1
|
Galdino Andrade TE, Scavassini Peña M, Fiorotti J, de Souza Bin R, Rodrigues Caetano A, Connelley T, Ferreira de Miranda Santos IK. Graduate Student Literature Review: The DRB3 gene of the bovine major histocompatibility complex-Discovery, diversity, and distribution of alleles in commercial breeds of cattle and applications for development of vaccines. J Dairy Sci 2024; 107:11324-11341. [PMID: 39004123 DOI: 10.3168/jds.2023-24628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
The bovine major histocompatibility complex (MHC), also known as the bovine leukocyte antigen (BoLA) complex, is the genomic region that encodes the most important molecules for antigen presentation to initiate immune responses. The first evidence of MHC in bovines pointed to a locus containing 2 antigens, one detected by cytotoxic antiserum (MHC class I) and another studied by mixed lymphocyte culture tests (MHC class II). The most studied gene in the BoLA region is the highly polymorphic BoLA-DRB3, which encodes a β chain with a peptide groove domain involved in antigen presentation for T cells that will develop and co-stimulate cellular and humoral effector responses. The BoLA-DRB3 alleles have been associated with outcomes in infectious diseases such as mastitis, trypanosomiasis, and tick loads, and with production traits. To catalog these alleles, 2 nomenclature methods were proposed, and the current use of both systems makes it difficult to list, comprehend and apply these data effectively. In this review we have organized the knowledge available in all of the reports on the frequencies of BoLA-DRB3 alleles. It covers information from studies made in at least 26 countries on more than 30 breeds; studies are lacking in countries that are important producers of cattle livestock. We highlight practical applications of BoLA studies for identification of markers associated with resistance to infectious and parasitic diseases, increased production traits and T cell epitope mapping, in addition to genetic diversity and conservation studies of commercial and Creole and locally adapted breeds. Finally, we provide support for the need of studies to discover new BoLA alleles and uncover unknown roles of this locus in production traits.
Collapse
Affiliation(s)
| | - Maurício Scavassini Peña
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil, 14049-900
| | - Jéssica Fiorotti
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil, 14049-900
| | - Renan de Souza Bin
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil, 14049-900
| | | | - Timothy Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom, EH25 9RG
| | | |
Collapse
|
2
|
Xu S, Akhatayeva Z, Liu J, Feng X, Yu Y, Badaoui B, Esmailizadeh A, Kantanen J, Amills M, Lenstra JA, Johansson AM, Coltman DW, Liu GE, Curik I, Orozco-terWengel P, Paiva SR, Zinovieva NA, Zhang L, Yang J, Liu Z, Wang Y, Yu Y, Li M. Genetic advancements and future directions in ruminant livestock breeding: from reference genomes to multiomics innovations. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2744-4. [PMID: 39609363 DOI: 10.1007/s11427-024-2744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
Ruminant livestock provide a rich source of products, such as meat, milk, and wool, and play a critical role in global food security and nutrition. Over the past few decades, genomic studies of ruminant livestock have provided valuable insights into their domestication and the genetic basis of economically important traits, facilitating the breeding of elite varieties. In this review, we summarize the main advancements for domestic ruminants in reference genome assemblies, population genomics, and the identification of functional genes or variants for phenotypic traits. These traits include meat and carcass quality, reproduction, milk production, feed efficiency, wool and cashmere yield, horn development, tail type, coat color, environmental adaptation, and disease resistance. Functional genomic research is entering a new era with the advancements of graphical pangenomics and telomere-to-telomere (T2T) gap-free genome assembly. These advancements promise to improve our understanding of domestication and the molecular mechanisms underlying economically important traits in ruminant livestock. Finally, we provide new perspectives and future directions for genomic research on ruminant genomes. We suggest how ever-increasing multiomics datasets will facilitate future studies and molecular breeding in livestock, including the potential to uncover novel genetic mechanisms underlying phenotypic traits, to enable more accurate genomic prediction models, and to accelerate genetic improvement programs.
Collapse
Affiliation(s)
- Songsong Xu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhanerke Akhatayeva
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Jiaxin Liu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xueyan Feng
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yi Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bouabid Badaoui
- Laboratory of Biodiversity, Ecology and Genome, Department of Biology, Faculty of Sciences Rabat, Mohammed V University, Rabat, 10106, Morocco
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, FI-31600, Finland
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, 10000, Croatia
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Kaposvár, 7400, Hungary
| | | | - Samuel R Paiva
- Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Genetics, Brasília, Federal District, 70770917, Brazil
| | - Natalia A Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Moscow Region, Podolsk, 142132, Russian Federation
| | - Linwei Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ji Yang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yachun Wang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ying Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Menghua Li
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572024, China.
| |
Collapse
|
3
|
Agina OA, Shaari MR, Isa NMM, Ajat M, Zamri-Saad M, Hamzah H. Identification of novel bovine leukocyte antigen alleles and association of BoLA-DRB3.2*020:02:01 with resistance to Theileria orientalis infection in crossbred Kedah-Kelantan cattle: a pilot study. Trop Anim Health Prod 2024; 56:277. [PMID: 39316238 DOI: 10.1007/s11250-024-04138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
The bovine leukocyte antigen (BoLA) gene is a significant genetic part of the immune system and has been used as a disease marker in cattle. In this study, we detected Theileria orientalis, T. sinensis, Anaplasma marginale, Anaplasma platys, Candidatus Mycoplasma haemobos and Trypanosoma evansi by PCR amplification and sequencing of the amplicons. The allelic association of the BoLA-DRB3.2 gene with blood pathogen disease resistance and susceptibility in 87 Kedah-Kelantan x Brahman (KKB) and 38 Bali cattle was determined by Fisher's exact test and Cochran Mantel Haenszel (CMH) correction test. Sequence-based typing of the BoLA-DRB3.2 gene identified 43 alleles (27 previously reported alleles and 16 novel alleles) across the two cattle breeds. Alignment analysis of the 16 novel alleles revealed 90.7-95.8% and 85-92% nucleotide and amino acid identities, with the reference allele, BoLA-DRB3*016:01 cDNA clone NR-1. BoLA-DRB3*009:02 (25.6%) and BoLA-DRB3*036:01 (36%) were the most frequent alleles in KKB and Bali cattle, respectively. In KKB cattle, BoLA-DRB3*020:02:01 was significantly associated with resistance to T. orientalis whereas *007:01 and *009:02 were significantly associated with resistance to C. Mycoplasma haemobos. Also, DRB3*017:01 was associated with susceptibility to T. orientalis in KKB cattle. In the Bali cattle, BoLA-DRB3*015:01 was found to be a genetic marker of susceptibility to C. Mycoplasma haemobos infection. Therefore, this study identified BoLA-DRB3.2 alleles associated with resistance and susceptibility to T. orientalis infection in KKB cattle and susceptibility to C. Mycoplasma haemobos infection in Bali cattle for the first time. Therefore, this study suggests that these BoLA-DRB3 resistance alleles could be used as candidate markers for selection, whereas susceptibility alleles could be used as candidate markers for culling in the beef industry.
Collapse
Affiliation(s)
- Onyinyechukwu Ada Agina
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
| | - Mohd Rosly Shaari
- Animal Science Research Centre, Malaysian Agricultural Research and Developmental Institute, Serdang Selangor 43400, Headquarters, Malaysia
| | - Nur Mahiza Md Isa
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Zamri-Saad
- Research Centre for Ruminant Diseases, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Scott MA, Valeris-Chacin R, Thompson AC, Woolums AR, Karisch BB. Comprehensive time-course gene expression evaluation of high-risk beef cattle to establish immunological characteristics associated with undifferentiated bovine respiratory disease. Front Immunol 2024; 15:1412766. [PMID: 39346910 PMCID: PMC11427276 DOI: 10.3389/fimmu.2024.1412766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
Bovine respiratory disease (BRD) remains the leading infectious disease in beef cattle production systems. Host gene expression upon facility arrival may indicate risk of BRD development and severity. However, a time-course approach would better define how BRD development influences immunological and inflammatory responses after disease occurrences. Here, we evaluated whole blood transcriptomes of high-risk beef cattle at three time points to elucidate BRD-associated host response. Sequenced jugular whole blood mRNA from 36 cattle (2015: n = 9; 2017: n = 27) across three time points (n = 100 samples; days [D]0, D28, and D63) were processed through ARS-UCD1.2 reference-guided assembly (HISAT2/Stringtie2). Samples were categorized into BRD-severity cohorts (Healthy, n = 14; Treated 1, n = 11; Treated 2+, n = 11) via frequency of antimicrobial clinical treatment. Assessment of gene expression patterns over time within each BRD cohort was modeled through an autoregressive hidden Markov model (EBSeq-HMM; posterior probability ≥ 0.5, FDR < 0.01). Mixed-effects negative binomial models (glmmSeq; FDR < 0.05) and edgeR (FDR < 0.10) identified differentially expressed genes between and across cohorts overtime. A total of 2,580, 2,216, and 2,381 genes were dynamically expressed across time in Healthy, Treated 1, and Treated 2+ cattle, respectively. Genes involved in the production of specialized resolving mediators (SPMs) decreased at D28 and then increased by D63 across all three cohorts. Accordingly, SPM production and alternative complement were differentially expressed between Healthy and Treated 2+ at D0, but not statistically different between the three groups by D63. Magnitude, but not directionality, of gene expression related to SPM production, alternative complement, and innate immune response signified Healthy and Treated 2+ cattle. Differences in gene expression at D63 across the three groups were related to oxygen binding and carrier activity, natural killer cell-mediated cytotoxicity, cathelicidin production, and neutrophil degranulation, possibly indicating prolonged airway pathology and inflammation weeks after clinical treatment for BRD. These findings indicate genomic mechanisms indicative of BRD development and severity over time.
