1
|
Chaves CRS, Salamandane A, Vieira EJF, Salamandane C. Antibiotic Resistance in Fermented Foods Chain: Evaluating the Risks of Emergence of Enterococci as an Emerging Pathogen in Raw Milk Cheese. Int J Microbiol 2024; 2024:2409270. [PMID: 39749146 PMCID: PMC11695086 DOI: 10.1155/ijm/2409270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Fermented foods, particularly fermented dairy products, offer significant health benefits but also present serious concerns. Probiotic bacteria, such as lactic acid bacteria (LAB), found in these foods have been strongly linked to the selection and dissemination of antibiotic resistance genes (ARGs). This study aims to examine the potential risks associated with fermented foods, despite their importance in human nutrition, by analyzing the entire production chain from raw material acquisition to storage. Focusing on cheese production as a key fermented food, the study will investigate various aspects, including dairy farm management, milk acquisition, milk handling, and the application of good manufacturing practices (GMP) and good hygiene practices (GHP) in cheese production. The findings of this review highlight that ARGs found in LAB are similar to those observed in hygiene indicator bacteria like E. coli and pathogens like S. aureus. The deliberate use of antibiotics in dairy farms and the incorrect use of disinfectants in cheese factories contribute to the prevalence of antibiotic-resistant bacteria in cheeses. Cheese factories, with their high frequency of horizontal gene transfer, are environments where the microbiological diversity of raw milk can enhance ARG transfer. The interaction between the raw milk microbiota and other environmental microbiotas, facilitated by cross-contamination, increases metabolic communication between bacteria, further promoting ARG transfer. Understanding these bacterial and ARG interactions is crucial to ensure food safety for consumers.
Collapse
Affiliation(s)
- Celso Raul Silambo Chaves
- Clinical Laboratory of the Matacuane Military Health Center, Avenida Alfredo Lawley No 42, Matacuane, Beira, Mozambique
- Department of Nutrition, Faculty of Health Sciences, Lúrio University, Marrere Campus, Nampula 4250, Mozambique
| | - Acácio Salamandane
- Department of Nutrition, Faculty of Health Sciences, Lúrio University, Marrere Campus, Nampula 4250, Mozambique
| | - Emília Joana F. Vieira
- Laboratory of Active Principles, National Center for Scientific Research, Ministry of Higher Education, Science, Technology and Innovation, Avenida Ho Chi Min No 201, Luanda, Angola
| | - Cátia Salamandane
- Department of Nutrition, Faculty of Health Sciences, Lúrio University, Marrere Campus, Nampula 4250, Mozambique
- Laboratory of Food Quality and Safety, Lúrio Interdisciplinary Research Center, Lúrio University, Marrere Campus, Nampula 4250, Mozambique
| |
Collapse
|
2
|
Li Y, Fu S, Klein MS, Wang H. High Prevalence of Antibiotic Resistance in Traditionally Fermented Foods as a Critical Risk Factor for Host Gut Antibiotic Resistome. Microorganisms 2024; 12:1433. [PMID: 39065201 PMCID: PMC11279133 DOI: 10.3390/microorganisms12071433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to assess the suitability of fermented food interventions to replenish damaged gut microbiota. Metagenomic assessment of published sequencing data found that fermented food interventions led to a significant increase in the gut antibiotic resistome in healthy human subjects. Antibiotic resistome and viable antibiotic-resistant (AR) bacteria were further highly prevalent in retail kimchi and artisan cheeses by metagenomic and culture analyses. Representative AR pathogens of importance in nosocomial infections, such as Klebsiella pneumoniae, Serratia marcescens, and vancomycin-resistant Enterococcus (VRE), as well as commensals and lactic acid bacteria, were characterized; some exhibited an extremely high minimum inhibitory concentration (MIC) against antibiotics of clinical significance. Exposing fermented food microbiota to representative antibiotics further led to a boost of the corresponding antibiotic and multidrug-resistance gene pools, as well as disturbed microbiota, including the rise of previously undetectable pathogens. These results revealed an underestimated public health risk associated with fermented food intervention at the current stage, particularly for susceptible populations with compromised gut integrity and immune functions seeking gut microbiota rescue. The findings call for productive intervention of foodborne AR via technology innovation and strategic movements to mitigate unnecessary, massive damages to the host gut microbiota due to orally administered or biliary excreted antibiotics.
