvimonas micra, Fusobacterium nucleatum, Peptostreptococcus, Haemophilus, Aggregatibacter actinomycetomcommitans and Streptococcus mutans can withstand the unfavorable acidic, survive in the gut and result in gut dysbiosis. Gut dysbiosis increases gut inflammation, and induce dysplastic changes that lead to gut dysfunction. Various studies have linked oral bacteria, and oral-gut axis to various GIT disorders like inflammatory bowel disease, liver diseases, hepatocellular and pancreatic ductal carcinoma, ulcerative colitis, and Crohn's disease. Although the correlation between periodontitis and GIT disorders is well established, the intricate molecular mechanisms by which oral microflora induce these changes have not been discussed extensively. This review comprehensively discusses the intricate and unique molecular and immunological mechanisms by which periodontal pathogens can induce gut dysbiosis and dysfunction.
Collapse
Affiliation(s)
- Sayantan Mukherjee
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subraya Giliyar Bhat
- Department of Preventive Dental Sciences, Division of Periodontology, College of Dental Surgery, Iman Abdulrahman Bin Faizal University, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Hou Y, Yan Z, Wan H, Yang J, Ding Z, He Y. A Combination of Astragaloside IV and Hydroxysafflor Yellow A Attenuates Cerebral Ischemia-Reperfusion Injury via NF-κB/NLRP3/Caspase-1/GSDMD Pathway. Brain Sci 2024; 14:781. [PMID: 39199474 PMCID: PMC11487458 DOI: 10.3390/brainsci14080781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Cerebral ischemia-reperfusion injury (IRI), occurring after blood supply restoration, contributes significantly to stroke-related deaths. This study explored the combined impact and mechanisms of astragaloside IV (AS-IV), hydroxysafflor yellow A (HSYA), and their combination in mitigating IRI. Male Sprague-Dawley (SD) rats were randomized to the Sham, MCAO, MCAO+AS-IV, MCAO+HSYA, and MCAO+AS-IV+HSYA groups. Neurological deficits and cerebral infarction were examined after restoring the blood supply to the brain. Pathomorphological changes in the cerebral cortex were observed via HE staining. IL-1β and IL-18 were quantified using ELISA. The expression of NF-κB and GSDMD in the ischemic cerebrum was analyzed using immunohistochemistry. The expression levels of NLRP3, ASC, IL-1β, Caspase-1, and GSDMD in the ischemic cerebrum were evaluated using Western blot. The MCAO+AS-IV, MCAO+HSYA, and MCAO+AS-IV+HSYA groups exhibited notably better neurological function and cerebral infarction compared with the MCAO group. The combined treatment demonstrated superior brain tissue injury alleviation. Reductions in NF-κB, GSDMD positive cells, and NLRP3/ASC/IL-1β/Caspase-1/GSDMD protein expression in the ischemic brain were significantly more pronounced with the combined therapy, indicating a synergistic effect in countering cerebral IRI via the NF-κB/NLRP3/Caspase-1/GSDMD pathway inhibition of cell pyroptosis-induced injury.
Collapse
Affiliation(s)
- Yongchun Hou
- Basic Medical School, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou 310053, China
| | - Zi Yan
- Department of Basic Medicine, Nanchang Medical College, Nanchang 360000, China
| | - Haitong Wan
- Basic Medical School, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou 310053, China
| | - Jiehong Yang
- Basic Medical School, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou 310053, China
| | - Zhishan Ding
- Basic Medical School, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou 310053, China
| | - Yu He
- Basic Medical School, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou 310053, China
| |
Collapse
|
3
|
Takami M, Aoi W, Matsumoto K, Kato Y, Kobayashi Y, Kuwahata M. High-intensity exercise impairs intestinal barrier function by generating oxidative stress. J Clin Biochem Nutr 2024; 74:136-140. [PMID: 38510689 PMCID: PMC10948349 DOI: 10.3164/jcbn.23-96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 03/22/2024] Open
Abstract
The intestine functions as a barrier preventing the entry of extrinsic factors into the body. This barrier function is disrupted by oxidative damage along with an impaired mucosal layer. Excessive exercise can generate oxidative stress in the intestinal tissue; however, the effect of exercise-induced oxidative stress on intestinal permeability is unclear. In this study, we examined the involvement of oxidative stress in barrier function of the ileum of mice following high-intensity exercise. Male ICR mice (12-week-old) were divided into sedentary and exercise groups. Mice in the exercise group underwent a single bout of treadmill running, and the ileum was collected for histological and biochemical analyses. Plasma fluorescence intensity level after oral administration of fluorescein isothiocyanate-dextran gradually increased until 30 min after exercise in response to intensity of exercise. Relatively high levels of oxidative proteins and low level of claudin-1, a tight-junction protein, were observed in the exercise group. Treatment with a xanthine oxidase inhibitor suppressed exercise-induced increases in intestinal permeability. Moreover, excessive exercise training for two weeks led to relatively high intestinal permeability at rest. These results suggest that high-intensity exercise increases intestinal permeability and tight junction damage, which may be mediated by oxidative stress.
Collapse
Affiliation(s)
- Maki Takami
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Wataru Aoi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Karin Matsumoto
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Yoji Kato
- Laboratory of Free Radical and Food Function, School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaikehon-cho, Himeji, Hyogo 670-0092, Japan
| | - Yukiko Kobayashi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Masashi Kuwahata
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
4
|
Stavely R, Ott LC, Rashidi N, Sakkal S, Nurgali K. The Oxidative Stress and Nervous Distress Connection in Gastrointestinal Disorders. Biomolecules 2023; 13:1586. [PMID: 38002268 PMCID: PMC10669114 DOI: 10.3390/biom13111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is increasingly recognized as a central player in a range of gastrointestinal (GI) disorders, as well as complications stemming from therapeutic interventions. This article presents an overview of the mechanisms of oxidative stress in GI conditions and highlights a link between oxidative insult and disruption to the enteric nervous system (ENS), which controls GI functions. The dysfunction of the ENS is characteristic of a spectrum of disorders, including neurointestinal diseases and conditions such as inflammatory bowel disease (IBD), diabetic gastroparesis, and chemotherapy-induced GI side effects. Neurons in the ENS, while essential for normal gut function, appear particularly vulnerable to oxidative damage. Mechanistically, oxidative stress in enteric neurons can result from intrinsic nitrosative injury, mitochondrial dysfunction, or inflammation-related pathways. Although antioxidant-based therapies have shown limited efficacy, recognizing the multifaceted role of oxidative stress in GI diseases offers a promising avenue for future interventions. This comprehensive review summarizes the literature to date implicating oxidative stress as a critical player in the pathophysiology of GI disorders, with a focus on its role in ENS injury and dysfunction, and highlights opportunities for the development of targeted therapeutics for these diseases.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leah C. Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Niloufar Rashidi
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
- Department of Medicine Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
| |
Collapse
|
5
|
Bi S, Shao J, Qu Y, Hu W, Ma Y, Cao L. Hepatic transcriptomics and metabolomics indicated pathways associated with immune stress of broilers induced by lipopolysaccharide. Poult Sci 2022; 101:102199. [PMID: 36257073 PMCID: PMC9579410 DOI: 10.1016/j.psj.2022.102199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 10/29/2022] Open
|
6
|
Antioxidant Cardioprotection against Reperfusion Injury: Potential Therapeutic Roles of Resveratrol and Quercetin. Molecules 2022; 27:molecules27082564. [PMID: 35458766 PMCID: PMC9027566 DOI: 10.3390/molecules27082564] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion myocardial damage is a paradoxical tissue injury occurring during percutaneous coronary intervention (PCI) in acute myocardial infarction (AMI) patients. Although this damage could account for up to 50% of the final infarct size, there has been no available pharmacological treatment until now. Oxidative stress contributes to the underlying production mechanism, exerting the most marked injury during the early onset of reperfusion. So far, antioxidants have been shown to protect the AMI patients undergoing PCI to mitigate these detrimental effects; however, no clinical trials to date have shown any significant infarct size reduction. Therefore, it is worthwhile to consider multitarget antioxidant therapies targeting multifactorial AMI. Indeed, this clinical setting involves injurious effects derived from oxygen deprivation, intracellular pH changes and increased concentration of cytosolic Ca2+ and reactive oxygen species, among others. Thus, we will review a brief overview of the pathological cascades involved in ischemia-reperfusion injury and the potential therapeutic effects based on preclinical studies involving a combination of antioxidants, with particular reference to resveratrol and quercetin, which could contribute to cardioprotection against ischemia-reperfusion injury in myocardial tissue. We will also highlight the upcoming perspectives of these antioxidants for designing future studies.
Collapse
|
7
|
McKenna ZJ, Gorini Pereira F, Gillum TL, Amorim FT, Deyhle MR, Mermier CM. High altitude exposures and intestinal barrier dysfunction. Am J Physiol Regul Integr Comp Physiol 2022; 322:R192-R203. [PMID: 35043679 DOI: 10.1152/ajpregu.00270.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gastrointestinal complaints are often reported during ascents to high altitude (> 2500 m), though their etiology is not known. One potential explanation is injury to the intestinal barrier which has been implicated in the pathophysiology of several diseases. High altitude exposures can reduce splanchnic perfusion and blood oxygen levels causing hypoxic and oxidative stress. These stressors might injure the intestinal barrier leading to consequences such as bacterial translocation and local/systemic inflammatory responses. The purpose of this mini review is to 1) discuss the impact of high-altitude exposures on intestinal barrier dysfunction, and 2) present medications and dietary supplements which may have relevant impacts on the intestinal barrier during high-altitude exposures. There is a small but growing body of evidence which shows that acute exposures to high altitudes can damage the intestinal barrier. Initial data also suggests that prolonged hypoxic exposures can compromise the intestinal barrier through alterations in immunological function, microbiota, or mucosal layers. Exertion may worsen high-altitude related intestinal injury via additional reductions in splanchnic circulation and greater hypoxemia. Collectively these responses can result in increased intestinal permeability and bacterial translocation causing local and systemic inflammation. More research is needed to determine the impact of various medications and dietary supplements on the intestinal barrier during high-altitude exposures.