Collapse
Affiliation(s)
- Matthew A Scott
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX, United States
| | - Robert Valeris-Chacin
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX, United States
| | - Alexis C Thompson
- Texas A&M Veterinary Medical Diagnostic Laboratory, Canyon, TX, United States
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Brandi B Karisch
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
5
|
Hamada R, Giovambattista G, Metwally S, Borjigin L, Polat Yamanaka M, Matsuura R, Ali AO, Mahmoud HYAH, Mohamed AEA, Kyaw Moe K, Takeshima SN, Wada S, Aida Y. First characterization of major histocompatibility complex class II DRB3 diversity in cattle breeds raised in Egypt. Gene 2024; 918:148491. [PMID: 38649062 DOI: 10.1016/j.gene.2024.148491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Genes encoding bovine leukocyte antigen (BoLA) enable the immune system to identify pathogens. Therefore, these genes have been used as genetic markers for infectious and autoimmune diseases as well as for immunological traits in cattle. Although BoLA polymorphisms have been reported in various cattle breeds worldwide, they have not been studied in cattle populations in Egypt. In this study, we characterized BoLA-DRB3 in two local Egyptian populations and one foreign population using polymerase chain reaction-sequence-based typing (PCR-SBT) method. Fifty-four previously reported BoLA-DRB3 alleles and eight new alleles (BoLA-DRB3*005:08, *015:07, *016:03, *017:04, *020:02:02, *021:03, *164:01, and *165:01) were identified. Alignment analysis of the eight new alleles revealed 90.7-98.9 %, and 83.1-97.8 % nucleotide and amino acid identities, respectively, with the BoLA-DRB3 cDNA clone NR-1. Interestingly, BoLA-DRB3 in Egyptian cattle showed a high degree of allelic diversity in native (na = 28, hE > 0.95), mixed (na = 61, hE > 0.96), and Holstein (na = 18, hE > 0.88) populations. BoLA-DRB3*002:01 (14.3 %), BoLA-DRB3*001:01 (8.5 %), and BoLA-DRB3*015:01 (20.2 %) were the most frequent alleles in native, mixed, and Holstein populations, respectively, indicating that the genetic profiles differed in each population. Based on the allele frequencies of BoLA-DRB3, genetic variation among Egyptian, Asian, African, and American breeds was examined using Nei's distances and principal component analysis. The results suggested that native and mixed cattle populations were most closely associated with African breeds in terms of their gene pool, whereas Holstein cattle were more distinct from the other breeds and were closely related to Holstein cattle populations from other countries.
Collapse
Affiliation(s)
- Rania Hamada
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour City, El Beheira 22511, Egypt
| | - Guillermo Giovambattista
- Facultad de Ciencias Veterinarias UNLP, IGEVET - Instituto de Genética Veterinaria (UNLP-CONICET LA PLATA), La Plata, Argentina; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Samy Metwally
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour City, El Beheira 22511, Egypt
| | - Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Meripet Polat Yamanaka
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Alsagher O Ali
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Hassan Y A H Mahmoud
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Adel E A Mohamed
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Kyaw Kyaw Moe
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Shin-Nosuke Takeshima
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama, Japan
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
6
|
Kohara J, Bai L, Takeshima SN, Matsumoto Y, Hirai T, Aida Y. Correlation between the Biodistribution of Bovine Leukemia Virus in the Organs and the Proviral Load in the Peripheral Blood during Early Stages of Experimentally Infected Cattle. Pathogens 2023; 12:130. [PMID: 36678478 PMCID: PMC9867250 DOI: 10.3390/pathogens12010130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis. However, the propagation and distribution of BLV after primary infection still need to be fully elucidated. Here, we experimentally infected seven cattle with BLV and analyzed the BLV proviral load (PVL) in the blood and various organs. BLV was first detected in the blood of the cattle after one week, and the blood PVL increased for three weeks after infection. The PVL was maintained at a high level in five cattle, while it decreased to a low or medium level in two cattle. BLV was distributed in various organs, such as the heart, lung, liver, kidney, abomasum, and thymus, and, notably, in the spleen and lymph nodes. In cattle with a high blood PVL, BLV was detected in organs other than the spleen and lymph nodes, whereas in those with a low blood PVL, BLV was only detected in the spleen and lymph nodes. The amount of BLV in the organs was comparable to that in the blood. Our findings point to the possibility of estimating the distribution of BLV provirus in organs, lymph nodes, and body fluids by measuring the blood PVL, as it was positively correlated with the biodistribution of BLV provirus in the body of BLV infection during early stages.
Collapse
Affiliation(s)
- Junko Kohara
- Animal Health Group, Animal Research Center, Hokkaido Research Organization, Shintoku 081-0038, Japan
| | - Lanlan Bai
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Graduate School of Science and Engineering, Iwate University, Morioka 020-8551, Japan
| | - Shin-nosuke Takeshima
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Department of Food and Nutrition, Jumonji University, 2-1-28 Sugasawa, Niiza 352-8510, Japan
| | - Yuki Matsumoto
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tsunao Hirai
- Animal Health Group, Animal Research Center, Hokkaido Research Organization, Shintoku 081-0038, Japan
| | - Yoko Aida
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
Kumar A, Kumar Gaur G, Panigrahi M, V N MA, Priya B, Gupta JP, Gandham RK. Comparative gene expression profile in circulating PBMCs of Bos indicus and crossbred cattle to understand disease tolerance mechanism. Anim Biotechnol 2022:1-9. [PMID: 35244514 DOI: 10.1080/10495398.2022.2043883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The present investigation was performed to compare the global gene expression profile in peripheral blood mononuclear cells (PBMCs) of Bos indicus and crossbred (Bos taurus × B. indicus) cattle. Previously, several studies revealed the disease tolerance potential of B. indicus cattle but underlying genetic mechanism is still not fully explored. The PBMCs model was used for this investigation as it plays crucial role in the immune system regulation. Transcriptomic analysis revealed total 6767 significantly differentially expressed transcripts (fold change (absolute) >2.0, p < .05). In addition, 4149 transcripts were upregulated, 2618 transcripts were downregulated and fold change (absolute) of differentially expressed transcript varied from -223.32 to 213.63. Functional annotation analysis of differentially expressed genes confirmed their role in various molecular pathways viz. innate immune response, antigen processing and presentation, MHC protein complex, defense response to bacterium, regulation of immune response, positive regulation of JAK-STAT cascade, cytoskeletal protein binding, etc. Protein-protein interaction network analysis provided understanding of inter-relationship of immune genes with differentially expressed genes. In conclusion, this study could provide comprehensive information about the dysregulated genes and biological pathways in PBMCs which might be responsible for disease tolerance in B. indicus cattle.