Collapse
Affiliation(s)
| | | | | | - Hua Wang
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA (M.S.K.)
| |
Collapse
|
3
|
Quaresma LS, Santos RCV, Gomes GC, Américo MF, Campos GM, Laguna JG, Barroso FAL, Azevedo V, de Jesus LCL. Multidrug resistance profile in Lactobacillus delbrueckii: a food industry species with probiotic properties. World J Microbiol Biotechnol 2024; 40:235. [PMID: 38850338 DOI: 10.1007/s11274-024-04046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Lactobacillus delbrueckii, a widely used lactic acid bacterium in the food industry, has been studied for its probiotic properties and reservoir of antibiotic-resistant genes, raising safety concerns for probiotic formulations and fermented products. This review consolidates findings from 60 articles published between 2012 and 2023, focusing on the global antibiotic resistance profile and associated genetic factors in L. delbrueckii strains. Resistance to aminoglycosides, particularly streptomycin, kanamycin, and gentamicin, as well as resistance to glycopeptides (vancomycin), fluoroquinolones (ciprofloxacin), and tetracyclines was predominant. Notably, although resistance genes have been identified, they have not been linked to mobile genetic elements, reducing the risk of dissemination. However, a significant limitation is the insufficient exploration of responsible genes or mobile elements in 80% of studies, hindering safety assessments. Additionally, most articles originated from Asian and Middle Eastern countries, with strains often isolated from fermented dairy foods. Therefore, these findings underscore the necessity for comprehensive analyses of new strains of L. delbrueckii for potential industrial and biotherapeutic applications and in combating the rise of antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Ludmila Silva Quaresma
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Gabriel Camargos Gomes
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
4
|
Liu J, Liang Z, Zhongla M, Wang H, Sun X, Zheng J, Ding X, Yang F. Prevalence and Molecular Characteristics of Enterococci Isolated from Clinical Bovine Mastitis Cases in Ningxia. Infect Drug Resist 2024; 17:2121-2129. [PMID: 38828370 PMCID: PMC11141574 DOI: 10.2147/idr.s461587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose This study aimed to investigate the prevalence and genetic characterization of enterococcal isolates (Enterococcus faecalis, Enterococcus faecium and Enterococcus hirae) isolated from clinical bovine mastitis cases in Ningxia, China. Patients and Methods The enterococci were identified by 16S rRNA amplification and sequencing. Antimicrobial resistance was determined by disc diffusion method. Virulence and antimicrobial resistance genes were detected by PCR assays. Results Overall, 198 enterococcal isolates were identified from 2897 mastitis samples, including 137 (4.7%) E. faecalis, 50 (1.7%) E. faecium and 11 (0.4%) E. hirae. E. faecalis, E. faecium and E. hirae isolates showed high resistance to tetracycline (92.7%, 68.0%, 90.9%), followed by erythromycin (86.9%, 76.0%, 72.7%). The multidrug-resistant strains of E. faecalis and E. faecium were 29 (21.2%) and 13 (26.0%), respectively. The resistance of E. faecalis, E. faecium and E. hirae isolates to tetracycline is mainly attributed to the presence of tetL (alone or combined with tetM and/or tetK), the erythromycin resistance to ermB (alone or combined with ermC and/or ermA). Moreover, cpd (94.2%), gelE (77.4%), efaAfs (93.4%), and esp (79.6%) were the most common virulence genes in E. faecalis. In E. faecium, except for the gene efaAfs (82.0%), other virulence genes are rarely found. Only two strains of E. hirae carrying asa1 gene were detected. Conclusion The results of this study can provide a reference for the prevention and treatment of bovine mastitis caused by enterococci.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Zeyi Liang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Maocao Zhongla
- Gannan Animal Disease Prevention and Control Center, Hezuo, People’s Republic of China
| | - Hongsheng Wang
- Xiangyang Vocational and Technical College, Xiangyang, People’s Republic of China
| | - Xu Sun
- College of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, People’s Republic of China
| | - Juanshan Zheng
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Xuezhi Ding
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Feng Yang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| |
Collapse
|
5
|
Shahali A, Soltani R, Akbari V. Probiotic Lactobacillus and the potential risk of spreading antibiotic resistance: a systematic review. Res Pharm Sci 2023; 18:468-477. [PMID: 37842520 PMCID: PMC10568962 DOI: 10.4103/1735-5362.383703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 11/02/2022] [Indexed: 10/17/2023] Open
Abstract
Background and purpose Lactobacillus, the most popular probiotic, has recently gained more attention because it is a potential reservoir of antibiotic resistance. This review summarized and discussed the phenotypic-genotypic characteristics of antibiotic resistance. Experimental approach Google Scholar, PubMed, Web of Science, and Scopus were searched up to February 2022. The inclusion criteria were all studies testing antibiotic resistance of probiotic Lactobacillus strains present in human food supplementation and all human/animal model studies in which transferring antibiotic-resistant genes from Lactobacillus strains to another bacterium were investigated. Findings/Results Phenotypic and genotypic characterization of Lactobacillus probiotics showed that the most antibiotic resistance was against protein synthesis inhibitors (fourteen studies, 87.5%) and cell wall synthesis inhibitors (ten studies, 62.5%). Nine of these studies reported the transfer of antibiotic resistance from Lactobacillus probiotic as donor species to pathogenic bacteria and mostly used in vitro methods for resistance gene transfer. Conclusion and implications The transferability of resistance genes such as tet and erm in Lactobacillus increases the risk of spreading antibiotic resistance. Further studies need to be conducted to evaluate the potential spread of antibiotic resistance traits via probiotics, especially in elderly people and newborns.