Collapse
Affiliation(s)
- Zachary J McKenna
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Felipe Gorini Pereira
- Department of Kinesiology, Indiana University Bloomington, Bloomington, IN, United States
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA, United States
| | - Fabiano Trigueiro Amorim
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Michael R Deyhle
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Christine M Mermier
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
8
|
Shackebaei D, Hesari M, Ramezani-Aliakbari S, Hoseinkhani Z, Ramezani-Aliakbari F. Gallic acid protects against isoproterenol-induced cardiotoxicity in rats. Hum Exp Toxicol 2022; 41:9603271211064532. [PMID: 35193428 DOI: 10.1177/09603271211064532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gallic acid (GA) is a polyphenolic agent with interesting pharmacological impacts on the cardiovascular system. OBJECTIVE The present study purposed to study the protective effects of GA at 25 and 50 mg/kg against isoproterenol (ISO)-induced cardiac damage in ischemia/reperfusion (I/R) in rats. METHODS Male Wistar rats were randomly assigned into six groups: Control, Control treated with GA at 25 mg/kg (GA25), Control treated with GA at 50 mg/kg (GA50), Hypertrophic rats induced by ISO (ISO), Hypertrophic rats treated with GA at 25 mg/kg (ISO+GA25), and Hypertrophic rats treated with GA at 50 mg/kg (ISO+GA50). Heart isolation was performed to induce a cardiac I/R injury model. Cardiac hemodynamic parameters were recorded. Serum Lactate Dehydrogenase (LDH) and Creatine Kinase-MB (CK-MB) and cardiac Superoxide dismutases (SOD) levels were evaluated. The gene expression of Sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) was assessed. RESULTS We found that GA at 50 mg/kg was significantly increased cardiac function at post I/R period in ISO-induced hypertrophic hearts. Moreover, it suppressed cardiac hypertrophy, the serum LDH and CK-MB levels in ISO injected rats. Administration of GA at 50 mg/kg was significantly increased SOD level and SERCA2a gene expression in the hypertrophic hearts. CONCLUSION GA at 50 mg/kg could improve cardiac performance possibly by increasing antioxidant defense enzymes, reducing cell damage, and enhancing SERCA2a gene expression in hypertrophic heart induced by ISO in I/R injury conditions.
Collapse
Affiliation(s)
- Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran.,Cardiovascular Research Center, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soudabeh Ramezani-Aliakbari
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical School, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Hoseinkhani
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Ramezani-Aliakbari
- Medical Biology Research Center, Health Technology Institute, 48464Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Physiology, School of Medicine, 48430Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Xiang S, Xiao J. Protective effects of syringic acid on inflammation, apoptosis and intestinal barrier function in Caco-2 cells following oxygen-glucose deprivation/reoxygenation-induced injury. Exp Ther Med 2021; 23:66. [PMID: 34934437 PMCID: PMC8649867 DOI: 10.3892/etm.2021.10989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Syringic acid (SA) is an abundant phenolic acid compound that has been demonstrated to yield therapeutic benefits in myocardial and renal ischemia/reperfusion (I/R). However, the role of SA in intestinal I/R injury is unclear. Thus, the present study aimed to investigate the protective effect of SA against intestinal I/R injury. Caco-2 cells were incubated with different doses of SA before oxygen-glucose deprivation/reoxygenation (OGD/R) induction. The viability of Caco-2 cells, the activity of lactate dehydrogenase (LDH), the production of pro-inflammatory cytokines and the levels of reactive oxygen species, superoxide dismutase and malondialdehyde were measured. Apoptosis was evaluated using a TUNEL assay and western blotting. Transepithelial electrical resistance and western blotting were performed to evaluate intestinal barrier function in Caco-2 cells. The present study revealed that pretreatment with SA significantly increased cell viability and reduced LDH release in Caco-2 cells subjected to OGD/R treatment. In addition, SA suppressed OGD/R-induced inflammatory responses by reducing pro-inflammatory cytokine levels. Furthermore, the levels of oxidative stress and apoptosis were ameliorated by SA. SA also alleviated the intestinal barrier disruption exhibited by Caco-2 cells after OGD/R injury. Overall, the present study revealed that SA may potentially protect Caco-2 cells from OGD/R injury, and that this effect may be attributed to its anti-inflammatory and anti-apoptotic activities, as well as its ability to protect the function of the intestinal barrier.
Collapse
Affiliation(s)
- Sini Xiang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China.,General Practice, Xiacun Community Health Service Center, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518106, P.R. China
| | - Jun Xiao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China.,General Practice, Liuxian Community Health Service Center, Shenzhen Nanshan Medical Group HQ, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
10
|
Stewart AS, Schaaf CR, Luff JA, Freund JM, Becker TC, Tufts SR, Robertson JB, Gonzalez LM. HOPX + injury-resistant intestinal stem cells drive epithelial recovery after severe intestinal ischemia. Am J Physiol Gastrointest Liver Physiol 2021; 321:G588-G602. [PMID: 34549599 PMCID: PMC8616590 DOI: 10.1152/ajpgi.00165.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/11/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
Intestinal ischemia is a life-threatening emergency with mortality rates of 50%-80% due to epithelial cell death and resultant barrier loss. Loss of the epithelial barrier occurs in conditions including intestinal volvulus and neonatal necrotizing enterocolitis. Survival depends on effective epithelial repair; crypt-based intestinal epithelial stem cells (ISCs) are the source of epithelial renewal in homeostasis and after injury. Two ISC populations have been described: 1) active ISC [aISC; highly proliferative; leucine-rich-repeat-containing G protein-coupled receptor 5 (LGR5+)-positive or sex-determining region Y-box 9 -antigen Ki67-positive (SOX9+Ki67+)] and 2) reserve ISC [rISC; less proliferative; homeodomain-only protein X positive (HOPX+)]. The contributions of these ISCs have been evaluated both in vivo and in vitro using a porcine model of mesenteric vascular occlusion to understand mechanisms that modulate ISC recovery responses following ischemic injury. In our previously published work, we observed that rISC conversion to an activated state was associated with decreased HOPX expression during in vitro recovery. In the present study, we wanted to evaluate the direct role of HOPX on cellular proliferation during recovery after injury. Our data demonstrated that during early in vivo recovery, injury-resistant HOPX+ cells maintain quiescence. Subsequent early regeneration within the intestinal crypt occurs around 2 days after injury, a period in which HOPX expression decreased. When HOPX was silenced in vitro, cellular proliferation of injured cells was promoted during recovery. This suggests that HOPX may serve a functional role in ISC-mediated regeneration after injury and could be a target to control ISC proliferation.NEW & NOTEWORTHY This paper supports that rISCs are resistant to ischemic injury and likely an important source of cellular renewal following near-complete epithelial loss. Furthermore, we have evidence that HOPX controls ISC activity state and may be a critical signaling pathway during ISC-mediated repair. Finally, we use multiple novel methods to evaluate ISCs in a translationally relevant large animal model of severe intestinal injury and provide evidence for the potential role of rISCs as therapeutic targets.
Collapse
Affiliation(s)
- Amy Stieler Stewart
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Cecilia Renee Schaaf
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Jennifer A Luff
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - John M Freund
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Thomas C Becker
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
| | - Sara R Tufts
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - James B Robertson
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Liara M Gonzalez
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
11
|
Effects of Lipoic Acid on Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5093216. [PMID: 34650663 PMCID: PMC8510805 DOI: 10.1155/2021/5093216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion (I/R) injury often occurred in some pathologies and surgeries. I/R injury not only harmed to physiological functions of corresponding organ and tissue but also induced multiple tissue or organ dysfunctions (even these in distant locations). Although the reperfusion of blood attenuated I/R injury to a certain degree, the risk of secondary damages was difficult to be controlled and it even caused failures of these tissues and organs. Lipoic acid (LA), as an endogenous active substance and a functional agent in food, owns better safety and effects in our body (e.g., enhancing antioxidant activity, improving cognition and dementia, controlling weight, and preventing multiple sclerosis, diabetes complication, and cancer). The literature searching was conducted in PubMed, Embase, Cochrane Library, Web of Science, and SCOPUS from inception to 20 May 2021. It had showed that endogenous LA was exhausted in the process of I/R, which further aggravated I/R injury. Thus, supplements with LA timely (especially pretreatments) may be the prospective way to prevent I/R injury. Recently, studies had demonstrated that LA supplements significantly attenuated I/R injuries of many organs, though clinic investigations were short at present. Hence, it was urgent to summarize these progresses about the effects of LA on different I/R organs as well as the potential mechanisms, which would enlighten further investigations and prepare for clinic applications in the future.
Collapse
|
12
|
Sesamin Protects against and Ameliorates Rat Intestinal Ischemia/Reperfusion Injury with Involvement of Activating Nrf2/HO-1/NQO1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5147069. [PMID: 34630849 PMCID: PMC8494576 DOI: 10.1155/2021/5147069] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023]
Abstract
Intestinal ischemia-reperfusion (I/R) may induce cell/tissue injuries, leading to multiple organ failure. Based on our preexperiments, we proposed that sesamin could protect against and ameliorate intestinal I/R injuries and related disorders with involvement of activating Nrf2 signaling pathway. This proposal was evaluated using SD intestinal I/R injury rats in vivo and hypoxia/reoxygenation- (H/R-) injured rat small intestinal crypt epithelial cell line (IEC-6 cells) in vitro. Sesamin significantly alleviated I/R-induced intestinal histopathological injuries and significantly reduced serum biochemical indicators ALT and AST, alleviating I/R-induced intestinal injury in rats. Sesamin also significantly reversed I/R-increased TNF-α, IL-6, IL-1β, and MPO activity in serum and MDA in tissues and I/R-decreased GSH in tissues and SOD in both tissues and IEC-6 cells, indicating its anti-inflammatory and antioxidative stress effects. Further, sesamin significantly decreased TUNEL-positive cells, downregulated the increased Bax and caspase-3 protein expression, upregulated the decreased protein expression of Bcl-2 in I/R-injured intestinal tissues, and significantly reversed H/R-reduced IEC-6 cell viability as well as reduced the number of apoptotic cells among H/R-injured IEC-6 cell, showing antiapoptotic effects. Activation of Nrf2 is known to ameliorate tissue/cell injuries. Consistent with sesamin-induced ameliorations of both intestinal I/R injuries and H/R injuries, transfection of Nrf2 cDNA significantly upregulated the expression of Nrf2, HO-1, and NQO1, respectively. On the contrary, either Nrf2 inhibitor (ML385) or Nrf2 siRNA transfection significantly decreased the expression of these proteins. Our results suggest that activation of the Nrf2/HO-1/NQO1 signaling pathway is involved in sesamin-induced anti-inflammatory, antioxidative, and antiapoptotic effects in protection against and amelioration of intestinal I/R injuries.
