1
|
Yang J, Zhao S, Lin B. Effect of commercial fibrolytic enzymes application to normal- and slightly lower energy diets on lactational performance, digestibility and plasma nutrients in high-producing dairy cows. Front Vet Sci 2024; 11:1302034. [PMID: 38764855 PMCID: PMC11099995 DOI: 10.3389/fvets.2024.1302034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/28/2024] [Indexed: 05/21/2024] Open
Abstract
The inclusion of fibrolytic enzymes in the diet is believed to have positive effects on animal production. Hence, the objective of this study was to investigate the impact of supplementing diets with a commercial fibrolytic enzyme preparation (Vistamax; mixture of xylanase and cellulase) derived from Trichoderma reesei on lactational performance, digestibility, and plasma nutrient levels in high-producing dairy cows. Two dietary energy levels were considered: a normal energy diet (metabolizable energy = 2.68 Mcal/kg) and a slightly lower energy diet (metabolizable energy = 2.55 Mcal/kg). A total of 120 lactating Holstein cows (parity = 2; Days in Milk = 113 ± 23) were randomly assigned to four treatment groups using a 2 * 2 factorial arrangement. The dietary treatments consisted of: (1) normal energy diet without enzyme supplementation (NL); (2) normal energy diet with enzyme supplementation (NLE); (3) slightly lower energy diet without enzyme supplementation (SL); and (4) slightly lower energy diet with enzyme supplementation (SLE). The amount of enzyme added to the diets was determined based on previous in vitro studies and supplier recommendations. The enzyme and premix were mixed prior to the preparation of the total mixed ration, and the trial lasted for a duration of 42 days. The results indicated that the application of the fibrolytic enzyme did not have a significant effect on dry matter intake (DMI), but it did enhance the digestibility of dry matter (DM), neutral detergent fiber (NDF), potentially digestible NDF (pdNDF), organic matter (OM), milk production, milk urea nitrogen (MUN), and blood urea nitrogen (BUN). On the other hand, the slightly lower energy diet resulted in a decrease in DMI, milk production, milk protein yield, plasma free amino acids (FAA), and an increase in plasma B-hydroxybutyrate (BHBA). In conclusion, the inclusion of the fibrolytic enzyme in the diets of dairy cows led to improvements in the digestibility of DM, NDF, pdNDF, OM, milk production, and feed efficiency. Furthermore, the application of the enzyme to the slightly lower energy diet resulted in milk production levels comparable to those observed in cows fed the untreated normal energy diet.
Collapse
Affiliation(s)
- Jiahua Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shengguo Zhao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Lin
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Shi H, Guo P, Zhou J, Wang Z, He M, Shi L, Huang X, Guo P, Guo Z, Zhang Y, Hou F. Exogenous fibrolytic enzymes promoted energy and nitrogen utilization and decreased CH4 emission per unit dry matter intake of tan sheep grazed a typical steppe by enhancing nutrient digestibility on China loess plateau. J Anim Sci 2023; 101:skad112. [PMID: 37036172 PMCID: PMC10132812 DOI: 10.1093/jas/skad112] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/08/2023] [Indexed: 04/11/2023] Open
Abstract
Exogenous fibrolytic enzyme (EFE) products in ruminant nutrition may be an important alternative to meet the increased demands for animal products in the future with reduced environmental impacts. This study aimed to evaluate the dose-response of EFE supplementation on the nutrient digestibility, nitrogen and energy utilization, and methane (CH4) emissions of Tan sheep grazed in summer and winter. A total of 20 Tan wether sheep with an initial body weight of 23.17 ± 0.24 kg were used in a randomized complete block design and categorized into two groups. Animals fed orally with 1 g of EFE (10,000 U/g) mixed with 30 mL of water using a drencher constituted the EFE group. For experimental accuracy, the control (CON) group was orally administered with 30 mL of normal saline daily before grazing. The following results were obtained: EFE in the diet increased dry matter intake (DMI) (P < 0.05), average daily gain (ADG) (P < 0.05), and digestibility (P < 0.05) compared with CON in summer and winter. DMI increased but ADG and digestibility decreased in winter compared with those in summer. Sheep fed with the EFE diet increased the concentrations of rumen ammonia nitrogen (P < 0.05) and total volatile fatty acids (P > 0.05), but reduced pH (P > 0.05), compared with CON in summer and winter. EFE