Collapse
Affiliation(s)
- Amod Kumar
- ICAR - National Bureau of Animal Genetic Resources (NBAGR), Karnal, India
| | | | | | | | - Bhuvana Priya
- ICAR - Indian Veterinary Research Institute, Bareilly, India
| | | | | |
Collapse
|
8
|
Maiorano AM, Cardoso DF, Carvalheiro R, Júnior GAF, de Albuquerque LG, de Oliveira HN. Signatures of selection in Nelore cattle revealed by whole-genome sequencing data. Genomics 2022; 114:110304. [DOI: 10.1016/j.ygeno.2022.110304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/07/2022] [Accepted: 02/01/2022] [Indexed: 11/04/2022]
|
9
|
Thi DL, Vu SN, Lo CW, Dao TD, Bui VN, Ogawa H, Imai K, Sugiura K, Aida Y, Haga T. Association between BoLA-DRB3 polymorphism and bovine leukemia virus proviral load in Vietnamese Holstein Friesian cattle. HLA 2021; 99:105-112. [PMID: 34854239 DOI: 10.1111/tan.14503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis. Polymorphism in bovine leukocyte antigen (BoLA)-DRB3 allele can influence the host immune response to pathogens, including BLV. However, association between specific BoLA-DRB3 alleles and BLV proviral load (PVL), which is a useful index for estimating disease progression and transmission risk, in Vietnamese cattle are unknown. Here, association study of BoLA-DRB3 allele frequency between cattle with high or low PVL demonstrated BoLA-DRB3*12:01 associates with high PVL in Vietnamese Holstein-Friesian (HF) crossbred cattle. This is the first study to demonstrate that BoLA-DRB3 polymorphism confers susceptibility to BLV high PVL in HF crossbred kept in Vietnam. Our results may be useful in disease control and eradiation for BLV through genetic selection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dung Le Thi
- Division of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Son Nguyen Vu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam.,Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chieh-Wen Lo
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tung Duy Dao
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan.,National Institute of Veterinary Research, Hanoi, Vietnam
| | - Vuong Nghia Bui
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan.,National Institute of Veterinary Research, Hanoi, Vietnam
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Kunitoshi Imai
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Katsuaki Sugiura
- Laboratory of Environment Science for Sustainable Development, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Nippon Institute for Biological Science, Tokyo, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeshi Haga
- Division of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Parasar P, Bhushan B, Panigrahi M, Kumar H, Kaisa K, Dutt T. Characterization of BoLA class II DQA and DQB by PCR-RFLP, cloning, and sequencing reveals sequence diversity in crossbred cattle. Anim Biotechnol 2021:1-11. [PMID: 34813716 DOI: 10.1080/10495398.2021.2006205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The BoLA class II DQA and DQB genes in crossbred cattle were studied using PCR-RFLP, cloning, and sequencing techniques. Seventy-two crossbred cattle (Vrindavani) were used in the current study. HaeIII and XbaI restriction enzymes digested DQA exon 2-3, revealing seven (HaeIII-A-G) and three (XbaI A-C) motifs, respectively. The BoLA-DQB gene was analyzed using PCR-RFLP with PstI and TaqI restriction enzymes, yielding five restriction motifs for each restriction enzyme (PstI-A-E and TaqI-A-E). In crossbred cattle, addition, deletion, and substitutions were observed in distinct sequences, resulting in variations in overall gene length. Changes in nucleotides at positions 64-80, 110-200, and 207-264 were largely responsible for polymorphism in DQA exon 2. The phylogenetic analysis predicted a high degree of nucleotide and amino acid changes in DQA exon 2-3 and DQB exon 2. DQA genes had a nucleotide dissimilarity of 0.3-25.4 percent, while DQB genes had a nucleotide dissimilarity of 1.5-14.3 percent. We cloned and sequenced 20 genotypes based on PCR-RFLP of the DQA and DQB genes. The current study observed variation in the DQA and DQB genes and will serve as a foundation for future research on the BoLA DQA and DQB genes.
Collapse
Affiliation(s)
- Parveen Parasar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Harshit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Kaiho Kaisa
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
11
|
BoLA-DRB3 gene haplotypes show divergence in native Sudanese cattle from taurine and indicine breeds. Sci Rep 2021; 11:17202. [PMID: 34433838 PMCID: PMC8387388 DOI: 10.1038/s41598-021-96330-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/02/2021] [Indexed: 11/08/2022] Open
Abstract
Autochthonous Sudanese cattle breeds, namely Baggara for beef and Butana and Kenana for dairy, are characterized by their adaptive characteristics and high performance in hot and dry agro-ecosystems. They are thus used largely by nomadic and semi-nomadic pastoralists. We analyzed the diversity and genetic structure of the BoLA-DRB3 gene, a genetic locus linked to the immune response, for the indigenous cattle of Sudan and in the context of the global cattle repository. Blood samples (n = 225) were taken from three indigenous breeds (Baggara; n = 113, Butana; n = 60 and Kenana; n = 52) distributed across six regions of Sudan. Nucleotide sequences were genotyped using the sequence-based typing method. We describe 53 alleles, including seven novel alleles. Principal component analysis (PCA) of the protein pockets implicated in the antigen-binding function of the MHC complex revealed that pockets 4 and 9 (respectively) differentiate Kenana-Baggara and Kenana-Butana breeds from other breeds. Venn analysis of Sudanese, Southeast Asian, European and American cattle breeds with 115 alleles showed 14 were unique to Sudanese breeds. Gene frequency distributions of Baggara cattle showed an even distribution suggesting balancing selection, while the selection index (ω) revealed the presence of diversifying selection in several amino acid sites along the BoLA-DRB3 exon 2 of these native breeds. The results of several PCA were in agreement with clustering patterns observed on the neighbor joining (NJ) trees. These results provide insight into their high survival rate for different tropical diseases and their reproductive capacity in Sudan's harsh environment.
Collapse
|
12
|
Borjigin L, Yoneyama S, Saito S, Polat M, Inokuma M, Shinozaki Y, Tanaka N, Yamanaka R, Yasui A, Mimura M, Murakami H, Takeshima SN, Aida Y. A novel real time PCR assay for bovine leukemia virus detection using mixed probes and degenerate primers targeting novel BLV strains. J Virol Methods 2021; 297:114264. [PMID: 34411645 DOI: 10.1016/j.jviromet.2021.114264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 01/10/2023]
Abstract
The bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, the most common neoplastic disease in cattle. We previously developed the quantitative real-time PCR (qPCR) assay to measure the proviral loads of BLV using coordination of common motif (CoCoMo) degenerate primers. We here found four single mutations within the probe region of the original BLV-CoCoMo-qPCR assay, three of which have negative impact on its sensitivity in the probe sequences of the long terminal regions of the BLV-CoCoMo-qPCR-2 assay, using genomic DNA from 887 cows from 27 BLV-positive farms via a nationwide survey conducted in 2011 and 2017 in Japan. Therefore, the modified probes were designed to completely match the three BLV mutant strains identified here. Moreover, we examined the optimum ratio of the concentration to be mixed with the wild type and three new BLV TaqMan probes were designed here using genomic DNAs extracted from cattle naturally infected with the wild type BLV strain and three mutant strains. Finally, we successfully established an improved assay maintained the original sensitivity and reproducibility and can detect novel BLV strains.