Collapse
|
13
|
Lin H, Zhang X, Wang D, Liu J, Yuan L, Liu J, Wang C, Sun J, Chen J, Li H, Jing S. Anwulignan Ameliorates the Intestinal Ischemia/Reperfusion. J Pharmacol Exp Ther 2021; 378:222-234. [PMID: 34131018 DOI: 10.1124/jpet.121.000587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
Anwulignan is one of the monomer compounds in the lignans from Schisandra sphenanthera In this study, we observed the effect of anwulignan on intestinal ischemia/reperfusion (II/R) injury in male Sprague-Dawley rats and explored the underlying mechanisms. The results showed that pretreatment with oral anwulignan could significantly increase the mesenteric blood microcirculatory flow velocity; relieve the congestion and pathologic injury of jejunum; enhance the autonomic tension of jejunum smooth muscle and its reactivity to acetylcholine; increase the activities of superoxide dismutase, catalase, glutathione S-transferase, and choline acetyltransferase; increase the contents of acetylcholine and glutathione in the serum or jejunal tissue; decrease the activities of myeloperoxidase, protein kinase C, and nicotinamide adenine dinucleotide phosphate oxidase; reduce the contents of malondialdehyde, 8-hydroxy-2-deoxyguanosine, nicotinamide adenine, reactive oxygen species, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β; increase the expression levels of muscarinic receptor 3, PI3K, phosphorylation protein kinase B, p-GSK3β Ser9, Nrf2, p-Nrf2, heme oxygenase (decycling) 1, and b-cell lymphoma 2 in the jejunal tissue; and decrease the expression levels of p-GSK3β Tyr216, kelch-like ECH-associated protein 1, Bax, and cleaved caspase-3, suggesting that anwulignan can ameliorate II/R-induced jejunal tissue injury in rats and that the mechanism may be related to its activating the PI3K/protein kinase B pathway and then regulating the Nrf2/Anti-oxidative Response Element signaling pathway and the expression of apoptosis-related proteins to play antioxidant and antiapoptotic roles. SIGNIFICANCE STATEMENT: Anwulignan can significantly reduce jejunal tissue injury and the production of inflammatory factors in rats with intestinal ischemia-reperfusion injury, improve the antioxidant capacity, and reduce the apoptosis of jejunal tissue, and it has the effect of significantly improving intestinal ischemia-reperfusion injury in rats, suggesting that anwulignan may be used as a potential drug for the prevention and treatment of intestinal ischemia-reperfusion injury or a resource for the development of health food.
Collapse
Affiliation(s)
- Huijiao Lin
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Xinyun Zhang
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Dan Wang
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jiawei Liu
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Liwei Yuan
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jiale Liu
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jinghui Sun
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - He Li
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Shu Jing
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| |
Collapse
|
14
|
Kim JT, Napier DL, Kim J, Li C, Lee EY, Weiss HL, Wang Q, Evers BM. Ketogenesis alleviates TNFα-induced apoptosis and inflammatory responses in intestinal cells. Free Radic Biol Med 2021; 172:90-100. [PMID: 34087430 PMCID: PMC8355065 DOI: 10.1016/j.freeradbiomed.2021.05.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
The disturbance of strictly regulated self-regeneration in mammalian intestinal epithelium is associated with various intestinal disorders, particularly inflammatory bowel diseases (IBDs). TNFα, which plays a critical role in the pathogenesis of IBDs, has been reported to inhibit production of ketone bodies such as β-hydroxybutyrate (βHB). However, the role of ketogenesis in the TNFα-mediated pathological process is not entirely known. Here, we showed the regulation and role of HMGCS2, the rate-limiting enzyme of ketogenesis, in TNFα-induced apoptotic and inflammatory responses in intestinal epithelial cells. Treatment with TNFα dose-dependently decreased protein and mRNA expression of HMGCS2 and its product, βHB production in human colon cancer cell lines HT29 and Caco2 cells and mouse small intestinal organoids. Moreover, the repressed level of HMGCS2 protein was found in intestinal epithelium of IBD patients with Crohn's disease and ulcerative colitis as compared with normal tissues. Furthermore, knockdown of HMGCS2 enhanced and in contrast, HMGCS2 overexpression attenuated, the TNFα-induced apoptosis and expression of pro-inflammatory chemokines (CXCL1-3) in HT29, Caco2 cells and DLD1 cells, respectively. Treatment with βHB or rosiglitazone, an agonist of PPARγ, which increases ketogenesis, attenuated TNFα-induced apoptosis in the intestinal epithelial cells. Finally, HMGCS2 knockdown enhanced TNFα-induced reactive oxygen species (ROS) generation. In addition, hydrogen peroxide, the major ROS contributing to intestine injury, decreased HMGCS2 expression and βHB production in the intestinal cells and mouse organoids. Our findings demonstrate that increased ketogenesis attenuates TNFα-induced apoptosis and inflammation in intestinal cells, suggesting a protective role for ketogenesis in TNFα-induced intestinal pathologies.
Collapse
Affiliation(s)
- Ji Tae Kim
- Markey Cancer Center, Lexington, KY, 40536, USA
| | | | - Jinhwan Kim
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Chang Li
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Eun Y Lee
- Department of Pathology and Laboratory Medicine, Department of Surgery, Lexington, KY, 40536, USA
| | | | - Qingding Wang
- Markey Cancer Center, Lexington, KY, 40536, USA; Department of Surgery, University of Kentucky, Lexington, KY, 40536, USA.
| | - B Mark Evers
- Markey Cancer Center, Lexington, KY, 40536, USA; Department of Surgery, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
15
|
Lillo-Moya J, Rojas-Solé C, Muñoz-Salamanca D, Panieri E, Saso L, Rodrigo R. Targeting Ferroptosis against Ischemia/Reperfusion Cardiac Injury. Antioxidants (Basel) 2021; 10:antiox10050667. [PMID: 33922912 PMCID: PMC8145541 DOI: 10.3390/antiox10050667] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic heart disease is a leading cause of death worldwide. Primarily, ischemia causes decreased oxygen supply, resulting in damage of the cardiac tissue. Naturally, reoxygenation has been recognized as the treatment of choice to recover blood flow through primary percutaneous coronary intervention. This treatment is the gold standard therapy to restore blood flow, but paradoxically it can also induce tissue injury. A number of different studies in animal models of acute myocardial infarction (AMI) suggest that ischemia-reperfusion injury (IRI) accounts for up to 50% of the final myocardial infarct size. Oxidative stress plays a critical role in the pathological process. Iron is an essential mineral required for a variety of vital biological functions but also has potentially toxic effects. A detrimental process induced by free iron is ferroptosis, a non-apoptotic type of programmed cell death. Accordingly, efforts to prevent ferroptosis in pathological settings have focused on the use of radical trapping antioxidants (RTAs), such as liproxstatin-1 (Lip-1). Hence, it is necessary to develop novel strategies to prevent cardiac IRI, thus improving the clinical outcome in patients with ischemic heart disease. The present review analyses the role of ferroptosis inhibition to prevent heart IRI, with special reference to Lip-1 as a promising drug in this clinicopathological context.
Collapse
Affiliation(s)
- José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
| | - Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
| | - Diego Muñoz-Salamanca
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
| | - Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer“, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer“, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
- Correspondence:
| |
Collapse
|
16
|
Chronic Inflammation Impairs Male Fertility-A Case-Control Study in Ulcerative Colitis Patients. J Clin Med 2021; 10:jcm10071460. [PMID: 33918143 PMCID: PMC8038073 DOI: 10.3390/jcm10071460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
Recent evidence indicates that a systemic state of inflammation may exert a negative effect on male fertility. The aim of this study is to evaluate sperm quality parameters in male patients with ulcerative colitis (UC). Between December 2019 and December 2020 semen analyses are performed in 50 patients with UC in clinical remission. The control group consists of 50 healthy volunteers. Total sperm count, sperm count, percentage of morphologically normal spermatozoa, viability, and progressive motility, are significantly lower in the study group than in healthy males (p < 0.001). The DNA fragmentation index (DFI) and oxidation-reduction potential (ORP) are significantly higher in the study group (28.9% and 1.55% on average, respectively) than in healthy males (14.6% and 0.79% on average, respectively). Bacteriospermia is more clearly observed in the study group (p = 0.037), and the most frequent pathogen is Enterococcus faecalis. The DFI and ORP are significantly higher in bacteria carriers, compared to males without microbial pathogens from both the study and control groups (p < 0.001). To conclude, UC patients have worse basic sperm parameters compared to their healthy counterparts. Deterioration of semen parameters, as well as an intensified DNA fragmentation could be a result of oxidative stress intensification.
Collapse
|
17
|
Wu YH, Yao QT, Liu SH, Song XB, Yakupu APZGL, Lu LD, Shi L, Xu H. Effect of ischemic preconditioning on radiation damage to the submandibular gland in rats. Eur J Oral Sci 2021; 129:e12785. [PMID: 33786924 DOI: 10.1111/eos.12785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 11/29/2022]
Abstract
To investigate the effects of radiation on rat submandibular glands and the possible protective effects of ischemic preconditioning, the submandibular glands of Wistar rats were subjected to in situ radiation after ischemic preconditioning. The glands were exposed to X-radiation at a single dose of 20 Gy. Ischemic preconditioning was achieved by three min of ischemia and three min of reperfusion, repeated three times before irradiation. Salivary secretion, histological changes, alterations in tight junctions, and the levels of oxidative stress, pro-inflammatory cytokines, and water secretion proteins mediated by the muscarinic acetylcholine M3 subtype receptor were determined at 1 and 12 weeks post-irradiation. In glands subjected to irradiation only, the secretion, superoxide dismutase activity, tight junction width, acinar cell number, and M3 receptor and aquaporin-5 levels were lower at 1 and 12 weeks than seen in the ischemically preconditioned irradiated glands. In contrast, tumor necrosis factor-α, malondialdehyde, myeloperoxidase activity, and the expression of the tight junction protein claudin-4 were significantly higher in the irradiated only glands. Our study revealed that radiation caused a series of injury-stress responses, especially damage to the water secretion pathway mediated by the M3 receptor that ultimately led to hyposecretion, which might play an important role in the dysfunction of the irradiated only glands. Ischemic preconditioning reduced the radiation-induced injury to submandibular glands and ameliorated salivary hyposecretion.
Collapse
Affiliation(s)
- Yan-Hui Wu
- Stomatology School of Xinjiang Medical University, Urumqi, China.,Department of Oral and Maxillofacial Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Qing-Ting Yao
- Stomatology School of Xinjiang Medical University, Urumqi, China.,Department of Oral and Maxillofacial Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shao-Hua Liu
- Postgraduate College of Xinjiang Medical University, Urumqi, China.,Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao-Bin Song
- Postgraduate College of Xinjiang Medical University, Urumqi, China.,Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ai-Pi-Zi-Gu-Li Yakupu
- Stomatology School of Xinjiang Medical University, Urumqi, China.,Department of Oral and Maxillofacial Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Li-Dan Lu
- Stomatology School of Xinjiang Medical University, Urumqi, China.,Department of Oral and Maxillofacial Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Liang Shi
- Postgraduate College of Xinjiang Medical University, Urumqi, China.,Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Xu
- Stomatology School of Xinjiang Medical University, Urumqi, China.,Institute of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
18
|
Elfar W, Gurjar AA, Talukder MAH, Noble M, Di Lorenzo C, Elfar J. Erythropoietin promotes functional recovery in a mouse model of postoperative ileus. Neurogastroenterol Motil 2021; 33:e14049. [PMID: 33368893 DOI: 10.1111/nmo.14049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/27/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dysmotility and postoperative ileus (POI) are major clinical problems after surgical trauma and it is associated with increased intestinal inflammation and oxidative stress. Despite the high occurrence of POI following intra-abdominal surgeries, no effective treatment is currently available. Erythropoietin (EPO) is a multifunctional tissue-protective cytokine with potent anti-inflammatory and anti-oxidative properties, and it is an FDA approved medicine for clinical use. While both EPO and EPO receptors (EPOR) are widely expressed in the gut, the role of EPO in POI is largely unknown. This study was designed to explore the possible beneficial effect of EPO in a mouse model of POI. METHODS Mice were subjected to intestinal manipulation to induce standard POI and intestinal transit time was determined at 24-h post-injury with or without EPO treatment (5000 units/kg, once, IP, immediately after intestinal trauma). Intestinal samples were harvested for histological and immunohistochemical analysis. RESULTS Systemic EPO significantly improved intestinal transit time compared with control group and it was associated with significantly increased levels of tissue macrophages and reduced levels of oxidative stress. CONCLUSIONS AND INFERENCES This is the first pre-clinical study to document novel beneficial effects of EPO in gut dysmotility and our findings suggest that the beneficial effects of EPO in POI is predominantly mediated by its anti-oxidative and immunomodulatory properties.