increased nitrogen (N) intake, digestible N, retained N, and retained N/digestible N (P < 0.05) but reduced fecal N/N intake, urinary N/N intake, and excretion N/N intake in summer and winter (P < 0.05), compared with CON. Retained N/N intake was reduced and excretion N/N intake increased in winter relative to those in summer. In winter, gross energy (GE), manure E/GE, CH4 emissions, CH4/DMI, and CH4/GE increased but digestion energy and metabolic energy decreased compared with those in summer. Sheep fed with the EFE diet had a greater GE intake than those fed with the CON diet (P < 0.05) but had lesser CH4/DMI and CH4E/GE (P < 0.05) than those fed with the CON diet in both summer and winter. In conclusion, EFE supplementation increased DMI, apparent digestibility, and N deposition rate. These effects were beneficial for animal production. The CH4 emission per unit DMI of grazing Tan sheep was lesser and conducive for augmenting the environmental benefits.
Collapse
Affiliation(s)
- Hairen Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Pei Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jieyan Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhen Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Meiyue He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Liyuan Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaojuan Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Penghui Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhaoxia Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuwen Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Zubairova L, Tagirov H, Mironova I, Iskhakov R, Vagapov I. Biotechnology techniques in animal nutrition for improving quality indicators of beef and dairy products. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Pech-Cervantes AA, Ogunade IM, Jiang Y, Estrada-Reyes ZM, Arriola KG, Amaro FX, Staples CR, Vyas D, Adesogan AT. Effects of a xylanase-rich enzyme on intake, milk production, and digestibility of dairy cows fed a diet containing a high proportion of bermudagrass silage. J Dairy Sci 2021; 104:7671-7681. [PMID: 33814135 DOI: 10.3168/jds.2020-19340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/16/2020] [Indexed: 11/19/2022]
Abstract
We previously reported that milk production in dairy cows was increased by adding a specific xylanase-rich exogenous fibrolytic enzyme (XYL) to a total mixed ration (TMR) containing 10% bermudagrass silage (BMD). Two follow-up experiments were conducted to examine whether adding XYL would increase the performance of dairy cows consuming a TMR containing a higher (20%) proportion of BMD (Experiment 1) and to evaluate the effects of XYL on in vitro fermentation and degradability of the corn silage, BMD, and TMR (Experiment 2). In Experiment 1, 40 lactating Holstein cows in early lactation (16 multiparous and 24 primiparous; 21 ± 3 d in milk; 589 ± 73 kg of body weight) were blocked by milk yield and parity and randomly assigned to the Control and XYL treatments. The TMR contained 20% BMD, 25% corn silage, 8% wet brewer's grain, and 47% concentrate mixture in the dry matter (DM). Cows were fed the XYL-treated or untreated experimental TMR twice per day for 10 wk after a 9-d covariate period. In Experiment 2, ruminal fluid was collected from 3 cannulated lactating Holstein cows fed a diet containing 20% bermudagrass haylage, 25% corn silage and 55% concentrate. In Experiment 1, compared with Control, application of XYL did not affect DM intake (24.0 vs. 23.7 kg/d), milk yield (35.1 vs. 36.2 kg/d), fat-corrected milk yield (36.1 vs. 36.9 kg/d), or yields of milk fat (1.29 vs. 1.31 kg/d) or protein (1.07 vs. 1.08 kg/d). However, intake of neutral detergent fiber (4.67 vs. 4.41 kg/d) tended to increase with XYL; consequently, milk protein concentration was increased by XYL (3.02 vs. 2.95%). Feed efficiency tended to be lower in cows fed XYL (1.57 vs. 1.52 kg of fat-corrected milk/kg of DM intake) compared with Control. In Experiment 2, XYL tended to increase the rate of gas production in the TMR, the molar proportion of propionate for corn silage, and that of valerate for the TMR. In addition, XYL increased in vitro DM, neutral detergent fiber, and acid detergent fiber degradability of BMD and corn silage. Application of XYL to a diet with a relatively high proportion of BMD tended to increase digestible neutral detergent fiber intake, increased milk protein concentration, and in vitro degradability of DM, neutral detergent fiber, and acid detergent fiber. However, XYL did not affect milk production and tended to decrease feed efficiency in early lactation cows.