Collapse
Affiliation(s)
- Ali Shahali
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Rasool Soltani
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
6
|
Banik A, Anjum H, Habib H, Abony M, Begum A, Ahmed Z. Characterization of lactic acid bacteria isolated from street pickles of Dhaka, Bangladesh. Heliyon 2023; 9:e17508. [PMID: 37416662 PMCID: PMC10320110 DOI: 10.1016/j.heliyon.2023.e17508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Traditionally fermented pickles are a popular street food in Bangladesh famous for their unique flavors and health benefits. Pickles are often prepared by fermentation using lactic acid bacteria (LAB) that can act as probiotics. The study was aimed to isolate and characterize lactic acid bacteria from pickle samples collected from streets of Dhaka city, as well as assess the microbial quality of pickles for food safety. A total of 30 pickle samples of different kinds were collected from streets of Dhaka city. Isolation and identification were conducted using conventional cultural and biochemical tests, followed by molecular confirmation of identity. Antibiotic susceptibility of isolates was investigated against 7 antibiotics of different groups. Antimicrobial activity of LAB isolates was analyzed by well-diffusion assay and phenotypic enterocin activity assay. Physiological characterizations of LAB were performed to determine their tolerance to temperature, salt, pH, bile, carbohydrate fermentation pattern, proteolytic activity and biofilm formation. Fifty isolates were obtained from pickle samples, of which 18% was identified as LAB, including Enterococcus faecalis (6) and Enterococcus faecium (3). The rest included S. aureus (18), E. coli (11), Klebsiella spp. (5), Salmonella (3), Shigella (3) and Pseudomonas aeruginosa (1). Antibiotic resistance pattern revealed higher occurrence of resistance against azithromycin among the non-LAB isolates, but none of the LAB isolates were found to resist any of the antibiotics used. Antimicrobial activity of LAB isolates was not observed against the foodborne isolates. All LAB isolates fermented a wide range of carbohydrates and showed adequate tolerance to salt, pH, temperature and bile. Out of 9 isolates, 5 displayed proteolytic activity, and 6 were found as strong biofilm producer. These results suggest that although the LAB isolates from street pickles collected from Dhaka does not have antimicrobial activities, they still have potential to be used as probiotics. It also shows high occurrence of antibiotic resistant foodborne pathogens in pickles, indicating that consumption of such street food can be serious health hazard.