Collapse
Affiliation(s)
- Walaa Elfar
- Division of Gastroenterology and Nutrition, Department of Pediatrics, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Anagha A Gurjar
- Department of Orthopedics and Rehabilitation, Center for Orthopedics and Translational Sciences (CORTS), The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - M A Hassan Talukder
- Department of Orthopedics and Rehabilitation, Center for Orthopedics and Translational Sciences (CORTS), The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, USA
| | - Carlo Di Lorenzo
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - John Elfar
- Department of Orthopedics and Rehabilitation, Center for Orthopedics and Translational Sciences (CORTS), The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
19
|
Guan Y, Gao N, Niu H, Dang Y, Guan J. Oxygen-release microspheres capable of releasing oxygen in response to environmental oxygen level to improve stem cell survival and tissue regeneration in ischemic hindlimbs. J Control Release 2021; 331:376-389. [PMID: 33508351 DOI: 10.1016/j.jconrel.2021.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/09/2023]
Abstract
Stem cell transplantation has been extensively explored to promote ischemic limb vascularization and skeletal muscle regeneration. Yet the therapeutic efficacy is low due to limited cell survival under low oxygen environment of the ischemic limbs. Therefore, continuously oxygenating the transplanted cells has potential to increase their survival. During tissue regeneration, the number of blood vessels are gradually increased, leading to the elevation of tissue oxygen content. Accordingly, less exogenous oxygen is needed for the transplanted cells. Excessive oxygen may induce reactive oxygen species (ROS) formation, causing cell apoptosis. Thus, it is attractive to develop oxygen-release biomaterials that are responsive to the environmental oxygen level. Herein, we developed oxygen-release microspheres whose oxygen release was controlled by oxygen-responsive shell. The shell hydrophilicity and degradation rate decreased as the environmental oxygen level increased, leading to slower oxygen release. The microspheres were capable of directly releasing molecular oxygen, which are safer than those oxygen-release biomaterials that release hydrogen peroxide and rely on its decomposition to form oxygen. The released oxygen significantly enhanced mesenchymal stem cell (MSC) survival without inducing ROS production under hypoxic condition. Co-delivery of MSCs and microspheres to the mouse ischemic limbs ameliorated MSC survival, proliferation and paracrine effects under ischemic conditions. It also significantly accelerated angiogenesis, blood flow restoration, and skeletal muscle regeneration without provoking tissue inflammation. The above results demonstrate that the developed microspheres have potential to augment cell survival in ischemic tissues, and promote ischemic tissue regeneration in a safer and more efficient manner.
Collapse
Affiliation(s)
- Ya Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ning Gao
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yu Dang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Effect of rutin on experimentally induced small intestinal ischemia reperfusion injury in rats: A biochemical and histopathological evaluation. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.858237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Mori Y, Oikawa S, Kurimoto S, Kitamura Y, Tada-Oikawa S, Kobayashi H, Yamashima T, Murata M. Proteomic analysis of the monkey hippocampus for elucidating ischemic resistance. J Clin Biochem Nutr 2020; 67:167-173. [PMID: 33041514 PMCID: PMC7533853 DOI: 10.3164/jcbn.19-78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/13/2020] [Indexed: 01/25/2023] Open
Abstract
It is well-known that the cornu Ammonis 1 (CA1) sector of hippocampus is vulnerable for the ischemic insult, whereas the dentate gyrus (DG) is resistant. Here, to elucidate its underlying mechanism, alternations of protein oxidation and expression of DG in the monkey hippocampus after ischemia-reperfusion by the proteomic analysis were studied by comparing CA1 data. Oxidative damage to proteins such as protein carbonylation interrupt the protein function. Carbonyl modification of molecular chaperone, heat shock 70 kDa protein 1 (Hsp70.1) was increased remarkably in CA1, but slightly in DG. In addition, expression levels of nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase sirtuin-2 (SIRT2) was significantly increased in DG after ischemia, but decreased in CA1. Accordingly, it is likely that SIRT2 upregulation and negligible changes of carbonylation of Hsp70.1 exert its neuroprotective effect in DG. On the contrary, carbonylation level of dihydropyrimidinase related protein 2 (DRP-2) and l-lactate dehydrogenase B chain (LDHB) were slightly increased in CA1 as shown previously, but remarkably increased in DG after ischemia. It is considered that DRP-2 and LDHB are specific targets of oxidative stress by ischemia insult and high carbonylation levels of DRP-2 may play an important role in modulating ischemic neuronal death.
Collapse
Affiliation(s)
- Yurie Mori
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shota Kurimoto
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Yuki Kitamura
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan.,College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Saeko Tada-Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan.,Department of Human Nutrition, School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaoka-motomachi, Chikusa-ku, Nagoya, Aichi 464-8662, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Tetsumori Yamashima
- Departments of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Takakura-machi 13-1, Kanazawa, Ishikawa 920-8641, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| |
Collapse
|
22
|
Keirns BH, Koemel NA, Sciarrillo CM, Anderson KL, Emerson SR. Exercise and intestinal permeability: another form of exercise-induced hormesis? Am J Physiol Gastrointest Liver Physiol 2020; 319:G512-G518. [PMID: 32845171 DOI: 10.1152/ajpgi.00232.2020] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Regular aerobic exercise has numerous benefits on human physiology, arguably by serving as a hormetic stressor resulting in positive adaptations over time. It has long been known that aerobic exercise at a variety of intensities and durations induces intestinal permeability, which is a feature of many pathologies of the gastrointestinal tract and metabolic diseases. Given the health benefits of exercise, it seems unlikely that intestinal permeability induced by exercise outweighs the positive adaptations. In fact, a growing body of evidence suggests adoption of exercise regimens lasting weeks to months improves indicators of intestinal permeability. In this brief review, we summarize factors contributing to acute exercise-induced intestinal permeability and what is known about chronic exercise and the gut barrier. Additionally, we outline known and theoretical adaptations of the gut to chronic exercise that may explain emerging reports that exercise improves markers of gut integrity.
Collapse
Affiliation(s)
- Bryant H Keirns
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Nicholas A Koemel
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma
| | | | - Kendall L Anderson
- Department of Pediatric Gastroenterology and Hepatology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sam R Emerson
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
23
|
Fusco R, Cordaro M, Siracusa R, Peritore AF, Gugliandolo E, Genovese T, D’Amico R, Crupi R, Smeriglio A, Mandalari G, Impellizzeri D, Cuzzocrea S, Di Paola R. Consumption of Anacardium Occidentale L. (Cashew Nuts) Inhibits Oxidative Stress through Modulation of the Nrf2/HO-1 and NF-kB Pathways. Molecules 2020; 25:molecules25194426. [PMID: 32993187 PMCID: PMC7582295 DOI: 10.3390/molecules25194426] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/31/2022] Open
Abstract
Ischemia/reperfusion injury is a severe disorder associated with a high mortality. Several antioxidant and pharmacological properties of cashew nuts (Anacardium occidentale L.) and its metabolites from different countries have recently been described. It is a medicinal plant with important therapeutic effects. This study aimed to verify the effect of an oral administration of cashew nuts in a rat model of ischemia/reperfusion (I/R). Adult male rats were subjected to intestinal I/R injury by clamping the superior mesenteric artery for 30 min and then allowing animals to 1 h of reperfusion. Rats subjected to I/R of the gut showed a significant increase in different biochemical markers. In particular, we evaluated lipid peroxidation, tissue myeloperoxidase activity, protein carbonyl content, reactive oxygen species generation and decreased antioxidant enzyme activities. Western blot analysis showed the activation of the NRF2 and NF-kB pathways. Increased immunoreactivity to nitrotyrosine, PARP, P-selectin, and ICAM-1 was observed in the ileum of rats subjected to I/R. Administration of cashew nuts (100 mg/kg) significantly reduced the mortality rate, the fall in arterial blood pressure, and oxidative stress and restored the antioxidant enzyme activities by a mechanism involving both NRF2 and NF-kB pathways. Cashew nuts treatments reduced cytokines plasma levels, nitrotyrosine, and PARP expression as well as adhesion molecules expressions. Additionally, cashew nuts decreased the intestinal barrier dysfunction and mucosal damage, the translocation of toxins and bacteria, which leads to systemic inflammation and associated organs injuries in particular of liver and kidney. Our study demonstrates that cashew nuts administration exerts antioxidant and pharmacological protective effects in superior mesenteric artery occlusion–reperfusion shock.
Collapse
Affiliation(s)
- Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (A.S.); (G.M.); (R.D.P.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (A.S.); (G.M.); (R.D.P.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (A.S.); (G.M.); (R.D.P.)
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (A.S.); (G.M.); (R.D.P.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (A.S.); (G.M.); (R.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (A.S.); (G.M.); (R.D.P.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (A.S.); (G.M.); (R.D.P.)
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (A.S.); (G.M.); (R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (A.S.); (G.M.); (R.D.P.)
- Correspondence: (D.I.); (S.C.); Tel.: +39-090-676-5208 (D.I. & S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (A.S.); (G.M.); (R.D.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Correspondence: (D.I.); (S.C.); Tel.: +39-090-676-5208 (D.I. & S.C.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (A.S.); (G.M.); (R.D.P.)
| |
Collapse
|
24
|
Eicosanoid production varies by sex in mesenteric ischemia reperfusion injury. Clin Immunol 2020; 220:108596. [PMID: 32961332 DOI: 10.1016/j.clim.2020.108596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023]
Abstract
Intestinal ischemia/reperfusion (I/R)-induced injury is an inflammatory response with significant morbidity and mortality. The early inflammatory response includes neutrophil infiltration. However, the majority of rodent studies utilize male mice despite a sexual dimorphism in intestinal I/R-related diseases. We hypothesized that sex may alter inflammation by changing neutrophil infiltration and eicosanoid production. To test this hypothesis, male and female C57Bl/6 mice were subjected to sham treatment or 30 min intestinal ischemia followed by a time course of reperfusion. We demonstrate that compared to male mice, females sustain significantly less intestinal I/R-induced tissue damage and produced significant LTB4 concentrations. Male mice release PGE2. Finally, treatment with a COX-2 specific inhibitor, NS-398, attenuated I/R-induced injury, total peroxidase level, and PGE2 production in males, but not in similarly treated female mice. Thus, I/R-induced eicosanoid production and neutrophil infiltration varies between sexes suggesting that distinct therapeutic intervention may be needed in clinical ischemic diseases.