Collapse
Affiliation(s)
| | - I M Ogunade
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505
| | - Y Jiang
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - Z M Estrada-Reyes
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - K G Arriola
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - F X Amaro
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - C R Staples
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - D Vyas
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - A T Adesogan
- Department of Animal Sciences, University of Florida, Gainesville 32611.
| |
Collapse
|
5
|
An expansin-like protein expands forage cell walls and synergistically increases hydrolysis, digestibility and fermentation of livestock feeds by fibrolytic enzymes. PLoS One 2019; 14:e0224381. [PMID: 31689330 PMCID: PMC6830940 DOI: 10.1371/journal.pone.0224381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/12/2019] [Indexed: 11/19/2022] Open
Abstract
Bacterial expansin-like proteins have synergistically increased cellulose hydrolysis by cellulolytic enzymes during the initial stages of biofuel production, but they have not been tested on livestock feeds. The objectives of this study were to: isolate and express an expansin-like protein (BsEXLX1), to verify its disruptive activity (expansion) on cotton fibers by immunodetection (Experiment 1), and to determine the effect of dose, pH and temperature for BsEXLX1 and cellulase to synergistically hydrolyze filter paper (FP) and carboxymethyl cellulose (CMC) under laboratory (Experiment 2) and simulated ruminal (Experiment 3) conditions. In addition, we determined the ability of BsEXLX1 to synergistically increase hydrolysis of corn and bermudagrass silages by an exogenous fibrolytic enzyme (EFE) (Experiment 4) and how different doses of BsEXLX1 and EFE affect the gas production (GP), in vitro digestibility and fermentation of a diet for dairy cows (Experiment 5). In Experiment 1, immunofluorescence-based examination of cotton microfiber treated without or with recombinant expansin-like protein expressed from Bacillus subtilis (BsEXLX1) increased the surface area by > 100% compared to the untreated control. In Experiment 2, adding BsEXLX1 (100 μg/g FP) to cellulase (0.0148 FPU) increased release of reducing sugars compared to cellulase alone by more than 40% (P < 0.01) at optimal pH (4.0) and temperature (50°C) after 24 h. In Experiment 3 and 4, adding BsEXLX1 to cellulase or EFE, synergistically increased release of reducing sugars from FP, corn and bermudagrass silages under simulated ruminal conditions (pH 6.0, 39°C). In Experiment 5, increasing the concentration of BsEXLX1 linearly increased (P < 0.01) GP from fermentation of a diet for dairy cows by up to 17.8%. Synergistic effects between BsEXLX1 and EFE increased in vitro NDF digestibility of the diet by 23.3% compared to the control. In vitro digestibility of hemicellulose and butyrate concentration were linearly increased by BsEXLX1 compared to the control. This study demonstrated that BsEXLX1 can improve the efficacy of cellulase and EFE at hydrolyzing pure substrates and dairy cow feeds, respectively.