Collapse
Affiliation(s)
- Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Shuji Yoneyama
- Central Livestock Hygiene Service Center of Tochigi Prefecture, Utsunomiya, Tochigi, 321-0905, Japan
| | - Susumu Saito
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Meripet Polat
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Michihito Inokuma
- Chuo Livestock Hygiene Service Center of Chiba Prefecture, Chiba, Chiba, 262-0011, Japan
| | - Yasuo Shinozaki
- Nanbu Livestock Hygiene Service Center of Chiba Prefecture, Kamogawa, Chiba, 296-0033, Japan
| | - Naoko Tanaka
- Nanbu Livestock Hygiene Service Center of Chiba Prefecture, Kamogawa, Chiba, 296-0033, Japan
| | - Risa Yamanaka
- Kumagaya Livestock Hygiene Service Center of Saitama Prefecture, Kumagaya, Saitama, 360-0813, Japan
| | - Anna Yasui
- Kumagaya Livestock Hygiene Service Center of Saitama Prefecture, Kumagaya, Saitama, 360-0813, Japan
| | - Munehito Mimura
- Kumagaya Livestock Hygiene Service Center of Saitama Prefecture, Kumagaya, Saitama, 360-0813, Japan
| | - Hironobu Murakami
- Laboratory of Animal Health Ⅱ, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Shin-Nosuke Takeshima
- Department of Food and Nutrition, Jumonji University, Niiza, Saitama, 352-8510, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
13
|
Fisch A, Reynisson B, Benedictus L, Nicastri A, Vasoya D, Morrison I, Buus S, Ferreira BR, Kinney Ferreira de Miranda Santos I, Ternette N, Connelley T, Nielsen M. Integral Use of Immunopeptidomics and Immunoinformatics for the Characterization of Antigen Presentation and Rational Identification of BoLA-DR-Presented Peptides and Epitopes. THE JOURNAL OF IMMUNOLOGY 2021; 206:2489-2497. [PMID: 33789985 DOI: 10.4049/jimmunol.2001409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/01/2021] [Indexed: 02/04/2023]
Abstract
MHC peptide binding and presentation is the most selective event defining the landscape of T cell epitopes. Consequently, understanding the diversity of MHC alleles in a given population and the parameters that define the set of ligands that can be bound and presented by each of these alleles (the immunopeptidome) has an enormous impact on our capacity to predict and manipulate the potential of protein Ags to elicit functional T cell responses. Liquid chromatography-mass spectrometry analysis of MHC-eluted ligand data has proven to be a powerful technique for identifying such peptidomes, and methods integrating such data for prediction of Ag presentation have reached a high level of accuracy for both MHC class I and class II. In this study, we demonstrate how these techniques and prediction methods can be readily extended to the bovine leukocyte Ag class II DR locus (BoLA-DR). BoLA-DR binding motifs were characterized by eluted ligand data derived from bovine cell lines expressing a range of DRB3 alleles prevalent in Holstein-Friesian populations. The model generated (NetBoLAIIpan, available as a Web server at www.cbs.dtu.dk/services/NetBoLAIIpan) was shown to have unprecedented predictive power to identify known BoLA-DR-restricted CD4 epitopes. In summary, the results demonstrate the power of an integrated approach combining advanced mass spectrometry peptidomics with immunoinformatics for characterization of the BoLA-DR Ag presentation system and provide a prediction tool that can be used to assist in rational evaluation and selection of bovine CD4 T cell epitopes.
Collapse
Affiliation(s)
- Andressa Fisch
- Ribeirão Preto College of Nursing, University of São Paulo, Av Bandeirantes, Ribeirão Preto, Brazil
| | - Birkir Reynisson
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Annalisa Nicastri
- The Jenner Institute, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Deepali Vasoya
- The Roslin Institute, Edinburgh, Midlothian, United Kingdom
| | - Ivan Morrison
- The Roslin Institute, Edinburgh, Midlothian, United Kingdom
| | - Søren Buus
- Laboratory of Experimental Immunology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Nicola Ternette
- The Jenner Institute, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Tim Connelley
- The Roslin Institute, Edinburgh, Midlothian, United Kingdom
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark .,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina
| |
Collapse
|
14
|
Suprovych TM, Suprovych MP, Mokhnachova NB, Biriukova OD, Strojanovska LV, Chepurna VA. Genetic variability and biodiversity of Ukrainian Gray cattle by the BoLA-DRB3 gene. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
At the current stage of genetic studies of cattle, more and more attention is being drawn to autochthonous breeds. Native cattle have a number of prominent phenotypic traits and have preserved unique genes and their combinations lost by modern commercial breeds, which would be valuable to use in selective programs. We surveyed polymorphism of the Ukrainian autochthonous Gray breed according to alleles of exon 2 of the BoLA-DRB3 gene. The uniqueness of the gene lies in the broad variability of its allele variants. Significant informativeness at DNA level is quite important for genetic studies. We surveyed allele polymorphism using the PCR-RLFP method on DNA isolated from 88 samples of blood of cows and 5 samples of sperm. We identified 28 alleles, of which 23 variants were nomenclature ones and 5 (jba, *jab, *jbb, *nad and *nda) were “without established nomenclature”, their share accounting for 8.9%. Four alleles *06, *12, *16 and *jba had a frequency above 5% and occupied 69.9% of the breed’s allele fund overall. The commonest allele was BoLA-DRB3.2*16 (44.1%). In total, we found 40 genotypes. Considering the significant dominance of variant *16, as expected, 5 genotypes with its inclusion occurred: *16/*16, *12/*16, *06/*16, *16/*24 and *jba/*16. It was present in the genotype of two out three studied animals. Parameters of heterozygosity, effective number of alleles, Shannon and Pielou indices indicate that Ukrainian Gray cattle are characterized by lowest level of genetic variability and biodiversity according to the BoLA-DRB3 gene compared with other breeds. Due to significant dominance of allele *16, the breed has no inbred motifs. We noted deviation toward increase in homozygosity without deviations from the norm of the distribution according to Hardy-Weinberg equilibrium. The obtained results will be used for genetic-populational programs with the purpose of improving the genetic potential of cattle breeds in terms of economically beneficial traits and diseases of cattle.
Collapse
|
15
|
Relationship between Allelic Heterozygosity in BoLA-DRB3 and Proviral Loads in Bovine Leukemia Virus-Infected Cattle. Animals (Basel) 2021; 11:ani11030647. [PMID: 33804456 PMCID: PMC7999362 DOI: 10.3390/ani11030647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Bovine leukemia virus (BLV) caused a severe cattle neoplastic disease called enzootic bovine leukosis (EBL). EBL causes significant economic losses in farming by reducing milk production, reproductive performance, and fertility, and through cattle culling or death. The BLV proviral load (PVL) represents the quantity of BLV genome that has integrated into the host’s genome in BLV-infected cells. It has been reported that PVLs differ according to the genetic background of the host, and some studies of BLV-associated host factors have reported on polymorphisms within the bovine major histocompatibility complex (MHC), namely bovine MHC is bovine leukocyte antigen (BoLA-DRB3). However, there is a great diversity in the PVLs associated with carrying various combinations of these alleles, especially for heterozygous alleles. Therefore, this research investigated whether heterogeneity in BoLA-DRB3 allele combinations would affect PVLs during BLV infections in different ages and breeds of cattle in Japan. This is the first report where the association between heterozygous allelic combinations and BLV PVLs phenotypes (HPLs, LPLs) was analyzed. Our findings augment current understanding about the immunological role played by BoLA heterozygosity in BLV-associated PVLs and biocontrol in BLV infections. Abstract Enzootic bovine leukosis is a lethal neoplastic disease caused by bovine leukemia virus (BLV), belongs to family Retroviridae. The BLV proviral load (PVL) represents the quantity of BLV genome that has integrated into the host’s genome in BLV-infected cells. Bovine leukocyte antigen (BoLA) class II allelic polymorphisms are associated with PVLs in BLV-infected cattle. We sought to identify relationships between BoLA-DRB3 allelic heterozygosity and BLV PVLs among different cattle breeds. Blood samples from 598 BLV-infected cattle were quantified to determine their PVLs by real-time polymerase chain reaction. The results were confirmed by a BLV-enzyme-linked immunosorbent assay. Restriction fragment length polymorphism-polymerase chain reaction identified 22 BoLA-DRB3 alleles. Multivariate negative binomial regression modeling was used to test for associations between BLV PVLs and BoLA-DRB3 alleles. BoLA-DRB3.2*3, *7, *8, *11, *22, *24, and *28 alleles were significantly associated with low PVLs. BoLA-DRB3.2*10 was significantly associated with high PVLs. Some heterozygous allele combinations were associated with low PVLs (*3/*28, *7/*8, *8/*11, *10/*11, and *11/*16); others were associated with high PVLs (*1/*41, *10/*16, *10/*41, *16/*27, and *22/*27). Interestingly, the BoLA-DRB3.2*11 heterozygous allele was always strongly and independently associated with low PVLs. This is the first reported evidence of an association between heterozygous allelic combinations and BLV PVLs.