Collapse
Affiliation(s)
- Avijit Banik
- Department of Microbiology, Primeasia University, Dhaka, Bangladesh
| | - Hasnain Anjum
- Department of Microbiology, Primeasia University, Dhaka, Bangladesh
| | - Humayra Habib
- Department of Microbiology, Primeasia University, Dhaka, Bangladesh
| | - Maruf Abony
- Department of Microbiology, Primeasia University, Dhaka, Bangladesh
| | - Anowara Begum
- Department of Microbiology, Dhaka University, Bangladesh
| | - Zakaria Ahmed
- Bangladesh Jute Research Institute, Dhaka, Bangladesh
| |
Collapse
|
7
|
Duche RT, Singh A, Wandhare AG, Sangwan V, Sihag MK, Nwagu TNT, Panwar H, Ezeogu LI. Antibiotic resistance in potential probiotic lactic acid bacteria of fermented foods and human origin from Nigeria. BMC Microbiol 2023; 23:142. [PMID: 37208603 DOI: 10.1186/s12866-023-02883-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/06/2023] [Indexed: 05/21/2023] Open
Abstract
INTRODUCTION Probiotic lactobacilli are generally recognized as safe (GRAS) and are being used in several food and pharma formulations. However, growing concern of antibiotic resistance in bacterial strains of food origin and its possible transmission via functional foods is increasingly being emphasized. OBJECTIVES This study screened potential probiotic lactic acid bacteria (LAB) strains for their phenotypic and genotypic antibiotic resistance profiles. METHODS Susceptibility to different antibiotics was assayed by the Kirby Bauer standard disc diffusion protocol. Both conventional and SYBR-RTq-PCR were used for detection of resistance coding genes. RESULTS A variable susceptibility pattern was documented against different antibiotic classes. LAB strains irrespective of origin displayed marked phenotypic resistance against cephalosporins, aminoglycosides, quinolones, glycopeptides; and methicillin among beta-lactams with few exceptions. In contrast, high sensitivity was recorded against macrolides, sulphonamides and carbapenems sub-group of beta-lactams with some variations. parC, associated with ciprofloxacin resistance was detected in 76.5% of the strains. Other prevalent resistant determinants observed were aac(6?)Ii (42.1%), ermB, ermC (29.4%), and tetM (20.5%). Six (?17.6%) of the isolates were free from genetic resistance determinants screened in this study. CONCLUSION Study revealed presence of antibiotic resistance determinants among lactobacilli from both fermented foods and human sources.
Collapse
Affiliation(s)
- Rachael T Duche
- Department of Dairy Microbiology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
- Department of Microbiology, Federal University of Agriculture Makurdi-Nigeria, Makurdi, Nigeria
- Department of Microbiology, University of Nigeria Nsukka, Nsukka, Nigeria
- UNESCO International Centre for Biotechnology, Nsukka, Nigeria
| | - Anamika Singh
- Department of Dairy Microbiology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Arundhati Ganesh Wandhare
- Department of Dairy Microbiology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Vikas Sangwan
- Department of Dairy Microbiology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Manvesh Kumar Sihag
- Department of Dairy Chemistry, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Tochukwu N T Nwagu
- Department of Microbiology, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Harsh Panwar
- Department of Dairy Microbiology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.
| | - Lewis I Ezeogu
- Department of Microbiology, University of Nigeria Nsukka, Nsukka, Nigeria.
- UNESCO International Centre for Biotechnology, Nsukka, Nigeria.
| |
Collapse
|
8
|
Obioha PI, Anyogu A, Awamaria B, Ghoddusi HB, Ouoba LII. Antimicrobial Resistance of Lactic Acid Bacteria from Nono, a Naturally Fermented Milk Product. Antibiotics (Basel) 2023; 12:antibiotics12050843. [PMID: 37237746 DOI: 10.3390/antibiotics12050843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is one of the biggest threats to public health. The food chain has been recognised as a vehicle for transmitting AMR bacteria. However, information about resistant strains isolated from African traditional fermented foods remains limited. Nono is a traditional, naturally fermented milk product consumed by many pastoral communities across West Africa. The main aim of this study was to investigate and determine the AMR patterns of lactic acid bacteria (LAB) involved in the traditional fermentation of milk for Nono production, and the presence of transferable AMR determinants. METHODS One hundred (100) LAB isolates from Nono identified in a previous study as Limosilactobacillus fermentum, Lactobacillus delbrueckii, Streptococcus thermophilus, Streptococcus infantarius, Lentilactobacillus senioris, Leuconostoc pseudomesenteriodes, and Enterococcus thailandicus were investigated. The minimum inhibitory concentration (MIC) was determined for 18 antimicrobials using the micro-broth dilution method. In addition, LAB isolates were screened for 28 antimicrobial resistance genes using PCR. The ability of LAB isolates to transfer tetracycline and streptomycin resistance genes to Enterococcus faecalis was also investigated. RESULTS The experiments revealed variable antimicrobial susceptibility according to the LAB isolate and the antimicrobial tested. The tetracycline resistance genes tet(S) and tet(M) were detected in isolates Ent. thailandicus 52 and S. infantarius 10. Additionally, aad(E) encoding resistance to streptomycin was detected in Ent. thailandicus 52. The conjugation experiments suggested that the tet(S) and aad(E) genes were transferable in vitro from isolate Ent. thailandicus 52 to Ent. faecalis JH2-2. SIGNIFICANCE AND IMPACT Traditional fermented foods play a significant role in the diet of millions of people in Africa, yet their contribution to the burden of AMR is largely unknown. This study highlights that LAB involved in traditionally fermented foods could be potential reservoirs of AMR. It also underscores the relevant safety issues of Ent. thailandicus 52 and S. infantarius 10 for use as starter cultures as they carry transferable AMR genes. Starter cultures are an essential aspect of improving the safety and quality attributes of African fermented foods. However, AMR monitoring is an important safety aspect in the selection of starter cultures for improving traditional fermentation technologies.