Collapse
|
6
|
SHAKYA JYOTI, BALHARA AK, DAHIYA SS, LAILER PC, SINGH INDERJEET. Improved dairy production through enzyme supplementation. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i10.94995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rumen ecosystem has the ability to transform low grade nutrients to high quality products owing to the numerous micro-flora colonies it harbours which produce different types of degrading enzymes. It has been assumed that normal rumen flora is able to digest only a small portion of the cellulosic biomass enteric rumen. This provides numerous opportunities for improving digestion via enhancing digestibility through degradation pathways in rumen. The modern animal nutrition science has utilized this knowledge to commercially harness enzymes for improving nutrient availability for production enhancement. Broadly categorized as fibrolytic, proteolytic and amylolytic, these enzymes act synergistically with the naturally available enzymes in rumen. Enzyme supplementations improve the digestibility of fibre and increase nutrient absorption and energy availability for production activities across physiological status of the animal. This review summaries response of large lactating ruminants to the external enzyme (in vivo) supplementation in terms of actual milk production, milk composition, body weights, dry matter intake and digestibility of nutrients, as well as to assess the economic benefit in terms of additional expenses incurred and benefit derived with increase in milk production.
Collapse
|
7
|
Pech-Cervantes AA, Muhammad I, Ogunade IM, Jiang Y, Kim DH, Gonzalez CF, Hackmann TJ, Oliveira AS, Vyas D, Adesogan AT. Exogenous fibrolytic enzymes and recombinant bacterial expansins synergistically improve hydrolysis and in vitro digestibility of bermudagrass haylage. J Dairy Sci 2019; 102:8059-8073. [PMID: 31326164 DOI: 10.3168/jds.2019-16339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/07/2019] [Indexed: 11/19/2022]
Abstract
Four experiments were conducted to examine the effects of a recombinant bacterial expansin-like protein (BsEXLX1) from Bacillus subtilis and a commercial exogenous fibrolytic enzyme (EFE) preparation for ruminants on hydrolysis of pure substrates (cellulose and xylan) and in vitro digestibility of bermudagrass haylage (BMH). Recombinant Escherichia coli BL21 strain was used to express BsEXLX1; the protein was purified using an affinity column. In experiment 1, carboxymethylcellulose, Whatman #1 filter paper (General Electric, Boston, MA) and oat-spelt xylan substrates were subjected to 4 treatments (1) sodium citrate buffer (control), (2) BsEXLX1 (162 µg/g of substrate), (3) EFE (2.3 mg/g of substrate), and (4) EFE + BsELX1 in 3 independent runs. Samples were incubated at optimal conditions for both additives (pH 5 and 50°C) or at ruminal (pH 6 and 39°C) or ambient (pH 6 and 25°C) conditions for 24 h and sugar release was measured. In experiment 2, digestibility in vitro of BMH was examined after treatment with the following: (1) control (buffer only), (2) BsEXLX1 (162 µg/g of dry matter), (3) EFE (2.2 mg/g of dry matter), and (4) EFE + BsEXLX1 in 3 independent runs at 39°C for 24 h. Experiment 3 examined effects of EFE and BsEXLX1 on simulated preingestive hydrolysis and profile of released sugars from BMH after samples were suspended in deionized water with sodium azide at 25°C for 24 h in 2 independent runs. In experiment 4, the sequence of the BsEXLX1 purified protein was compared with 447 ruminal bacterial genomes to identify similar proteins from the rumen. In experiment 1, compared with EFE alone, EFE and BsEXLX1 synergistically increased sugar release from carboxymethylcellulose and Whatman #1 filter paper under all simulated conditions; however, hydrolysis of xylan was not improved. In experiment 2, compared with EFE alone, treatment with EFE and BsEXLX1 increased neutral detergent fiber and acid detergent fiber digestibility of bermudagrass haylage (by 5.5 and 15%, respectively) and total volatile fatty acid concentrations, and decreased acetate-propionate ratio. In experiment 3, compared with EFE alone. The EFE and BsEXLX1 synergistically reduced concentrations of neutral detergent fiber and acid detergent fiber and increased release of sugars by 9.3%, particularly cellobiose (72.5%). In experiment 4, a similar sequence to that of BsEXLX1 was identified in Bacillus licheniformis, and similar hypothetical protein sequences were identified in Ruminococcus flavefaciens strains along with different protein structures in E. xylanophilum and Lachnospiraceae. This study showed that an expansin-like protein synergistically increased the hydrolysis of pure cellulose substrates and the hydrolysis and digestibility in vitro of BMH.