Collapse
|
16
|
Giovambattista G, Takeshima SN, Moe KK, Pereira Rico JA, Polat M, Loza Vega A, Arce Cabrera ON, Aida Y. BoLA-DRB3 genetic diversity in Highland Creole cattle from Bolivia. HLA 2020; 96:688-696. [PMID: 33094557 DOI: 10.1111/tan.14120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 01/24/2023]
Abstract
The genetic diversity of the BoLA-DRB3 gene has been reported in different cattle breeds owing to its central role in the immune response. However, it is still unknown in hundreds of cattle breeds, especially native populations. Here, we studied BoLA-DRB3 genetic diversity in Highland Creole cattle (CrAl) from Western Bolivia, raised at altitudes between 3800 and 4200 m. DNAs from 48 CrAl cattle were genotyped for BoLA-DRB3 exon 2 alleles using polymerase chain reaction-sequence-based typing (PCR-SBT). The results were compared with 1341 previously reported data from Tropical Creole cattle and other breeds raised in the region. Twenty-three BoLA-DRB3 alleles were identified in CrAl, including the BoLA-DRB3*029:02 variant previously detected in other Creole cattle. Observed and expected heterozygosity were 0.87 and 0.93, respectively. Nucleotide diversity and the number of pairwise difference values were 0.078 and 19.46, respectively. The average number of nonsynonymous and synonymous substitutions were 0.037 and 0.097 for the entire BoLA-DRB3 exon 2, and 0.129 and 0.388 for the antigen-binding site, respectively. Venn analysis and the review of the IPD-MHC database and the literature showed that 2 of 64 alleles were only detected in CrAl, including BoLA-DRB3*029:01 previously reported in African cattle and *048:01 detected in Philippine cattle. Two additional alleles, BoLA-DRB3*007:02 and *029:02, were only present in CrAl and Lowland Creole cattle. Principal Component Analysis (PCA) showed that Bolivian Creole cattle breeds were closely located but they were distant from the Colombian Hartón del Valle Creole. FST analysis showed a low degree of genetic differentiation between Highland and Lowland Bolivian Creole cattle (FST = 0.015). The present results contribute to increasing our knowledge of BoLA-DRB3 genetic diversity in cattle breeds.
Collapse
Affiliation(s)
- Guillermo Giovambattista
- IGEVET-Instituto de Genética Veterinaria (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| | - Shin-Nosuke Takeshima
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, Saitama, Japan.,Virus Infectious Diseases Unit, RIKEN, Saitama, Japan
| | - Kyaw Kyaw Moe
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science Technology and Innovation Hub, Saitama, Japan.,Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Myanmar
| | - Juan A Pereira Rico
- Facultad de Ciencias Veterinarias, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | - Meripet Polat
- Virus Infectious Diseases Unit, RIKEN, Saitama, Japan.,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science Technology and Innovation Hub, Saitama, Japan
| | - Ariel Loza Vega
- Facultad de Ciencias Veterinarias, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | - Orlando N Arce Cabrera
- Facultad de Ciencias Agrarias y Veterinarias, Universidad Técnica de Oruro, Oruro, Bolivia
| | - Yoko Aida
- Virus Infectious Diseases Unit, RIKEN, Saitama, Japan.,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science Technology and Innovation Hub, Saitama, Japan
| |
Collapse
|
17
|
Fukunaga K, Yamashita Y, Yagisawa T. Copy number variations in BOLA-DQA2, BOLA-DQB, and BOLA-DQA5 show the genomic architecture and haplotype frequency of major histocompatibility complex class II genes in Holstein cows. HLA 2020; 96:601-609. [PMID: 33006253 DOI: 10.1111/tan.14086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/13/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022]
Abstract
Bovine major histocompatibility complex (MHC) class II region contains many genes. The bovine leukocyte antigen (BoLA)-DRB3 was reportedly associated with susceptibility of various phenotypes of infections including bovine leukemia virus-induced lymphoma. However, the association of the remaining genes with various phenotypes has not been clarified due to the complicated genomic structure of the MHC class II region. Thus, in this study, we elucidated the MHC class II genomic structure, including the novel alleles and copy number variations (CNVs). We determined the copy numbers of BOLA-DQA2 (DQA2), BOLA-DQB (DQB2), BOLA-DQA5 (DQA5), BLA-DQB (DQB1), LOC100848815 (DQA1), and BOLA-DRB3 (DRB3) in 127 unrelated Holstein cows by TaqMan copy number assay. The genomes were sequenced using target next-generation sequencing (NGS) based on multiplex polymerase chain reaction. Combining the results of the copy numbers and alleles, we identified the BoLA alleles directly without haplotype estimation. Pairwise linkage disequilibrium (LD) analysis between alleles and genes were performed. The CNVs of DQA2, DQB2, and DQA5 in Holstein cows were detected. The frequency of the whole gene deletion in DQA2, DQB2, and DQA5 was 35.4%, 93.7%, and 93.7%, respectively. After target NGS, we identified 37 alleles in the six genes. Fifteen novel alleles (40.5%) were not registered in the IPD-MHC Database. LD analysis showed strong LD among the DQB2*deletion, DQA5*deletion, and DRB3*27:03 alleles. Our findings will provide important insights into the identification of the BoLA genes associated with various infection-related phenotypes.
Collapse
Affiliation(s)
- Koya Fukunaga
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yusuke Yamashita
- Hokkaido Chuo Agricultural Mutual Aid Association, Hokkaido, Japan
| | - Takuya Yagisawa
- Hokkaido Chuo Agricultural Mutual Aid Association, Hokkaido, Japan
| |
Collapse
|
18
|
Giovambattista G, Moe KK, Polat M, Borjigin L, Hein ST, Moe HH, Takeshima SN, Aida Y. Characterization of bovine MHC DRB3 diversity in global cattle breeds, with a focus on cattle in Myanmar. BMC Genet 2020; 21:95. [PMID: 32867670 PMCID: PMC7460757 DOI: 10.1186/s12863-020-00905-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/23/2020] [Indexed: 11/16/2022] Open
Abstract
Background Myanmar cattle populations predominantly consist of native cattle breeds (Pyer Sein and Shwe), characterized by their geographical location and coat color, and the Holstein-Friesian crossbreed, which is highly adapted to the harsh tropical climates of this region. Here, we analyzed the diversity and genetic structure of the BoLA-DRB3 gene, a genetic locus that has been linked to the immune response, in Myanmar cattle populations. Methods Blood samples (n = 294) were taken from two native breeds (Pyer Sein, n = 163 and Shwe Ni, n = 69) and a cattle crossbreed (Holstein-Friesian, n = 62) distributed across six regions of Myanmar (Bago, n = 38; Sagaing, n = 77; Mandalay, n = 46; Magway, n = 46; Kayin, n = 43; Yangon, n = 44). In addition, a database that included 2428 BoLA-DRB3 genotypes from European (Angus, Hereford, Holstein, Shorthorn, Overo Negro, Overo Colorado, and Jersey), Zebuine (Nellore, Brahman and Gir), Asian Native from Japan and Philippine and Latin-American Creole breeds was also included. Furthermore, the information from the IPD–MHC database was also used in the present analysis. DNA was genotyped using the sequence-based typing method. DNA electropherograms were analyzed using the Assign 400ATF software. Results We detected 71 distinct alleles, including three new variants for the BoLA-DRB3 gene. Venn analysis showed that 11 of these alleles were only detected in Myanmar native breeds and 26 were only shared with Asian native and/or Zebu groups. The number of alleles ranged from 33 in Holstein-Friesians to 58 in Pyer Seins, and the observed versus unbiased expected heterozygosity were higher than 0.84 in all the three the populations analyzed. The FST analysis showed a low level of genetic differentiation between the two Myanmar native breeds (FST = 0.003), and between these native breeds and the Holstein-Friesians (FST < 0.021). The average FST value for all the Myanmar Holstein-Friesian crossbred and Myanmar native populations was 0.0136 and 0.0121, respectively. Principal component analysis (PCA) and tree analysis showed that Myanmar native populations grouped in a narrow cluster that diverged clearly from the Holstein-Friesian populations. Furthermore, the BoLA-DRB3 allele frequencies suggested that while some Myanmar native populations from Bago, Mandalay and Yangon regions were more closely related to Zebu breeds (Gir and Brahman), populations from Kayin, Magway and Sagaing regions were more related to the Philippines native breeds. On the contrary, PCA showed that the Holstein-Friesian populations demonstrated a high degree of dispersion, which is likely the result of the different degrees of native admixture in these populations. Conclusion This study is the first to report the genetic diversity of the BoLA-DRB3 gene in two native breeds and one exotic cattle crossbreed from Myanmar. The results obtained contribute to our understanding of the genetic diversity and distribution of BoLA-DRB3 gene alleles in Myanmar, and increases our knowledge of the worldwide variability of cattle BoLA-DRB3 genes, an important locus for immune response and protection against pathogens.