Collapse
|
25
|
Hou P, Zhou X, Yu L, Yao Y, Zhang Y, Huang Y, Chen M, Yi L, Mi M. Exhaustive Exercise Induces Gastrointestinal Syndrome through Reduced ILC3 and IL-22 in Mouse Model. Med Sci Sports Exerc 2020; 52:1710-1718. [PMID: 32079925 DOI: 10.1249/mss.0000000000002298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE This study was to investigate the mechanism of intestinal physical and immune barriers in the occurrence of high-intensive exercise-induced gastrointestinal symptoms. METHODS An overtraining model of male C57BL/6 mice was established by running-to-exhaustive exercise. Then, the mice were sacrificed, and a series of evaluation indicators, including the routine blood analysis as well as histological examinations, inflammatory factors, ultrastructure observation, and intestinal permeability of the gut, were measured based on this model. The expressions of inflammatory factors tumor necrosis factor α, interferon-γ, and interleukin (IL)-6 as well as the tight junction and adherence junction proteins ZO-1, Occludin, Claudin-1, and E-cadherin were measured, respectively. Furthermore, the mRNA level of IL-22 and the proportion of ILC3 and IL-22 produced in CD4 T cells in lamina propria lymphocytes (LPL) were analyzed by flow cytometry. Besides, the liver glycogen and the expressions of sirtuins-3 and hypoxia-inducible factor-1a, which were associated with the intestinal metabolism phenotype, were analyzed by Western blotting. RESULTS Exhaustive exercise induced a disrupted intestinal barrier integrity, an aggravated intestinal inflammation, increased gut permeability, and the reduced IL-22 mRNA level. Compared with the nonexercise mice, the IL-22 produced in LPL was reduced followed by exhaustive exercise, whereas the proportion of IL-22 produced in CD4 T cells was still unchanged. Significantly, the proportion of ILC3 in the LPL was decreased obviously, including the NCR ILC3. Furthermore, the intestinal metabolism phenotype assessment showed lower liver glycogen and blood glucose as well as higher blood lactic acid and hypoxia-inducible factor-1a, respectively. CONCLUSIONS The data indicated that the acute high-intensity running-induced gastrointestinal symptom is closely associated with a reduced percentage of ILC3 and IL-22 level in the LPL, possibly due to the glycogen exhaustion and intestinal mucosa hypoperfusion.
Collapse
Affiliation(s)
- Pengfei Hou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, PR CHINA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Involvement of 5-HT1B/1D receptors in the inflammatory response and oxidative stress in intestinal ischemia/reperfusion in rats. Eur J Pharmacol 2020; 882:173265. [PMID: 32574671 DOI: 10.1016/j.ejphar.2020.173265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022]
Abstract
Acute mesenteric ischemia (AMI) is caused by an abrupt cessation of blood flow to the small intestine. Reperfusion is the return of blood flow to the ischemic bowel. Intestinal ischemia/reperfusion (I/R) leads to the formation of reactive oxygen species, local inflammatory response, and may lead to the patient's death. Pre-treatment of the intestinal may reduce the high mortality associated with AMI. 5-Hydroxytryptamine 1B (5-HT1B) and 5-HT1D receptors have anti-inflammatory and neuroprotective effects in different experimental studies. We aimed to investigate the potential involvement of these receptors in intestinal I/R injury. Firstly, we assessed the expression and localization of 5-HT1B and 5-HT1D receptors in the enteric nervous system using an immunofluorescence-based method. Intestinal I/R in rats was induced by 30 min occlusion of superior mesenteric artery and reperfusion for 2 h. Rats were randomly divided in different control and I/R groups (n = 6) receiving either vehicle, sumatriptan (5-HT1B/1D receptors agonist; 0.1 mg/kg), GR127,935 (5-HT1B/1D receptors antagonist; 0.1 mg/kg) and combination of sumatriptan (0.1 mg/kg) + GR127,935 (0.1 mg/kg) before determination of biochemical and histological parameters. In the enteric nervous system, 5-HT1B and 5-HT1D receptors were expressed 17% and 11.5%, respectively. Pre-treatment with sumatriptan decreased 5-hydroxytryptamine (5HT) level by 53%, and significantly decreased calcitonin gene-related peptide (CGRP) levels, lipid pereoxidation, neutrophil infiltration, and level of pro-inflammatory markers in the serum. Histopathologic studies also showed a remarkable decrease in intestinal tissue injury. These findings suggest that sumatriptan may inhibit intestinal injury induced by I/R through modulating the inflammatory response by activation of 5-HT1B/1D receptors.
Collapse
|
27
|
Inhibition of JNK Alleviates Chronic Hypoperfusion-Related Ischemia Induces Oxidative Stress and Brain Degeneration via Nrf2/HO-1 and NF- κB Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5291852. [PMID: 32617137 PMCID: PMC7315317 DOI: 10.1155/2020/5291852] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
Cerebral ischemia is one of the leading causes of neurological disorders. The exact molecular mechanism related to chronic unilateral cerebral ischemia-induced neurodegeneration and memory deficit has not been precisely elucidated. In this study, we examined the effect of chronic ischemia on the induction of oxidative stress and c-Jun N-terminal kinase-associated detrimental effects and unveiled the inhibitory effect of specific JNK inhibitor (SP600125) on JNK-mediated brain degeneration in adult mice. Our behavioral, biochemical, and immunofluorescence studies revealed that chronic ischemic injuries sustained increased levels of oxidative stress-induced active JNK for a long time, whereas SP600125 significantly reduced the elevated level of active JNK and further regulated Nrf2/HO-1 and NF-κB signaling, which have been confirmed in vivo. Neuroinflammatory mediators and loss of neuronal cells was significantly reduced with the administration of SP600125. Ischemic brain injury caused synaptic dysfunction and memory impairment in mice. However, these were significantly improved with SP600125. On the whole, these findings suggest that elevated ROS-mediated JNK is a key mediator in chronic ischemic conditions and has a crucial role in neuroinflammation, neurodegeneration, and memory dysfunction. Our findings suggest that chronic oxidative stress associated JNK would be a potential target in time-dependent studies of chronic ischemic conditions induced brain degeneration.
Collapse
|
28
|
Poerwosusanta H, Gunadi, Noor Z, Oktaviyanti IK, Mintaroem K, Pardjianto B, Widodo MA, Widjajanto E. The effect of laparoscopy on mast cell degranulation and mesothelium thickness in rats. BMC Surg 2020; 20:111. [PMID: 32448270 PMCID: PMC7247274 DOI: 10.1186/s12893-020-00775-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Background Laparoscopy induces adhesion due to ischemia-reperfusion injury. However, the detail pathomechanism is poorly understood. This study aimed to investigate the impact of laparoscopy on mast cell and mesothelium morphological changes in the rat. Methods Forty-nine males of Sprague-Dawley Rattus norvegicus were divided into four groups: a) control and b) intervention groups P1, P2, and P3 that underwent 60 min laparoscopic using carbon dioxide (CO2) insufflation at 8, 10, and 12 mmHg groups, respectively. Serum hydrogen peroxide (H2O2), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and oxidative stress index (OSI) levels were determined 24 h after laparoscopy. Histopathological analyses of mast cell infiltration and degranulation and mesothelium thickness in the liver, greater omentum, mesenterium, small intestine, and peritoneum were performed 7 days after the procedure. Results H2O2, MDA, and OSI levels were significantly increased in the intervention groups compared with the control (p<0.05), while the SOD and CAT levels were decreased in the intervention groups compared with the control (p<0.05). Mast cell infiltration and degranulation were higher in the intervention groups than in control (p<0.05), while the mesothelium thickness was significantly lower in the laparoscopic groups than in control (p<0.05). Interestingly, the decrease in mesothelium thickness was strongly associated with the increase in mast cell infiltration and degranulation (p<0.01). Conclusions Our study shows that laparoscopy in rats increases mast cell infiltration and degranulation, which also results in and correlates with a decrease in mesothelial thickness.
Collapse
Affiliation(s)
- Hery Poerwosusanta
- Doctoral Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia. .,Department of Surgery, Ulin General Hospital, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, Indonesia.
| | - Gunadi
- Pediatric Surgery Division, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gajah Mada /Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Zairin Noor
- Department of Surgery, Ulin General Hospital, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, Indonesia
| | - Ika Kustiyah Oktaviyanti
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, Indonesia
| | - Karyono Mintaroem
- Department of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Bambang Pardjianto
- Department of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Moch Aris Widodo
- Department of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Edi Widjajanto
- Department of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
29
|
Ribeiro Hudson AS, Nascimento Soares AD, Coelho Horta NA, Fuscaldi LL, Machado-Moreira CA, Soares DD, Coimbra CC, de Oliveira Poletini M, Cardoso VN, Wanner SP. The magnitude of physical exercise-induced hyperthermia is associated with changes in the intestinal permeability and expression of tight junction genes in rats. J Therm Biol 2020; 91:102610. [PMID: 32716860 DOI: 10.1016/j.jtherbio.2020.102610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/01/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022]
Abstract
We investigated whether the magnitude of exercise-induced hyperthermia influences intestinal permeability and tight junction gene expression. Twenty-nine male Wistar rats were divided into four groups: rest at 24 °C and exercise at 13 °C, 24 °C or 31 °C. The exercise consisted of a 90-min treadmill run at 15 m/min, and different ambient temperatures were used to produce distinct levels of exercise-induced hyperthermia. Before the experimental trials, the rats were treated by gavage with diethylenetriaminepentaacetic acid labeled with technetium-99 metastable as a radioactive probe. The rats' core body temperature (TCORE) was measured by telemetry. Immediately after the trials, the rats were euthanized, and the intestinal permeability was assessed by measuring the radioactivity of blood samples. The mRNA levels of occludin and zonula occludens-1 (ZO-1) genes were determined in duodenum samples. Exercise at 24 °C increased TCORE to values close to 39 °C, without changing permeability compared with the resting trial at the same environment. Meanwhile, rats' TCORE exceeded 40 °C during exercise at 31 °C, leading to greater permeability relative to those observed after exercise in the other ambient temperatures (e.g., 0.0037%/g at 31 °C vs. 0.0005%/g at 13 °C; data expressed as medians; p < 0.05). Likewise, the rats exercised at 31 °C exhibited higher mRNA levels of ZO-1 and occludin genes than the rats exercised at 24 °C or 13 °C. The changes in permeability and gene expression were positively and significantly associated with the magnitude of hyperthermia. We conclude that marked hyperthermia caused by exercise in the warmer environment increases intestinal permeability and mRNA levels of tight junction genes.