Collapse
Affiliation(s)
| | - I Muhammad
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32603
| | - I M Ogunade
- Department of Animal Sciences, University of Florida, Gainesville 32611; Division of Food and Animal Science, Kentucky State University, Frankfort 40601
| | - Y Jiang
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - D H Kim
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - C F Gonzalez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32603
| | - T J Hackmann
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - A S Oliveira
- Institute of Agriculture and Environmental Sciences, Federal University of Mato Grosso, Campus Sinop, Sinop, MT, Brazil, 78890
| | - D Vyas
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - A T Adesogan
- Department of Animal Sciences, University of Florida, Gainesville 32611.
| |
Collapse
|
8
|
da Silva JRC, de Carvalho FFR, de Andrade Fereira M, de Souza EJO, Maciel MIS, Barreto LMG, Lopes LA, Cordeiro EHA, Véras ASC. Carcass characteristics and meat quality of sheep fed alfalfa hay to replace Bermuda grass hay. Trop Anim Health Prod 2019; 51:2455-2463. [PMID: 31197721 DOI: 10.1007/s11250-019-01962-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 05/30/2019] [Indexed: 11/26/2022]
Abstract
The objective of this study was to evaluate carcass characteristics, meat quality, and organ and viscera weight of forty male sheep, not castrated, initially weighed 26.5 ± 1.85 kg, and confined for 100 days (44 days for the adjustment period and 56 days of the experimental period). The treatments were four levels of replacement of Bermuda grass hay with alfalfa hay (0, 200, 400, and 600 g/kg, based on dry matter). The design was randomized blocks (one lighter group and other heavier group) with 10 animals in each treatment. There were no effects on weight gain or carcass parameters. However, an increase was observed on dry matter intake (g/day), crude protein intake (g/day), empty body weight (kg), and subcutaneous fat thickness (mm). There was also an increase in total organ weights in kg and g/kg. The tissue composition of the leg had a quadratic effect on the bone tissue weight (g) and linear effect on adipose tissue relative (g/kg) and muscle-fat relations. There was also a quadratic effect on bone tissues (g/kg) and muscle-bone relations. Likewise, there was a quadratic effect on the qualitative characteristics of meat (measure of luminosity), with the replacement of Bermuda grass hay with alfalfa hay in sheep feed. The replacement of Bermuda grass hay with alfalfa did not change carcass characteristics and meat quality.
Collapse
Affiliation(s)
- José Ricardo Coelho da Silva
- Department of Animal Science, Federal Rural University of Pernambuco, Dom Manuel de Medeiros Street, s/n, Recife, Pernambuco, 52171-900, Brazil
| | | | - Marcelo de Andrade Fereira
- Department of Animal Science, Federal Rural University of Pernambuco, Dom Manuel de Medeiros Street, s/n, Recife, Pernambuco, 52171-900, Brazil
| | - Evaristo Jorge Oliveira de Souza
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira Avenue, s/n, Serra Talhada, Pernambuco, 56909-535, Brazil
| | - Maria Inês Sucupira Maciel
- Department of Domestic Science, Federal Rural University of Pernambuco, Dom Manuel de Medeiros Street, s/n, Recife, Pernambuco, 52171-900, Brazil
| | - Lígia Maria Gomes Barreto
- Department of Animal Science, Federal University of Sergipe, Engineer Jorge Neto Highway, Silos, Nossa Senhora da Glória, SE, 49680-000, Brazil
| | - Levi Auto Lopes
- Department of Animal Science, Federal Rural University of Pernambuco, Dom Manuel de Medeiros Street, s/n, Recife, Pernambuco, 52171-900, Brazil
| | - Eduardo Henrique Araújo Cordeiro
- Department of Animal Science, Federal Rural University of Pernambuco, Dom Manuel de Medeiros Street, s/n, Recife, Pernambuco, 52171-900, Brazil
| | - Antonia Sherlânea Chaves Véras
- Department of Animal Science, Federal Rural University of Pernambuco, Dom Manuel de Medeiros Street, s/n, Recife, Pernambuco, 52171-900, Brazil.