Collapse
Affiliation(s)
- Guillermo Giovambattista
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,IGEVET (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, B1900AVW, CC 296, La Plata, Argentina.
| | - Kyaw Kyaw Moe
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Meripet Polat
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Liushiqi Borjigin
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Si Thu Hein
- Department of Anatomy, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Hla Hla Moe
- Department of Genetics and Animal Breeding, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Shin-Nosuke Takeshima
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, 2-1-28 Sugasawa, Niiza-shi, Saitama, 352-8510, Japan
| | - Yoko Aida
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
19
|
Bai L, Takeshima SN, Sato M, Davis WC, Wada S, Kohara J, Aida Y. Mapping of CD4 + T-cell epitopes in bovine leukemia virus from five cattle with differential susceptibilities to bovine leukemia virus disease progression. Virol J 2019; 16:157. [PMID: 31842930 PMCID: PMC6916044 DOI: 10.1186/s12985-019-1259-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/22/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV), which is closely related to human T-cell leukemia virus, is the etiological agent of enzootic bovine leukosis, a disease characterized by a highly prolonged course involving persistent lymphocytosis and B-cell lymphoma. The bovine major histocompatibility complex class II region plays a key role in the subclinical progression of BLV infection. In this study, we aimed to evaluate the roles of CD4+ T-cell epitopes in disease progression in cattle. METHODS We examined five Japanese Black cattle, including three disease-susceptible animals, one disease-resistant animal, and one normal animal, classified according to genotyping of bovine leukocyte antigen (BoLA)-DRB3 and BoLA-DQA1 alleles using polymerase chain reaction sequence-based typing methods. All cattle were inoculated with BLV-infected blood collected from BLV experimentally infected cattle and then subjected to CD4+ T-cell epitope mapping by cell proliferation assays. RESULTS Five Japanese Black cattle were successfully infected with BLV, and CD4+ T-cell epitope mapping was then conducted. Disease-resistant and normal cattle showed low and moderate proviral loads and harbored six or five types of CD4+ T-cell epitopes, respectively. In contrast, the one of three disease-susceptible cattle with the highest proviral load did not harbor CD4+ T-cell epitopes, and two of three other cattle with high proviral loads each had only one epitope. Thus, the CD4+ T-cell epitope repertoire was less frequent in disease-susceptible cattle than in other cattle. CONCLUSION Although only a few cattle were included in this study, our results showed that CD4+ T-cell epitopes may be associated with BoLA-DRB3-DQA1 haplotypes, which conferred differential susceptibilities to BLV proviral loads. These CD4+ T-cell epitopes could be useful for the design of anti-BLV vaccines targeting disease-susceptible Japanese Black cattle. Further studies of CD4+ T-cell epitopes in other breeds and using larger numbers of cattle with differential susceptibilities are required to confirm these findings.
Collapse
Affiliation(s)
- Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Faculty of Human Life, Department of Food and Nutrition, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama, 352-0017, Japan.
| | - Masaaki Sato
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - William C Davis
- Monoclonal antibody center, Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Kohara
- Animal Research Center, Hokkaido Research Organization, 5-39-1 Shintoku, Hokkaido, 081-0038, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
20
|
Takeshima SN, Ohno A, Aida Y. Bovine leukemia virus proviral load is more strongly associated with bovine major histocompatibility complex class II DRB3 polymorphism than with DQA1 polymorphism in Holstein cow in Japan. Retrovirology 2019; 16:14. [PMID: 31096993 PMCID: PMC6524304 DOI: 10.1186/s12977-019-0476-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/08/2019] [Indexed: 01/14/2023] Open
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leukosis and is closely related to the human T-lymphotropic virus. Bovine major histocompatibility complex (BoLAs) are used extensively as markers of disease and immunological traits in cattle. For BLV diagnosis, proviral load is a major diagnosis index for the determination of disease progression and transmission risk. Therefore, we investigated the frequency of BoLA-DRB3 alleles, BoLA-DQA1 alleles, and haplotypes of BoLA class II isolated from the heads of 910 BLV-infected cows out of 1290 cows assessed from BLV-positive farms, in a nationwide survey from 2011 to 2014 in Japan. Our aim was to identify BoLA class II polymorphisms associated with the BLV proviral load in the Holstein cow. The study examined 569 cows with a high proviral load and 341 cows with a low proviral load. Using the highest odds ratio (OR) as a comparison index, we confirmed that BoLA-DRB3 was the best marker for determining which cow spread the BLV (OR 13.9 for BoLA-DRB3, OR 11.5 for BoLA-DQA1, and OR 6.2 for BoLA class II haplotype). In addition, DRB3*002:01, *009:02, *012:01, *014:01, and *015:01 were determined as BLV provirus associated alleles. BoLA-DRB3*002:01, *009:02, and *014:01 were determined as resistant alleles (OR > 1), and BoLA-DRB3*012:01 and *015:01 were determined as susceptible alleles (OR < 1). In this study, we showed that BoLA-DRB3 was a good marker for determining which cow spread BLV, and we found not only one resistant allele (BoLA-DRB3*009:02), but also two other disease-resistant alleles and two disease-susceptible alleles. This designation of major alleles as markers of susceptibility or resistance can allow the determination of the susceptibility or resistance of most cows to disease. Overall, the results of this study may be useful in eliminating BLV from farms without having to separate cows into several cowsheds.
Collapse
Affiliation(s)
- Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan.,Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako, Saitama, 3510198, Japan.,Department of Food and Nutrition, Jumonji University, Niiza, Saitama, 352-8510, Japan
| | - Ayumu Ohno
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan. .,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
21
|
Bastos RG, Franceschi V, Tebaldi G, Connelley T, Morrison WI, Knowles DP, Donofrio G, Fry LM. Molecular and Antigenic Properties of Mammalian Cell-Expressed Theileria parva Antigen Tp9. Front Immunol 2019; 10:897. [PMID: 31110506 PMCID: PMC6501543 DOI: 10.3389/fimmu.2019.00897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
East Coast Fever (ECF), caused by the tick-borne apicomplexan parasite Theileria parva, is a leading cause of morbidity and mortality in cattle of sub-Saharan Africa. The infection and treatment method (ITM) is currently the only vaccine available to control T. parva. Although ITM elicits levels of protection, its widespread adoption is limited by costs, laborious production process, and antibiotic co-treatment requirement, necessitating the development of a more sustainable vaccine. To this end, efforts have been concentrated in the identification of new T. parva vaccine antigens and in the development of suitable platforms for antigen expression. In this study, we investigated the molecular and antigenic properties of T. parva antigen Tp9 expressed by mammalian cells. Data indicate that Tp9 contains a signal peptide that is weakly functional in mammalian cells. Thus, Tp9 secretion from mammalian cells increased 10-fold after the native signal peptide was replaced with the human tissue plasminogen activator signal peptide (tPA). Sera from all T. parva-immune cattle recognized this recombinant, secreted Tp9. Additionally, PBMC from ITM-immunized cattle produced significant (p < 0.05) amounts of IFNγ following ex vivo exposure to Tp9, but this response varied between cattle of different MHC class I and class II genotypes. In addition, depletion experiments demonstrated that IFNγ to Tp9 was primarily produced by CD4+ T cells. Molecular analysis demonstrated that Tp9 presents a signal peptide that is weakly functional in mammalian cells, suggesting that it remains within lymphocytes during infection. Tp9 secretion from mammalian cells was substantially increased when the tPA secretion signal sequence was substituted for the native secretion signal sequence. Using full-length, recombinant Tp9 secreted from mammalian cells, we demonstrated that T. parva-immune cattle develop both humoral and cellular immune responses to this antigen. Collectively, these results provide rationale for further evaluation of Tp9 as a component of a T. parva subunit vaccine.