Collapse
Affiliation(s)
- Alexandre Sérvulo Ribeiro Hudson
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anne Danieli Nascimento Soares
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nayara Abreu Coelho Horta
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo Lima Fuscaldi
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Christiano Antônio Machado-Moreira
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danusa Dias Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cândido Celso Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maristela de Oliveira Poletini
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valbert Nascimento Cardoso
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samuel Penna Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
30
|
Berberine combined with cyclosporine A alleviates acute graft-versus-host disease in murine models. Int Immunopharmacol 2020; 81:106205. [DOI: 10.1016/j.intimp.2020.106205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/25/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
|
31
|
Prieto-Moure B, Cejalvo-Lapeña D, Belda-Antolí M, Padrón-Sanz C, Lloris-Cejalvo JM, Lloris-Carsí JM. Combination Therapy of Allopurinol and Dantrolene and Its Role In The Prevention of Experimental Ischemia Reperfusion Injury Of The Small Intestine. J INVEST SURG 2020; 34:800-807. [PMID: 31906750 DOI: 10.1080/08941939.2019.1696904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The effect of different drugs on ischemia and reperfusion (I/R; induced oxygen free radical damage) was examined in small bowel tissue because the intestine is extremely sensitive to this pathology. Different drugs (allopurinol and dantrolene) can remove oxygen free radicals or inhibit the mechanisms leading to their generation, thus reducing mucosal lesions. We investigated the protective potential of combination therapy in the intestine against I/R damage. METHODS Forty-eight male Wistar rats were separated into 8 groups: one sham (control), one I/R (ischemia 60 min + reperfusion at 24 h), and 6 groups treated with allopurinol, dantrolene, or combination therapy. The grade of injury in the small bowel was established by the lipid peroxidation (MDA) and antioxidant enzymatic activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in tissue samples. Moreover, the collected samples were subjected to histological study. RESULTS Combination therapy preserved normal enzymatic levels compared to the I/R groups (p < 0.05) for all parameters studied. The animals treated with combination therapy showed less severe small bowel damage than I/R group in accordance with the histological results. CONCLUSIONS Results obtained in the experimental process indicate that the administration of antioxidants protects against intestinal damage by I/R. Overall, combination therapy may protect intestinal tissue from I/R injury.
Collapse
Affiliation(s)
- Beatriz Prieto-Moure
- Department of Biomedical Sciences, European University of Valencia, Valencia, Spain
| | - Dolores Cejalvo-Lapeña
- Research Group "Identification Therapeutic and Experimental Evaluation of Natural Products Bioprotectors," Faculty of Medicine and Experimental, Catholic University of Valencia, Valencia, Spain
| | - Mariola Belda-Antolí
- Research Group "Identification Therapeutic and Experimental Evaluation of Natural Products Bioprotectors," Faculty of Medicine and Experimental, Catholic University of Valencia, Valencia, Spain
| | - Carolina Padrón-Sanz
- Research Group "Identification Therapeutic and Experimental Evaluation of Natural Products Bioprotectors," Faculty of Medicine and Experimental, Catholic University of Valencia, Valencia, Spain
| | - José Miguel Lloris-Cejalvo
- Research Group "Identification Therapeutic and Experimental Evaluation of Natural Products Bioprotectors," Faculty of Medicine and Experimental, Catholic University of Valencia, Valencia, Spain
| | | |
Collapse
|
32
|
Zhang FJ, Song HQ, Li XM. Effect of ulinastatin combined with mild therapeutic hypothermia on intestinal barrier dysfunction following cardiopulmonary resuscitation in rats. Exp Ther Med 2019; 18:3861-3868. [PMID: 31616513 PMCID: PMC6781809 DOI: 10.3892/etm.2019.8039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/21/2019] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to investigate the effect of ulinastatin (UTI) alone or combined with mild therapeutic hypothermia (MTH) on intestinal barrier dysfunction following cardiopulmonary resuscitation (CPR) in rats. A total of 25 adult male Sprague-Dawley rats were randomly organized into five groups: Sham; control; UTI; MTH; and the combined group. The latter four groups were induced with the asphyxiated cardiac arrest rat model and treated with different interventions. After 6 h of treatment, the intestinal tissues of the rats were examined by electron microscopy, and the levels of intestinal malondialdehyde (MDA) and superoxide dismutase (SOD) were determined. The results of the present study indicated that the target temperature had successfully been attained in MTH and the combined group, and the other three groups of rats all survived at a normal temperature. In the rats treated with UTI or MTH, the epithelial cells exhibited pathological changes in their tight junctions and epithelial cell surface microvilli compared with the sham group. In the rats treated with a combination of UTI and MTH, whilst the epithelial cells exhibited a few slight changes, including mitochondrial edema, they were largely similar to the normal epithelial cells. However, there were significant differences in the levels of MDA and SOD between the different treatment groups. UTI combined with MTH may serve a protective role by suppressing oxidative stress in the small intestinal mucosa following CPR in rats compared with either UTI or MTH treatment alone.
Collapse
Affiliation(s)
- Fang-Jie Zhang
- Department of Emergency Medicine, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Hua-Qiang Song
- Department of Emergency Medicine, The First People's Hospital of Changde City, Changde, Hunan 415000, P.R. China
| | - Xiang-Min Li
- Department of Emergency Medicine, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
33
|
Eken H, Cimen O, Cimen FK, Kurnaz E, Yildirim M, Tasova V, Kurt N, Pehlivanoglu K, Onk D, Bilgin AO. Effect of taxifolin on oxidative gastric injury induced by celiac artery ligation in rats. Acta Cir Bras 2019; 34:e201900404. [PMID: 31066786 PMCID: PMC6583928 DOI: 10.1590/s0102-865020190040000004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To examine the effect of taxifolin on I/R induced gastric injury in rats using biochemical and histopatholohical methods. METHODS Eighteen albino Wistar male rats equally grouped as; gastric I/R (I/R), 50 mg/kg taxifolin + gastric I/R (TAX+ I/R) and sham operation applied (SHAM). Ischemia induced for 1 hour, and reperfusion induced for 3 hours. RESULTS Oxidant parameters like, Malondialdehyde (MDA) and Hydroxyguanine (8-OHdG) were higher, whereas total glutathione (tGSH) was lower in the I/R group according to SHAM group, histopathological findings such as marked destruction, edema, and proliferated dilated congested blood vessels were observed severely in the I/R group, whereas there was not any pathological finding except mild dilated congested blood vessels in the TAX+ I/R group. CONCLUSION The taxifolin can be clinically beneficial in the treatment of gastric injury due to I/R procedure.
Collapse
Affiliation(s)
- Hüseyin Eken
- Assistant Professor, Department of General Surgery, Faculty of Medicine, Erzincan Binali Yildirim University, Turkey. Scientific, intellectual, conception and design of the study; manuscript preparation
| | - Orhan Cimen
- Assistant Professor, Department of General Surgery, Faculty of Medicine, Erzincan Binali Yildirim University, Turkey. Conception and design of the study, manuscript preparation
| | - Ferda Keskin Cimen
- Assistant Professor, Department of Pathology, Faculty of Medicine, Erzincan Binali Yildirim University, Turkey. Histopathological examinations, manuscript writing
| | - Eray Kurnaz
- MD, Department of General Surgery, Mengücek Gazi Training and Research Hospital, Erzincan, Turkey. Technical procedures, manuscript preparation
| | - Murat Yildirim
- MD, Department of General Surgery, Zile State Hospital, Tokat, Turkey. Technical procedures, manuscript preparation
| | - Volkan Tasova
- MD, Department of General Surgery, Sabuncuoglu Serafettin Training and Research Hospital, Amasya University, Turkey. Technical procedures, manuscript preparation
| | - Nezahat Kurt
- PhD, Department of Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey. Acquisition, analysis and interpretation of data; technical procedures
| | - Kamil Pehlivanoglu
- Assistant Professor, Department of General Surgery, Faculty of Medicine, Erzincan Binali Yildirim University, Turkey. Manuscript preparation
| | - Didem Onk
- Assistant Professor, Department of Anesthesiology and Reanimation, Faculty of Medicine, Erzincan Binali Yildirim University, Turkey. Technical procedures, critical revision
| | - Asli Ozbek Bilgin
- Assistant Professor, Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Turkey. Statistics analysis, manuscript writing, critical revision, final approval
| |
Collapse
|
34
|
Activation of G protein-coupled estrogen receptor protects intestine from ischemia/reperfusion injury in mice by protecting the crypt cell proliferation. Clin Sci (Lond) 2019; 133:449-464. [PMID: 30705108 DOI: 10.1042/cs20180919] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/14/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Abstract
The intestinal ischemia/reperfusion (I/R) injury is a common clinical event related with high mortality in patients undergoing surgery or trauma. Estrogen exerts salutary effect on intestinal I/R injury, but the receptor type is not totally understood. We aimed to identify whether the G protein-coupled estrogen receptor (GPER) could protect the intestine against I/R injury and explored the mechanism. Adult male C57BL/6 mice were subjected to intestinal I/R injury by clamping (45 min) of the superior mesenteric artery followed by 4 h of intestinal reperfusion. Our results revealed that the selective GPER blocker abolished the protective effect of estrogen on intestinal I/R injury. Selective GPER agonist G-1 significantly alleviated I/R-induced intestinal mucosal damage, neutrophil infiltration, up-regulation of TNF-α and cyclooxygenase-2 (Cox-2) expression, and restored impaired intestinal barrier function. G-1 could ameliorate the impaired crypt cell proliferation ability induced by I/R and restore the decrease in villus height and crypt depth. The up-regulation of inducible nitric oxide synthase (iNOS) expression after I/R treatment was attenuated by G-1 administration. Moreover, selective iNOS inhibitor had a similar effect with G-1 on promoting the proliferation of crypt cells in the intestinal I/R model. Both GPER and iNOS were expressed in leucine-rich repeat containing G-protein coupled receptor 5 (Lgr5) positive stem cells in crypt. Together, these findings demonstrate that GPER activation can prompt epithelial cell repair following intestinal injury, which occurred at least in part by inhibiting the iNOS expression in intestinal stem cells (ISCs). GPER may be a novel therapeutic target for intestinal I/R injury.