| |
Collapse
|
9
|
Refat B, Christensen DA, McKinnon JJ, Yang W, Beattie AD, McAllister TA, Eun JS, Abdel-Rahman GA, Yu P. Effect of fibrolytic enzymes on lactational performance, feeding behavior, and digestibility in high-producing dairy cows fed a barley silage–based diet. J Dairy Sci 2018; 101:7971-7979. [DOI: 10.3168/jds.2017-14203] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/05/2018] [Indexed: 12/14/2022]
|
10
|
McGuffey RK. A 100-Year Review: Metabolic modifiers in dairy cattle nutrition. J Dairy Sci 2018; 100:10113-10142. [PMID: 29153158 DOI: 10.3168/jds.2017-12987] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/26/2017] [Indexed: 12/31/2022]
Abstract
The first issue of the Journal of Dairy Science in 1917 opened with the text of the speech by Raymond A. Pearson, president of the Iowa State College of Agriculture, at the dedication of the new dairy building at the University of Nebraska (J. Dairy Sci. 1:4-18, 1917). Fittingly, this was the birth of a new research facility and more importantly, the beginning of a new journal devoted to the sciences of milk production and manufacture of products from milk. Metabolic modifiers of dairy cow metabolism enhance, change, or interfere with normal metabolic processes in the ruminant digestive tract or alter postabsorption partitioning of nutrients among body tissues. Papers on metabolic modifiers became more frequent in the journal around 1950. Dairy farming changed radically between 1955 and 1965. Changes in housing and feeding moved more cows outside, and cows and heifers in all stages of lactation, including the dry period, were fed as a single group. Rations became wetter with the shift to corn silage as the major forage in many rations. Liberal grain feeding met the requirements of high-producing cows and increased production per cow but introduced new challenges; for example, managing and feeding cows as a group. These changes led to the introduction of new strategies that identified and expanded the use of metabolic modifiers. Research was directed at characterizing the new problems for the dairy cow created by group feeding. Metabolic modifiers went beyond feeding the cow and included environmental and housing factors and additives to reduce the incidence and severity of many new conditions and pathologies. New collaborations began among dairy cattle specialties that broadened our understanding of the workings of the cow. The Journal of Dairy Science then and now plays an enormously important role in dissemination of the findings of dairy scientists worldwide that address existing and new technologies.
Collapse
Affiliation(s)
- R K McGuffey
- McGuffey Dairy Consulting, Indianapolis, IN 46202.
| |
Collapse
|
11
|
Arriola KG, Oliveira AS, Ma ZX, Lean IJ, Giurcanu MC, Adesogan AT. A meta-analysis on the effect of dietary application of exogenous fibrolytic enzymes on the performance of dairy cows. J Dairy Sci 2017; 100:4513-4527. [DOI: 10.3168/jds.2016-12103] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/08/2016] [Indexed: 11/19/2022]
|
12
|
Daniel J, Queiroz O, Arriola K, Staples C, Romero J, Shin J, Paschoaloto J, Nussio L, Adesogan A. Effects of maturity at ensiling of bermudagrass and fibrolytic enzyme application on the performance of early-lactation dairy cows. J Dairy Sci 2016; 99:9716-9723. [DOI: 10.3168/jds.2016-11238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/26/2016] [Indexed: 11/19/2022]
|
13
|