Collapse
Affiliation(s)
- Reginaldo G Bastos
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | | | - Giulia Tebaldi
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Timothy Connelley
- Royal School of Veterinary Sciences, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - W Ivan Morrison
- Royal School of Veterinary Sciences, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Donald P Knowles
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Lindsay M Fry
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States.,Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, WA, United States
| |
Collapse
|
22
|
Takeshima SN, Corbi-Botto C, Giovambattista G, Aida Y. Genetic diversity of BoLA-DRB3 in South American Zebu cattle populations. BMC Genet 2018; 19:33. [PMID: 29788904 PMCID: PMC5964877 DOI: 10.1186/s12863-018-0618-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 04/30/2018] [Indexed: 11/17/2022] Open
Abstract
Background Bovine leukocyte antigens (BoLAs) are used extensively as markers of disease and immunological traits in cattle. However, until now, characterization of BoLA gene polymorphisms in Zebu breeds using high resolution typing methods has been poor. Here, we used a polymerase chain reaction sequence-based typing (PCR-SBT) method to sequence exon 2 of the BoLA class II DRB3 gene from 421 cattle (116 Bolivian Nellore, 110 Bolivian Gir, and 195 Peruvian Nellore-Brahman). Data from 1416 Taurine and Zebu samples were also included in the analysis. Results We identified 46 previously reported alleles and no novel variants. Of note, 1/3 of the alleles were detected only in Zebu cattle. Comparison of the degree of genetic variability at the population and sequence levels with genetic distance in the three above mentioned breeds and nine previously reported breeds revealed that Zebu breeds had a gene diversity score higher than 0.86, a nucleotide diversity score higher than 0.06, and a mean number of pairwise differences greater than 16, being similar to those estimated for other cattle breeds. A neutrality test revealed that only Nellore-Brahman cattle showed the even gene frequency distribution expected under a balanced selection scenario. The FST index and the exact G test showed significant differences across all cattle populations (FST = 0.057; p < 0.001). Neighbor-joining trees and principal component analysis identified two major clusters: one comprising mainly European Taurine breeds and a second comprising Zebu breeds. This is consistent with the historical and geographical origin of these breeds. Some of these differences may be explained by variation of amino acid motifs at antigen-binding sites. Conclusions The results presented herein show that the historical divergence between Taurine and Zebu cattle breeds is a result of origin, selection, and adaptation events, which would explain the observed differences in BoLA-DRB3 gene diversity between the two major bovine types. This allelic information will be important for investigating the relationship between the major histocompatibility complex and disease, and contribute to an ongoing effort to catalog bovine MHC allele frequencies according to breed and location. Electronic supplementary material The online version of this article (10.1186/s12863-018-0618-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shin-Nosuke Takeshima
- Nanomedical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Graduate school of frontier sciences, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Institute of Agriculture, Tokyo University of agriculture and technology, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Department of Food and Nutrition Faculty of Human Life, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama, 352-8510, Japan
| | - Claudia Corbi-Botto
- IGEVET, CCT LA PLATA CONICET, FCV, UNLP, B1900AVW, CC 296, La Plata, Argentina
| | | | - Yoko Aida
- Nanomedical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Graduate school of frontier sciences, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Institute of Agriculture, Tokyo University of agriculture and technology, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Department of global agricultural science, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
23
|
Identification of an Atypical Enzootic Bovine Leukosis in Japan by Using a Novel Classification of Bovine Leukemia Based on Immunophenotypic Analysis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00067-17. [PMID: 28659325 DOI: 10.1128/cvi.00067-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/19/2017] [Indexed: 11/20/2022]
Abstract
Bovine leukemia is classified into two types: enzootic bovine leukosis (EBL) and sporadic bovine leukosis (SBL). EBL is caused by infection with bovine leukemia virus (BLV), which induces persistent lymphocytosis and B-cell lymphoma in cattle after a long latent period. Although it has been demonstrated that BLV-associated lymphoma occurs predominantly in adult cattle of >3 to 5 years, suspicious cases of EBL onset in juvenile cattle were recently reported in Japan. To investigate the current status of bovine leukemia in Japan, we performed immunophenotypic analysis of samples from 50 cattle that were clinically diagnosed as having bovine leukemia. We classified the samples into five groups on the basis of the analysis and found two different types of EBL: classic EBL (cEBL), which has the familiar phenotype commonly known as EBL, and polyclonal EBL (pEBL), which exhibited neoplastic proliferation of polyclonal B cells. Moreover, there were several atypical EBL cases even in cEBL, including an early onset of EBL in juvenile cattle. A comparison of the cell marker expressions among cEBL, pEBL, and B-cell-type SBL (B-SBL) revealed characteristic patterns in B-cell leukemia, and these patterns could be clearly differentiated from those of healthy phenotypes, whereas it was difficult to discriminate between cEBL, pEBL, and B-SBL only by the expression patterns of cell markers. This study identified novel characteristics of bovine leukemia that should contribute to a better understanding of the mechanism underlying tumor development in BLV infection.
Collapse
|
24
|
Moran B, Cummins SB, Creevey CJ, Butler ST. Transcriptomics of liver and muscle in Holstein cows genetically divergent for fertility highlight differences in nutrient partitioning and inflammation processes. BMC Genomics 2016; 17:603. [PMID: 27514375 PMCID: PMC4982134 DOI: 10.1186/s12864-016-2938-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/14/2016] [Indexed: 01/01/2023] Open
Abstract
Background The transition between pregnancy and lactation is a major physiological change for dairy cows. Complex systemic and local processes involving regulation of energy balance, galactopoiesis, utilisation of body reserves, insulin resistance, resumption of oestrous cyclicity and involution of the uterus can affect animal productivity and hence farm profitability. Here we used an established Holstein dairy cow model of fertility that displayed genetic and phenotypic divergence in calving interval. Cows had similar genetic merit for milk production traits, but either very good genetic merit for fertility traits (‘Fert+’; n = 8) or very poor genetic merit for fertility traits (‘Fert-’; n = 8). We used RNA sequencing to investigate gene expression profiles in both liver and muscle tissue biopsies at three distinct time-points: late pregnancy, early lactation and mid lactation (-18, 1 and 147 days relative to parturition, respectively). Results We found 807 and 815 unique genes to be differentially expressed in at least one time-point in liver and muscle respectively, of which 79 % and 83 % were only found in a single time-point; 40 and 41 genes were found differentially expressed at every time-point indicating possible systemic or chronic dysregulation. Functional annotation of all differentially expressed genes highlighted two physiological processes that were impacted at every time-point in the study, These were immune and inflammation, and metabolic, lipid and carbohydrate-binding. Conclusion These pathways have previously been identified by other researchers. We show that several specific genes which are differentially regulated, including IGF-1, might impact dairy fertility. We postulate that an increased burden of reactive oxidation species, coupled with a chronic inflammatory state, might reduce dairy cow fertility in our model. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2938-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bruce Moran
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sean B Cummins
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Christopher J Creevey
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland.,Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Stephen T Butler
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
25
|
High genetic diversity and distribution of Bubu-DQA alleles in swamp buffaloes (Bubalus bubalis carabanesis): identification of new Bubu-DQA loci and haplotypes. Immunogenetics 2016; 68:439-447. [DOI: 10.1007/s00251-016-0915-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
|
26
|
Takeshima SN, Giovambattista G, Okimoto N, Matsumoto Y, Rogberg-Muñoz A, Acosta TJ, Onuma M, Aida Y. Characterization of bovine MHC class II DRB3 diversity in South American Holstein cattle populations. ACTA ACUST UNITED AC 2015; 86:419-30. [PMID: 26514650 DOI: 10.1111/tan.12692] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/14/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022]
Abstract
Holstein cattle dominate the global milk production industry because of their outstanding milk production, however, this breed is susceptible to tropical endemic pathogens and suffers from heat stress and thus fewer Holstein populations are raised in tropical areas. The bovine major histocompatibility complex (BoLA)-DRB3 class II gene is used as a marker for disease and immunological traits, and its polymorphism has been studied extensively in Holstein cattle from temperate and cold regions. We studied the genetic diversity of the BoLA-DRB3 gene in South American Holstein populations to determine whether tropical populations have diverged from those bred in temperate and cold regions by selection and/or crossbreeding with local native breeds. We specifically studied Exon 2 of this gene from 855 South American Holstein individuals by a polymerase chain reaction (PCR) sequence-based typing method. We found a high degree of gene diversity at the allelic (Na > 20 and He > 0.87) and molecular (π > 0.080) levels, but a low degree of population structure (FST = 0.009215). A principal components analysis and tree showed that the Bolivian subtropical population had the largest genetic divergence compared with Holsteins bred in temperate or cold regions, and that this population was closely related to Bolivian Creole cattle. Our results suggest that Holstein genetic divergence can be explained by selection and/or gene introgression from local germplasms. This is the first examination of BoLA-DRB3 in Holsteins adapted to tropical environments, and contributes to an ongoing effort to catalog bovine MHC allele frequencies by breed and location.