Collapse
|
35
|
Wen ZS, Tang Z, Ma L, Zhu TL, Wang YM, Xiang XW, Zheng B. Protective Effect of Low Molecular Weight Seleno-Aminopolysaccharide on the Intestinal Mucosal Oxidative Damage. Mar Drugs 2019; 17:E64. [PMID: 30669387 PMCID: PMC6356751 DOI: 10.3390/md17010064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 02/07/2023] Open
Abstract
Low molecular weight seleno-aminopolysaccharide (LSA) is an organic selenium compound comprising selenium and low molecular weight aminopolysaccharide (LA), a low molecular weight natural linear polysaccharide derived from chitosan. LSA has been found to exert strong pharmacological activity. In this study, we aimed to investigate the protective effect of LSA on intestinal mucosal oxidative stress in a weaning piglet model by detecting the growth performance, intestinal mucosal structure, antioxidant indices, and expression level of intracellular transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and its related factors. Our results indicated that LSA significantly increased the average daily gain and feed/gain (p < 0.05), suggesting that LSA can effectively promote the growth of weaning piglets. The results of scanning electron microscope (SEM) microscopy showed that LSA effectively reduced intestinal damage, indicating that LSA improved the intestinal stress response and protected the intestinal structure integrity. In addition, diamine oxidase (DAO) and d-lactic acid (d-LA) levels remarkably decreased in LSA group compared with control group (p < 0.05), suggesting that LSA alleviated the damage and permeability of weaning piglets. LSA significantly increased superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) levels, but decreased malondialdehyde (MDA) level, indicating that LSA significantly enhanced the antioxidant capacity and reduced oxidative stress in weaning piglets. RT-PCR results showed that LSA significantly increased GSH-Px1, GSH-Px2, SOD-1, SOD-2, CAT, Nrf2, HO-1, and NQO1 gene expression (p < 0.05). Western blot analysis revealed that LSA activated the Nrf2 signaling pathway by downregulating the expression of Keap1 and upregulating the expression of Nrf2 to protect intestinal mucosa against oxidative stress. Collectively, LSA reduced intestinal mucosal damage induced by oxidative stress via Nrf2-Keap1 pathway in weaning stress of infants.
Collapse
Affiliation(s)
- Zheng-Shun Wen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Zhen Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Li Ma
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Tian-Long Zhu
- Department of Agriculture, Jiaxing Vocational Technical College, Jiaxing 314036, China.
| | - You-Ming Wang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Xing-Wei Xiang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China.
- Zhejiang Marine Development Research Institute, Zhoushan 316021, China.
| | - Bin Zheng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China.
- Zhejiang Marine Development Research Institute, Zhoushan 316021, China.
| |
Collapse
|
36
|
Vu TT, Marquez J, Le LT, Nguyen ATT, Kim HK, Han J. The role of decorin in cardiovascular diseases: more than just a decoration. Free Radic Res 2018; 52:1210-1219. [PMID: 30468093 DOI: 10.1080/10715762.2018.1516285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decorin (DCN) is a proteoglycan constituent of the extracellular matrix (ECM) possessing powerful antifibrotic, anti-inflammation, antioxidant, and antiangiogenic properties. By attaching to receptors in the cell surface or to several ECM molecules, it regulates plenty of cellular functions, consequently influencing cell differentiation, proliferation, and apoptosis. These processes are dependent on cell types, biological contexts, and interfere with pathological processes such as cardiovascular diseases. In this review, we briefly discuss the potential of DCN targeting in addressing cardiovascular diseases (CVD). We dive into its interactome and discuss how its interaction with the proteins can affect disease progression, and how DCN can be a possible target for CVD therapeutics.
Collapse
Affiliation(s)
- Thu Thi Vu
- a Faculty of Biology, National Key Laboratory of Enzyme and Protein Technology , VNU University of Science , Hanoi , Vietnam
| | - Jubert Marquez
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| | - Long Thanh Le
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| | - Anh Thi Tuyet Nguyen
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| | - Hyoung Kyu Kim
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,d Department of Integrated Biomedical Science , College of Medicine, Inje University , Busan , Korea
| | - Jin Han
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| |
Collapse
|
37
|
Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and Consequences of Necroinflammation. Physiol Rev 2018; 98:727-780. [PMID: 29465288 DOI: 10.1152/physrev.00041.2016] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When cells undergo necrotic cell death in either physiological or pathophysiological settings in vivo, they release highly immunogenic intracellular molecules and organelles into the interstitium and thereby represent the strongest known trigger of the immune system. With our increasing understanding of necrosis as a regulated and genetically determined process (RN, regulated necrosis), necrosis and necroinflammation can be pharmacologically prevented. This review discusses our current knowledge about signaling pathways of necrotic cell death as the origin of necroinflammation. Multiple pathways of RN such as necroptosis, ferroptosis, and pyroptosis have been evolutionary conserved most likely because of their differences in immunogenicity. As the consequence of necrosis, however, all necrotic cells release damage associated molecular patterns (DAMPs) that have been extensively investigated over the last two decades. Analysis of necroinflammation allows characterizing specific signatures for each particular pathway of cell death. While all RN-pathways share the release of DAMPs in general, most of them actively regulate the immune system by the additional expression and/or maturation of either pro- or anti-inflammatory cytokines/chemokines. In addition, DAMPs have been demonstrated to modulate the process of regeneration. For the purpose of better understanding of necroinflammation, we introduce a novel classification of DAMPs in this review to help detect the relative contribution of each RN-pathway to certain physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Maysa Sarhan
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Walter G Land
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Wulf Tonnus
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Christian P Hugo
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Andreas Linkermann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
38
|
González-Montero J, Brito R, Gajardo AIJ, Rodrigo R. Myocardial reperfusion injury and oxidative stress: Therapeutic opportunities. World J Cardiol 2018; 10:74-86. [PMID: 30344955 PMCID: PMC6189069 DOI: 10.4330/wjc.v10.i9.74] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of death worldwide. Its associated mortality, morbidity and complications have significantly decreased with the development of interventional cardiology and percutaneous coronary angioplasty (PCA) treatment, which quickly and effectively restore the blood flow to the area previously subjected to ischemia. Paradoxically, the restoration of blood flow to the ischemic zone leads to a massive production of reactive oxygen species (ROS) which generate rapid and severe damage to biomolecules, generating a phenomenon called myocardial reperfusion injury (MRI). In the clinical setting, MRI is associated with multiple complications such as lethal reperfusion, no-reflow, myocardial stunning, and reperfusion arrhythmias. Despite significant advances in the understanding of the mechanisms accounting for the myocardial ischemia reperfusion injury, it remains an unsolved problem. Although promising results have been obtained in experimental studies (mainly in animal models), these benefits have not been translated into clinical settings. Thus, clinical trials have failed to find benefits from any therapy to prevent MRI. There is major evidence with respect to the contribution of oxidative stress to MRI in cardiovascular diseases. The lack of consistency between basic studies and clinical trials is not solely based on the diversity inherent in epidemiology but is also a result of the methodological weaknesses of some studies. It is quite possible that pharmacological issues, such as doses, active ingredients, bioavailability, routes of administration, co-therapies, startup time of the drug intervention, and its continuity may also have some responsibility for the lack of consistency between different studies. Furthermore, the administration of high ascorbate doses prior to reperfusion appears to be a safe and rational therapy against the development of oxidative damage associated with myocardial reperfusion. In addition, the association with N-acetylcysteine (a glutathione donor) and deferoxamine (an iron chelator) could improve the antioxidant cardioprotection by ascorbate, making it even more effective in preventing myocardial reperfusion damage associated with PCA following AMI.
Collapse
Affiliation(s)
- Jaime González-Montero
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 70058, Chile
| | - Roberto Brito
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 70058, Chile
- Internal Medicine Department, University of Chile, Clinical Hospital, Santiago 70058, Chile
| | - Abraham IJ Gajardo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 70058, Chile
- Internal Medicine Department, University of Chile, Clinical Hospital, Santiago 70058, Chile
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 70058, Chile
| |
Collapse
|
39
|
Sakai S, Nishida A, Ohno M, Inatomi O, Bamba S, Sugimoto M, Kawahara M, Andoh A. Astaxanthin, a xanthophyll carotenoid, prevents development of dextran sulphate sodium-induced murine colitis. J Clin Biochem Nutr 2018; 64:66-72. [PMID: 30705514 PMCID: PMC6348411 DOI: 10.3164/jcbn.18-47] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022] Open
Abstract
Astaxanthin is a xanthophyll carotenoid, which possesses strong scavenging effect on reactive oxygen species. In this study, we examined the effect of astaxanthin on dextran sulfate sodium (DSS)-induced colitis in mice. Experimental colitis was induced by the oral administration of 4% w/v DSS in tap water in C57BL/6J mice. Astaxanthin was mixed with a normal rodent diet (0.02 or 0.04%). Astaxanthin significantly ameliorated DSS-induced body weight loss and reduced the disease activity index. The ameliorating effects was observed in a dose-dependent manner. Immunochemical analyses showed that astaxanthin markedly suppressed DSS-induced histological inflammatory changes (inflammatory cell infiltration, edematous changes and goblet cell depletion). Plasma levels of malondialdehyde and 8-hydroxy-2-deoxyguanosine were significantly reduced by the administration of 0.04% astaxanthin. Astaxanthin significantly suppressed the mucosal mRNA expression of IL-1β, IL-6, TNF-α, IL-36α and IL-36γ. Astaxanthin blocked the DSS-induced translocation of NF-κB p65 and AP-1 (c-Jun) into the nucleus of mucosal epithelial cells, and also suppressed DSS-induced mucosal activation of MAPKs (ERK1/2, p38 and JNK). In conclusion, astaxanthin prevented the development of DSS-induced colitis via the direct suppression of NF-κB, AP-1 and MAPK activation. These findings suggest that astaxanthin is a novel candidate as a therapeutic option for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Shigeki Sakai
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Masashi Ohno
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Osamu Inatomi
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Shigeki Bamba
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Mitsushige Sugimoto
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Masahiro Kawahara
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| |
Collapse
|
40
|
Protective activity of geraniol against acetic acid and Helicobacter pylori- induced gastric ulcers in rats. J Tradit Complement Med 2018; 9:206-214. [PMID: 31193983 PMCID: PMC6544613 DOI: 10.1016/j.jtcme.2018.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 04/26/2018] [Accepted: 05/05/2018] [Indexed: 12/11/2022] Open
Abstract
Geraniol, an active constituent of rose and palmarosa essential oils, possesses several pharmacological properties, including antioxidant, antibacterial and antiulcer activity. Geraniol was therefore investigated for its antiulcer and anti-Helicobacter pylori activity in rats. Ulcers were induced by injecting acetic acid into the sub-serosal layer of the stomach followed by orogastric inoculation of H. pylori for 7 days. Geraniol (15 and 30 mg/kg), vehicle and a standard drug combination (amoxicillin, 50 mg/kg; clarithromycin, 25 mg/kg and omeprazole, 20 mg/kg) were administered twice daily for 14 days. All the parameters were measured at the end of treatment. The ulcer index was significantly (P < 0.05) lowered in geraniol and standard drug-treated rats as compared to the H. pylori control group (4.13 ± 0.43). Treatment with geraniol (30 mg/kg) significantly (P < 0.01) increased the gastric pH along with a reduction in total acidity and gastric juice volume. Geraniol significantly (P < 0.05) attenuated the myeloperoxidase activity and augmented the total glutathione level in gastric mucosa. The extent of damage in the stomach was measured using a histopathological score. The score in H. pylori control, geraniol (30 mg/kg) and standard drugs was 9, 3.5 and 2.0 respectively. In the rapid urease test, treatment with geraniol (30 mg/kg) and the standard drugs produced a 33% and 67% cure respectively from H. pylori infection. Further, the reduction in bacterial load in the gastric mucosa was confirmed using modified Giemsa staining. Geraniol was observed to exhibit significant antiulcer and anti-H. pylori activity in a rodent model.