Romero J, Macias E, Ma Z, Martins R, Staples C, Beauchemin K, Adesogan A. Improving the performance of dairy cattle with a xylanase-rich exogenous enzyme preparation. J Dairy Sci 2016; 99:3486-3496. [DOI: 10.3168/jds.2015-10082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/30/2015] [Indexed: 11/19/2022]
|
14
|
Ji C, Zhang X, Yu P. Association of protein structure, protein and carbohydrate subfractions with bioenergy profiles and biodegradation functions in modeled forage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 157:265-270. [PMID: 26702497 DOI: 10.1016/j.saa.2015.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
The objectives of this study were to detect unique aspects and association of forage protein inherent structure, biological compounds, protein and carbohydrate subfractions, bioenergy profiles, and biodegradation features. In this study, common available alfalfa hay from two different sourced-origins (FSO vs. CSO) was used as a modeled forage for inherent structure profile, bioenergy, biodegradation and their association between their structure and bio-functions. The molecular spectral profiles were determined using non-invasive molecular spectroscopy. The parameters included: protein structure amide I group, amide II group and their ratios; protein subfractions (PA1, PA2, PB1, PB2, PC); carbohydrate fractions (CA1, CA2, CA3, CA4, CB1, CB2, CC); biodegradable and undegradable fractions of protein (RDPA2, RDPB1, RDPB2, RDP; RUPA2 RUPB1, RUPB2, RUPC, RUP); biodegradable and undegradable fractions of carbohydrate (RDCA4, RDCB1, RDCB2, RDCB3, RDCHO; RUCA4, RUCB1; RUCB2; RUCB3 RUCC, RUCHO) and bioenergy profiles (tdNDF, tdFA, tdCP, tdNFC, TDN1×, DE3×, ME3×, NEL3×; NEm, NEg). The results show differences in protein and carbohydrate (CHO) subfractions in the moderately degradable true protein fraction (PB1: 502 vs. 420 g/kg CP, P=0.09), slowly degraded true protein fraction (PB2: 45 vs. 96 g/kg CP, P=0.02), moderately degradable CHO fraction (CB2: 283 vs. 223 g/kg CHO, P=0.06) and slowly degraded CHO fraction (CB3: 369 vs. 408 g/kg CHO) between the two sourced origins. As to biodegradable (RD) fractions of protein and CHO in rumen, there were differences in RD of PB1 (417 vs. 349 g/kg CP, P=0.09), RD of PB2 (29 vs. 62 g/kg CP, P=0.02), RD of CB2 (251 vs. 198 g/kg DM, P=0.06), RD of CB3 (236 vs. 261 g/kg CHO, P=0.08). As to bioenergy profile, there were differences in total digestible nutrient (TDN: 551 vs. 537 g/kg DM, P=0.06), and metabolic bioenergy (P=0.095). As to protein molecular structure, there were differences in protein structure 1st and 2nd amide groups (P<0.10), but no difference in the 1st to 2nd amide group intensity ratios (P>0.05). These results indicate that the sourced-origins and the internal molecular structure profiles affected biological functions, nutrient bioavailability and biodegradation.
Collapse
Affiliation(s)
- Cuiying Ji
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Xuewei Zhang
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China.
| | - Peiqiang Yu
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
15
|
Ji C, Zhang X, Yu P. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 156:151-154. [PMID: 26688206 DOI: 10.1016/j.saa.2015.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/30/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm(-1) and 1545 cm(-1), respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties.
Collapse
Affiliation(s)
- Cuiying Ji
- Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, Canada, S7N 5A8
| | - Xuewei Zhang
- Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China.
| | - Peiqiang Yu
- Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, Canada, S7N 5A8.