Collapse
Affiliation(s)
- S-N Takeshima
- Viral Infectious Diseases Unit, RIKEN, Saitama, Japan
| | | | - N Okimoto
- Laboratory for Computational Molecular Design, Computational Biology Research Core, Quantitative Biology Center (QBiC), RIKEN, Hyogo, Japan
| | - Y Matsumoto
- Viral Infectious Diseases Unit, RIKEN, Saitama, Japan
| | - A Rogberg-Muñoz
- IGEVET, CCT LA PLATA CONICET, FCV, UNLP, La Plata, Argentina
| | - T J Acosta
- Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - M Onuma
- Viral Infectious Diseases Unit, RIKEN, Saitama, Japan
| | - Y Aida
- Viral Infectious Diseases Unit, RIKEN, Saitama, Japan
| |
Collapse
|
27
|
Sá ALA, Leal VSG, Schneider MPC, Ohashi OM, Santos EJM, Riggs PK, Kochan KJ, Gill CA, Downey ED, Womack JE, Skow LC, Miranda MS, Sena L. Description of bovine major histocompatibility complex class IIa haplotypes using parthenogenetic embryo-derived cells. Anim Genet 2015; 46:325-8. [PMID: 25789691 DOI: 10.1111/age.12285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2015] [Indexed: 11/30/2022]
Abstract
In this study, we report an approach to characterize individual BoLA haplotypes using cells from parthenogenetic bovine embryos derived from slaughterhouse ovaries. Eight of the 15 parthenogenetic embryos so obtained had not undergone meiotic recombination on the BoLA region and were suitable to describe BoLA haplotypes. Detailed analysis of the BoLA class IIa region identified seven different class IIa haplotypes, including six not previously described and two new alleles of BoLA-DQA and one BoLA-DQB. Our method provided reliable sources of homozygous DNA to describe BoLA haplotypes.
Collapse
Affiliation(s)
- A L A Sá
- Laboratório de Fecundação In Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Takeshima SN, Miyasaka T, Matsumoto Y, Xue G, Diaz VDLB, Rogberg-Muñoz A, Giovambattista G, Ortiz M, Oltra J, Kanemaki M, Onuma M, Aida Y. Assessment of biodiversity in Chilean cattle using the distribution of major histocompatibility complex class II BoLA-DRB3 allele. ACTA ACUST UNITED AC 2014; 85:35-44. [PMID: 25430590 DOI: 10.1111/tan.12481] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/14/2014] [Accepted: 10/28/2014] [Indexed: 11/30/2022]
Abstract
Bovine leukocyte antigens (BoLAs) are used extensively as markers for bovine disease and immunological traits. In this study, we estimated BoLA-DRB3 allele frequencies using 888 cattle from 10 groups, including seven cattle breeds and three crossbreeds: 99 Red Angus, 100 Black Angus, 81 Chilean Wagyu, 49 Hereford, 95 Hereford × Angus, 71 Hereford × Jersey, 20 Hereford × Overo Colorado, 113 Holstein, 136 Overo Colorado, and 124 Overo Negro cattle. Forty-six BoLA-DRB3 alleles were identified, and each group had between 12 and 29 different BoLA-DRB3 alleles. Overo Negro had the highest number of alleles (29); this breed is considered in Chile to be an 'Old type' European Holstein Friesian descendant. By contrast, we detected 21 alleles in Holstein cattle, which are considered to be a 'Present type' Holstein Friesian cattle. Chilean cattle groups and four Japanese breeds were compared by neighbor-joining trees and a principal component analysis (PCA). The phylogenetic tree showed that Red Angus and Black Angus cattle were in the same clade, crossbreeds were closely related to their parent breeds, and Holstein cattle from Chile were closely related to Holstein cattle in Japan. Overall, the tree provided a thorough description of breed history. It also showed that the Overo Negro breed was closely related to the Holstein breed, consistent with historical data indicating that Overo Negro is an 'Old type' Holstein Friesian cattle. This allelic information will be important for investigating the relationship between major histocompatibility complex (MHC) and disease.
Collapse
Affiliation(s)
- S-N Takeshima
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The great diversity of major histocompatibility complex class II genes in Philippine native cattle. Meta Gene 2014; 2:176-90. [PMID: 25606401 PMCID: PMC4287811 DOI: 10.1016/j.mgene.2013.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/28/2013] [Accepted: 12/04/2013] [Indexed: 11/21/2022] Open
Abstract
Bovine leukocyte antigens (BoLA) are extensively used as markers for bovine disease and immunological traits. However, none of the BoLA genes in Southeast Asian breeds have been characterized by polymerase chain reaction (PCR)-sequence-based typing (SBT). Therefore, we sequenced exon 2 of the BoLA class II DRB3 gene from 1120 individual cows belonging to the Holstein, Sahiwal, Simbrah, Jersey, Brahman, and Philippine native breeds using PCR-SBT. Several cross-breeds were also examined. BoLA-DRB3 PCR-SBT identified 78 previously reported alleles and five novel alleles. The number of BoLA-DRB3 alleles identified in each breed from the Philippines was higher (71 in Philippine native cattle, 58 in Brahman, 46 in Holstein × Sahiwal, and 57 in Philippine native × Brahman) than that identified in breeds from other countries (e.g., 23 alleles in Japanese Black and 35 in Bolivian Yacumeño cattle). A phylogenetic tree based on the DA distance calculated from the BoLA-DRB3 allele frequency showed that Philippine native cattle from different Philippine islands are closely related, and all of them are closely similar to Philippine Brahman cattle but not to native Japanese and Latin American breeds. Furthermore, the BoLA-DRB3 allele frequency in Philippine native cattle from Luzon Island, located in the Northern Philippines was different from that in cattle from Iloilo, Bohol, and Leyte Islands, which are located in the Southern Philippines. Therefore, we conclude that Philippine native cattle can be divided into two populations, North and South areas. Moreover, a neutrality test revealed that Philippine native cattle from Leyte showed significantly greater genetic diversity, which may be maintained by balancing selection. This study shows that Asian breeds have high levels of BoLA-DRB3 polymorphism. This finding, especially the identification of five novel BoLA-DRB3 alleles, will be helpful for future SBT studies of BoLA-DRB3 alleles in East Asian cattle.
Collapse
|
30
|
Goszczynski DE, Ripoli MV, Takeshima SN, Baltian L, Aida Y, Giovambattista G. Haplotype determination of the upstream regulatory region and the second exon of the BoLA-DRB3 gene in Holstein cattle. ACTA ACUST UNITED AC 2014; 83:180-3. [PMID: 24499032 DOI: 10.1111/tan.12293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/27/2013] [Accepted: 12/17/2013] [Indexed: 11/27/2022]
Abstract
Polymorphisms of the BoLA-DRB3 gene are located primarily in the second exon [antigen binding site (ABS)] and, to a lesser extent, in the upstream regulatory region (URR). It can be hypothesised that exon 2 and the URR are under different types of natural selection. The aim of this work was to determine the URR-exon 2 haplotypes; 34 Holstein samples were genotyped by direct sequencing. A total of 7 URR alleles and 23 exon 2 alleles were detected, and 3 of the URR alleles were novel. Our results may suggest that no relationship exists between the URR and exon 2 of the BoLA-DRB3 gene (linkage disequilibrium P value > 0.05), most likely due to recombination over time. Our results also suggest that both regions of class II genes may be included in the development of new genotyping methods based on next-generation DNA sequencing technologies.
Collapse
Affiliation(s)
- D E Goszczynski
- Instituto de Genética Veterinaria (IGEVET), CCT La Plata - CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | | | | |
Collapse
|
31
|
Giovambattista G, Takeshima SN, Ripoli MV, Matsumoto Y, Franco LAA, Saito H, Onuma M, Aida Y. Characterization of bovine MHC DRB3 diversity in Latin American Creole cattle breeds. Gene 2013; 519:150-8. [DOI: 10.1016/j.gene.2013.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/30/2012] [Accepted: 01/04/2013] [Indexed: 01/23/2023]
|
32
|
Miyasaka T, Takeshima SN, Jimba M, Matsumoto Y, Kobayashi N, Matsuhashi T, Sentsui H, Aida Y. Identification of bovine leukocyte antigen class II haplotypes associated with variations in bovine leukemia virus proviral load in Japanese Black cattle. ACTA ACUST UNITED AC 2012; 81:72-82. [DOI: 10.1111/tan.12041] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 09/29/2012] [Accepted: 11/09/2012] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Y. Matsumoto
- Viral Infectious Diseases Unit; RIKEN; Wako; Saitama; Japan
| | - N. Kobayashi
- Gifu Prefectural Livestock Research Institute; Gifu; Japan
| | - T. Matsuhashi
- Gifu Prefectural Livestock Research Institute; Gifu; Japan
| | - H. Sentsui
- School of Veterinary Medicine; Nihon University; Fujisawa; Kanagawa; Japan
| | | |
Collapse
|