Collapse
|
41
|
Pires W, Veneroso CE, Wanner SP, Pacheco DAS, Vaz GC, Amorim FT, Tonoli C, Soares DD, Coimbra CC. Association Between Exercise-Induced Hyperthermia and Intestinal Permeability: A Systematic Review. Sports Med 2018; 47:1389-1403. [PMID: 27943148 DOI: 10.1007/s40279-016-0654-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Prolonged and strenuous physical exercise increases intestinal permeability, allowing luminal endotoxins to translocate through the intestinal barrier and reach the bloodstream. When recognized by the immune system, these endotoxins trigger a systemic inflammatory response that may affect physical performance and, in severe cases, induce heat stroke. However, it remains to be elucidated whether there is a relationship between the magnitude of exercise-induced hyperthermia and changes in intestinal permeability. OBJECTIVE In this systematic review, we evaluated whether an exercise-induced increase in core body temperature (T Core) is associated with an exercise-induced increase in intestinal permeability. METHODS The present systematic review screened the MEDLINE/PubMed and Web of Science databases in September 2016, without any date restrictions. Sixteen studies that were performed in healthy participants, presented original data, and measured both the exercise-induced changes in T Core and intestinal permeability were selected. These studies assessed intestinal permeability through the measurement of sugar levels in the urine and measurement of intestinal fatty acid binding protein or lipopolysaccharide levels in the blood. RESULTS Exercise increased both T Core and intestinal permeability in most of the 16 studies. In addition, a positive and strong correlation was observed between the two parameters (r = 0.793; p < 0.001), and a T Core exceeding 39 °C was always associated with augmented permeability. CONCLUSION The magnitude of exercise-induced hyperthermia is directly associated with the increase in intestinal permeability.
Collapse
Affiliation(s)
- Washington Pires
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 6627 Avenida Antônio Carlos, Belo Horizonte, Minas Gerais, 31270-901, Brazil.,Department of Physical Education, Institute of Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
| | - Christiano E Veneroso
- Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samuel P Wanner
- Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diogo A S Pacheco
- Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gisele C Vaz
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 6627 Avenida Antônio Carlos, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Fabiano T Amorim
- Department of Physical Education, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil.,Department of Health, Exercise Science and Sport, University of New Mexico, Albuquerque, New Mexico, USA
| | - Cajsa Tonoli
- Department of Human Physiology and Sports Medicine, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Danusa D Soares
- Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cândido C Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 6627 Avenida Antônio Carlos, Belo Horizonte, Minas Gerais, 31270-901, Brazil. .,Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
42
|
Nadatani Y, Watanabe T, Shimada S, Otani K, Tanigawa T, Fujiwara Y. Microbiome and intestinal ischemia/reperfusion injury. J Clin Biochem Nutr 2018; 63:26-32. [PMID: 30087540 PMCID: PMC6064812 DOI: 10.3164/jcbn.17-137] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
Intestinal ischemia/reperfusion injury is a severe disease associated with a high mortality. The mechanisms that cause ischemia/reperfusion injury are complex and many factors are involved in the injury formation process; however, the only available treatment is surgical intervention. Recent studies demonstrated that the intestinal microbiome plays a key role in intestinal ischemia/reperfusion injury and there are many factors associated with intestinal bacteria during the formation of the intestinal ischemia/reperfusion injury. Among the Toll-like receptors (TLR), TLR2, TLR4, and their adaptor protein, myeloid differentiation primary-response 88 (MyD88), have been reported to be involved in intestinal ischemia/reperfusion injury. Oxidative stress and nitric oxide are also associated with intestinal bacteria during the formation of the intestinal ischemia/reperfusion injury. This review focuses on our current understanding of the impact of the microbiome, including the roles of the TLRs, oxidative stress, and nitric oxide, on intestinal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yuji Nadatani
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka 545-8585, Japan
| | - Toshio Watanabe
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka 545-8585, Japan
| | - Sunao Shimada
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka 545-8585, Japan
| | - Koji Otani
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka 545-8585, Japan
| | - Tetsuya Tanigawa
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka 545-8585, Japan
| | - Yasuhiro Fujiwara
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka 545-8585, Japan
| |
Collapse
|
43
|
Çimen O, Çimen FK, Gülaboğlu M, Bilgin AÖ, Çekiç AB, Eken H, Süleyman Z, Bilgin Y, Altuner D. The effect of metyrosine on oxidative gastric damage induced by ischemia/reperfusion in rats. Biochemical and histopathological evaluation. Acta Cir Bras 2018; 33:259-267. [DOI: 10.1590/s0102-865020180030000008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/06/2018] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | | | - Hüseyin Eken
- Mengücek Gazi Training and Research Hospital, Turkey
| | | | - Yasin Bilgin
- Mengücek Gazi Training and Research Hospital, Turkey
| | | |
Collapse
|
44
|
The protective effect of orally administered redox nanoparticle on intestinal ischemia-reperfusion injury in mice. Biochem Biophys Res Commun 2018; 495:2044-2049. [PMID: 29198710 DOI: 10.1016/j.bbrc.2017.11.204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022]
|
45
|
Yanaka A. Daily intake of broccoli sprouts normalizes bowel habits in human healthy subjects. J Clin Biochem Nutr 2017; 62:75-82. [PMID: 29371757 PMCID: PMC5773831 DOI: 10.3164/jcbn.17-42] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic oxidative stress impairs regular defecation. Sulforaphane (SFN) enhances anti-oxidant systems, ameliorating oxidative injury. SFN inhibits overgrowth of anaerobic microflora and protects small intestine from oxidative injury. We assessed whether daily intake of SFN-rich broccoli sprouts (BS) improves defecation in humans. Forty-eight subjects, with a constipation scoring system (CSS) >2 points, were assigned to either the BS group (n = 24) or the alfalfa sprouts (AS) group (n = 24), and were requested to eat 20 g daily of raw BS or AS, respectively, for 4 weeks. BS contains 4.4 mg/g sulforaphane glucosinolates (SGS), while AS contains no SGS. CSS-based questionnaires were performed to evaluate bowel habit. Stool samples were collected to evaluate intestinal microflora using a terminal restriction fragment length polymorphism flora analysis. Intervention with BS, but not AS, caused a significant decrease in the duration of attempted defecation and the total CSS score. Intervention with BS decreased the percentage of Bifidobacterium in the stool. These results suggest that daily intake of BS improves bowel habit in human subjects. Since BS treatment enhance antioxidant enzyme activities, these effects of BS appear to relate with the SFN-mediated modulation of the intestinal motility during exposure to oxidative stress. (UMIN Clinical Trial Registration Number: UMIN-000021207).
Collapse
Affiliation(s)
- Akinori Yanaka
- Hitachi Medical Education and Research Center, University of Tsukuba Hospital, Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
46
|
Turan I, Ozacmak HS, Ozacmak VH, Barut F, Araslı M. Agmatine attenuates intestinal ischemia and reperfusion injury by reducing oxidative stress and inflammatory reaction in rats. Life Sci 2017; 189:23-28. [PMID: 28893640 DOI: 10.1016/j.lfs.2017.08.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Inci Turan
- Department of Physiology, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey.
| | - Hale Sayan Ozacmak
- Department of Physiology, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| | - V Haktan Ozacmak
- Department of Physiology, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| | - Figen Barut
- Department of Pathology, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| | - Mehmet Araslı
- Department of Immunology, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
47
|
Kim SJ, Jeon SH, Kwon EB, Jeong HC, Choi SW, Bae WJ, Cho HJ, Ha US, Hong SH, Lee JY, Hwang SY, Kim SW. Improvement of Persistent Detrusor Overactivity through Treatment with a Phytotherapeutic Agent (WSY-1075) after Relief of Bladder Outlet Obstruction. World J Mens Health 2017; 36:153-160. [PMID: 29076300 PMCID: PMC5924957 DOI: 10.5534/wjmh.17010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/07/2017] [Accepted: 08/18/2017] [Indexed: 01/02/2023] Open
Abstract
Purpose Many patients with benign prostatic hyperplasia need treatment for remaining storage symptoms after surgery. Therefore, we evaluated the effect of the phytotherapeutic agent WSY-1075 on persistent detrusor overactivity (DO) after the relief of bladder outlet obstruction (BOO). Materials and Methods Rats were assigned to 3 groups: control (n=6), persistent DO (n=6), and persistent DO treated with the phytotherapeutic agent WSY-1075 (n=6). Persistent DO after relief of partial BOO was generated in the rat model, and 6 of the rats with this condition were orally administered WSY-1075. After 4 weeks of administration, cystometry was performed. Additionally, 8-hydroxy-2-deoxyguanosine and superoxide dismutase were measured to evaluate oxidative stress in the bladder. Pro-inflammatory cytokines, such as interleukin-8 and tumor necrosis factor-α, were analyzed, as were the M2 and M3 muscarinic receptors of the bladder. Results Significantly increased contraction pressure and a decreased contraction interval were observed in the persistent DO group after relief of BOO. Moreover, oxidative stress, pro-inflammatory cytokines, and M3 muscarinic receptors were significantly increased. After treatment with WSY-1075, significantly reduced DO was observed by cystometry in comparison with the persistent DO group. Additionally, significantly decreased levels of oxidative stress, pro-inflammatory cytokines, and M3 muscarinic receptors in the bladder were observed after treatment with WSY-1075. Conclusions Treatment with WSY-1075 improved persistent DO after the relief of BOO mediated by antioxidative and anti-inflammatory effects. Further studies are necessary to identify the exact mechanism of the treatment effect of WSY-1075.
Collapse
Affiliation(s)
- Su Jin Kim
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Hwan Jeon
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun Bi Kwon
- Department of Urology, Institute of Biomedical Industry, The Catholic University of Korea, Seoul, Korea.,Korea Biomedical Science Institute, Seoul, Korea
| | - Hyun Cheol Jeong
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sae Woong Choi
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woong Jin Bae
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Integrative Medicine Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyuk Jin Cho
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - U Syn Ha
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Hoo Hong
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Youl Lee
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Sae Woong Kim
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Integrative Medicine Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
48
|
Hypertonic saline solution for modifying tissue ischemia/reperfusion injury: Porcine aortic occlusion model☆. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2017. [DOI: 10.1097/01819236-201710000-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
49
|
Solución salina hipertónica para modificar la lesión tisular por isquemia/reperfusión: modelo porcino de oclusión de aorta. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2017. [DOI: 10.1016/j.rca.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
50
|
Escobar B, Guevara-Cruz OA, Navarro-Vargas JR, Giraldo-Fajardo AF, Dumar-Rodriguez JA, Borrero-Cortés C. Hypertonic saline solution for modifying tissue ischemia/reperfusion injury: Porcine aortic occlusion model. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2017. [DOI: 10.1016/j.rcae.2017.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|