| |
Collapse
|
16
|
Effect of exogenous fibrolytic enzymes on performance and blood profile in early and mid-lactation Holstein cows. ACTA ACUST UNITED AC 2015; 1:229-238. [PMID: 29767111 PMCID: PMC5945943 DOI: 10.1016/j.aninu.2015.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 11/24/2022]
Abstract
The supplementation of exogenous fibrolytic enzymes (EFE) to dairy cows diets could be a strategy to improve fiber degradation in the rumen which is especially important for the early lactating cows characterized by a high milk energy output and an insufficient energy intake. The objective of this study was to examine the effects of a fibrolytic enzyme product (Roxazyme G2 Liquid, 3.8 and 3.9 mL/kg total mixed ration [TMR] DM) supplemented to a TMR on production performance and blood parameters of dairy cows during early (trial 1) and mid-lactation (trail 2). In addition, rumination activity was measured in trial 2. The nutrient digestibility of the experimental TMR was obtained by using wethers. In the digestibility trial, EFE was supplemented at a rate of 4.4 mL/kg Roxazyme G2 Liquid TMR-DM. The TMR contained 60% forage and 40% concentrate (DM basis). Twenty eight 50 ± 16 days in milk (DIM) and twenty six 136 ± 26 DIM Holstein cows were used in two 8-wk completely randomized trails, stratified by parity and milk yield level. One milliliter of the enzyme product contained primarily cellulase and xylanase activities (8,000 units endo-1,4-ß glucanase, 18,000 units endo-1,3(4)-ß glucanase and 26,000 units 1,4-ß xylanase). No differences in digestibility of DM, OM, CP, NDF and ADF were observed (P > 0.05) between the control and the EFE supplemented TMR. Addition of EFE to the TMR fed to early (trial 1) and mid-lactation cows (trial 2) did not affect daily dry matter intake (DMI), milk yield, 4% fat-corrected milk, energy-corrected milk (ECM), concentration of milk fat, protein, fat-protein-quotients, somatic cell score, energy balance, and gross feed efficiency of early and mid-lactation cows (P > 0.05). Mid-lactation cows (trial 2) fed with TMR enzyme showed a tendency of a slightly higher ECM yield (P = 0.09). The tested blood parameters were not affected by treatment in trials 1 and 2 (P > 0.05). Exogenous fibrolytic enzymes supplementation did not alter daily time spent ruminating in trial 2 (P = 0.44). In conclusion, under the conditions of this study, no positive effects of enzyme supplementation on dairy performance and health status of dairy cows during early and mid-lactation were observed.
Collapse
|
17
|
Romero J, Zarate M, Arriola K, Gonzalez C, Silva-Sanchez C, Staples C, Adesogan A. Screening exogenous fibrolytic enzyme preparations for improved in vitro digestibility of bermudagrass haylage. J Dairy Sci 2015; 98:2555-67. [DOI: 10.3168/jds.2014-8059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 12/27/2014] [Indexed: 01/22/2023]
|
18
|
Meale SJ, Beauchemin KA, Hristov AN, Chaves AV, McAllister TA. Board-invited review: Opportunities and challenges in using exogenous enzymes to improve ruminant production. J Anim Sci 2013; 92:427-42. [PMID: 24363327 DOI: 10.2527/jas.2013-6869] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The ability of ruminants to convert plant biomass unsuitable for human consumption into meat and milk is of great societal and agricultural importance. However, the efficiency of this process is largely dependent on the digestibility of plant cell walls. Supplementing ruminant diets with exogenous enzymes has the potential to improve plant cell wall digestibility and thus the efficiency of feed utilization. Understanding the complexity of the rumen microbial ecosystem and the nature of its interactions with plant cell walls is the key to using exogenous enzymes to improve feed utilization in ruminants. The variability currently observed in production responses can be attributed to the array of enzyme formulations available, their variable activities, the level of supplementation, mode of delivery, and the diet to which they are applied as well as the productivity level of the host. Although progress on enzyme technologies for ruminants has been made, considerable research is still required if successful formulations are to be developed. Advances in DNA and RNA sequencing and bioinformatic analysis have provided novel insight into the structure and function of rumen microbial populations. Knowledge of the rumen microbial ecosystem and its associated carbohydrases could enhance the likelihood of achieving positive responses to enzyme supplementation. The ability to sequence microbial genomes represents a valuable source of information in terms of the physiology and function of both culturable and unculturable rumen microbial species. The advent of metagenomic, metatranscriptomic, and proteomic techniques will further enhance our understanding of the enzymatic machinery involved in cell wall degradation and provide a holistic view of the microbial community and the complexities of plant cell wall digestion. These technologies should provide new insight into the identification of exogenous enzymes that act synergistically with the rumen microbial populations that ultimately dictate the efficiency of feed digestion.
Collapse
Affiliation(s)
- S J Meale
- Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|