Collapse
Affiliation(s)
- Promiselynda I Obioha
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Amarachukwu Anyogu
- Food Safety and Security, School of Biomedical Sciences, University of West London, St. Marys Road, London W5 5RF, UK
| | - Brigitte Awamaria
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Hamid B Ghoddusi
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Labia Irene I Ouoba
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
- Independent Senior Research Scientist & Consultant, Ouoba-Consulting, London SW16 2DY, UK
| |
Collapse
|
9
|
Ashwini M, Ray M, Sumana K, Halami PM. Prevalence of macrolide-lincosamide-streptogramin resistant lactic acid bacteria isolated from food samples. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:630-642. [PMID: 36712199 PMCID: PMC9873896 DOI: 10.1007/s13197-022-05648-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/14/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
Lactic acid bacteria (LAB) being a reservoir of antibiotic resistance genes, tend to disseminate antibiotic resistance that possibly pose a threat to human and animal health. Therefore, the study focuses on the prevalence of macrolide-lincosamide-streptogramin- (MLS) resistance among LAB isolated from various food samples. Diverse phenotypic and genotypic MLS resistance were determined among the LAB species (n = 146) isolated from fermented food products (n = 6) and intestine of food-producing animals (n = 4). Double disc, triple disc diffusion and standard minimum inhibitory concentration (MIC) tests were evaluated for phenotypic MLS resistance. Specific primers for MLS resistance genes were used for the evaluation of genotypic MLS resistance and gene expressions using total RNA of each isolate at different antibiotic concentrations. The isolates identified are Levilactobacillus brevis (n = 1), Enterococcus hirae (n = 1), Limosilactobacillus fermentum (n = 2), Pediococcus acidilactici (n = 3), Enterococcus faecalis (n = 1). The MIC tests along with induction studies displayed cMLSb, L phenotype, M phenotype, KH phenotype, I phenotype resistance among MLS antibiotics. Genotypic evaluation tests revealed the presence of ermB, mefA/E, msrA/B and msrC genes. Also, gene expression studies displayed increased level of gene expression to the twofold increased antibiotic concentrations. In the view of global health concern, this study identified that food samples and food-producing animals represent source of antibiotic resistant LAB that can disseminate resistance through food chain. This suggests the implementation of awareness in the use of antibiotics as growth promoters and judicious use of antibiotics in veterinary sectors in order to prevent the spread of antibiotic resistance.
Collapse
Affiliation(s)
- M. Ashwini
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015 India
| | - Mousumi Ray
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysuru, 570020 India
| | - K. Sumana
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015 India
| | - Prakash M. Halami
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysuru, 570020 India
| |
Collapse
|
10
|
Probiotic Potential of the Marine Isolate Enterococcus faecium EA9 and In Vivo Evaluation of Its Antisepsis Action in Rats. Mar Drugs 2023; 21:md21010045. [PMID: 36662218 PMCID: PMC9860781 DOI: 10.3390/md21010045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
This study aims to obtain a novel probiotic strain adapted to marine habitats and to assess its antisepsis properties using a cecal ligation and puncture (CLP) model in rodents. The marine Enterococcus faecium EA9 was isolated from marine shrimp samples and evaluated for probiotic potential after phenotypical and molecular identification. In septic animals, hepatic and renal tissues were histologically and biochemically evaluated for inflammation and oxidative stress following the probiotic treatment. Moreover, gene expressions of multiple signaling cascades were determined using RT-PCR. EA9 was identified and genotyped as Enterococcus faecium with a 99.88% identity. EA9 did not exhibit any signs of hemolysis and survived at low pH and elevated concentrations of bile salts. Moreover, EA9 isolate had antibacterial activity against different pathogenic bacteria and could thrive in 6.5% NaCl. Septic animals treated with EA9 had improved liver and kidney functions, lower inflammatory and lipid peroxidation biomarkers, and enhanced antioxidant enzymes. The CLP-induced necrotic histological changes and altered gene expressions of IL-10, IL-1β, INF-γ, COX-2, SOD-1, SOD-2, HO-1, AKT, mTOR, iNOS, and STAT-3 were abolished by the EA9 probiotic in septic animals. The isolate Enterococcus faecium EA9 represents a promising marine probiotic. The in vivo antisepsis testing of EA9 highlighted its potential and effective therapeutic approach.
Collapse
|
11
|
Haryani Y, Halid NA, Guat GS, Nor-Khaizura MAR, Hatta MAM, Sabri S, Radu S, Hasan H. High prevalence of multiple antibiotic resistance in fermented food-associated lactic acid bacteria in Malaysia. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Voaides C, Boiu-Sicuia O, Israel-Roming F, Zamfir M, Grosu-Tudor SS, Angelescu IR, Cornea CP. Lactobacillus Strains for Vegetable Juice Fermentation-Quality and Health Aspects. Biomedicines 2022; 10:2867. [PMID: 36359394 PMCID: PMC9687318 DOI: 10.3390/biomedicines10112867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 08/27/2024] Open
Abstract
Vegetable juices are new carrier variants for beneficial bacteria, representing an alternative to dairy-fermented products, especially for vegan, strict vegetarian, or allergic consumers. The aim of this study was to characterize several Romanian native lactic acid bacteria (LAB) strains to select valuable nutritional and probiotic strains for vegetable juice fermentation. Nineteen LAB strains were analyzed for antibiotic susceptibility (disc-diffusion method), the presence of antibiotic resistance genes, the presence of functional genes. and the production of organic acids by HPLC. Antibiotic resistant strains were observed only with ampicillin (Amp10) and kanamycin (K30), 79% and 32%, respectively, with results partially confirmed by molecular analysis. Multiplex PCR revealed the presence of LBA1272, dltD, folP, agl, α-amy, malL, and ribA genes, related to stress resistance, starch metabolism, and production of vitamins, except for folK. HPLC analyses were performed on beet roots (SF), tomato (TM), and a mixture of carrots, celery, and beet (MTS) juices. High values of lactic acid were recorded in all cases of LAB fermentation (5034-14,176 µg/mL). The maximum values recorded for acetic acid did not exceed 2.5 mg/mL having a positive influence on the product's taste.
Collapse
Affiliation(s)
- Catalina Voaides
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Oana Boiu-Sicuia
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Florentina Israel-Roming
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Medana Zamfir
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independenţei, 060031 Bucharest, Romania
| | - Silvia Simona Grosu-Tudor
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independenţei, 060031 Bucharest, Romania
| | - Iulia Roxana Angelescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independenţei, 060031 Bucharest, Romania
| | - Calina Petruta Cornea
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| |
Collapse
|
13
|
Peng X, Ed-Dra A, Yue M. Whole genome sequencing for the risk assessment of probiotic lactic acid bacteria. Crit Rev Food Sci Nutr 2022; 63:11244-11262. [PMID: 35694810 DOI: 10.1080/10408398.2022.2087174] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Probiotic bacteria exhibit beneficial effects on human and/or animal health, and have been widely used in foods and fermented products for decades. Most probiotics consist of lactic acid bacteria (LAB), which are used in the production of various food products but have also been shown to have the ability to prevent certain diseases. With the expansion of applications for probiotic LAB, there is an increasing concern with regard to safety, as cases with adverse effects, i.e., severe infections, transfer of antimicrobial resistance genes, etc., can occur. Currently, in vitro assays remain the primary way to assess the properties of LAB. However, such methodologies are not meeting the needs of strain risk assessment on a high-throughput scale, in the context of the evolving concept of food safety. Analyzing the complete genetic information, including potential virulence genes and other determinants with a negative impact on health, allows for assessing the safe use of the product, for which whole-genome sequencing (WGS) of individual LAB strains can be employed. Genomic data can also be used to understand subtle differences in the strain level important for beneficial effects, or protect patents. Here, we propose that WGS-based bioinformatics analyses are an ideal and cost-effective approach for the initial in silico microbial risk evaluation, while the technique may also increase our understanding of LAB strains for food safety and probiotic property evaluation.
Collapse
Affiliation(s)
- Xianqi Peng
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | | | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
14
|
Ilyazova A, Blazheva D, Slavchev A, Krastanov A. Study on the effect of sublethal concentrations of antimicrobials on the growth and development of probiotic lactobacilli. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224502002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The objective of this study was to investigate the effect of sublethal concentrations of 5 antibiotics (tetracycline, erythromycin, penicillin G, lincomycin, ciprofloxacin) and 2 preservatives (benzoic and sorbic acid) on the growth and development of 8 probiotic Lactobacillus strains. All lactobacilli were subjected to a large range of concentrations, growth curves were plotted and MICs were determined for each antimicrobial. The results showed correlation between the sublethal concentrations and the growth rate of the studied microorganisms. Based on the obtained data two groups of strains could be defined – sensitive and relatively resistant. The first group includes L. bulgaricus S2. L. bulgaricus S4. L. bulgaricus S19 and L. gasseri S20. The most resistant of this group was L. gasseri S20. The second group showed more sensitivity and the most affected by the antimicrobials was L. bulgaricus S28.
Collapse
|
15
|
Nunziata L, Brasca M, Morandi S, Silvetti T. Antibiotic resistance in wild and commercial non-enterococcal Lactic Acid Bacteria and Bifidobacteria strains of dairy origin: An update. Food Microbiol 2022; 104:103999. [DOI: 10.1016/j.fm.2022.103999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
|
16
|
Wang Y, Dong J, Wang J, Chi W, Zhou W, Tian Q, Hong Y, Zhou X, Ye H, Tian X, Hu R, Wong A. Assessing the drug resistance profiles of oral probiotic lozenges. J Oral Microbiol 2022; 14:2019992. [PMID: 35024089 PMCID: PMC8745366 DOI: 10.1080/20002297.2021.2019992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Probiotic lozenges have been developed to harvest the benefits of probiotics for oral health, but their long-term consumption may encourage the transfer of resistance genes from probiotics to commensals, and eventually to disease-causing bacteria. Aim To screen commercial probiotic lozenges for resistance to antibiotics, characterize the resistance determinants, and examine their transferability in vitro. Results Probiotics of all lozenges were resistant to glycopeptide, sulfonamide, and penicillin antibiotics, while some were resistant to aminoglycosides and cephalosporins. High minimum inhibitory concentrations (MICs) were detected for streptomycin (>128 µg/mL) and chloramphenicol (> 512 µg/mL) for all probiotics but only one was resistant to piperacillin (MIC = 32 µg/mL). PCR analysis detected erythromycin (erm(T), ermB or mefA) and fluoroquinolone (parC or gyr(A)) resistance genes in some lozenges although there were no resistant phenotypes. The dfrD, cat-TC, vatE, aadE, vanX, and aph(3")-III or ant(2")-I genes conferring resistance to trimethoprim, chloramphenicol, quinupristin/dalfopristin, vancomycin, and streptomycin, respectively, were detected in resistant probiotics. The rifampicin resistance gene rpoB was also present. We found no conjugal transfer of streptomycin resistance genes in our co-incubation experiments. Conclusion Our study represents the first antibiotic resistance profiling of probiotics from oral lozenges, thus highlighting the health risk especially in the prevailing threat of drug resistance globally.
Collapse
Affiliation(s)
- Yi Wang
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Jingya Dong
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Junyi Wang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Wei Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Qiwen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Yue Hong
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Xuan Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Hailv Ye
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Xuechen Tian
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
| | - Rongdang Hu
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China.,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
| |
Collapse
|
17
|
Fatahi-Bafghi M, Naseri S, Alizehi A. Genome analysis of probiotic bacteria for antibiotic resistance genes. Antonie van Leeuwenhoek 2022; 115:375-389. [PMID: 34989942 DOI: 10.1007/s10482-021-01703-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022]
Abstract
To date, probiotic bacteria are used in the diet and have various clinical applications. There are reports of antibiotic resistance genes in these bacteria that can transfer to other commensal and pathogenic bacteria. The aim of this study was to use whole-genome sequence analysis to identify antibiotic resistance genes in a group of bacterial with probiotic properties. Also, this study followed existing issues about the importance and presence of antibiotic resistance genes in these bacteria and the dangers that may affect human health in the future. In the current study, a collection of 126 complete probiotic bacterial genomes was analyzed for antibiotic resistance genes. The results of the current study showed that there are various resistance genes in these bacteria that some of them are transferable to other bacteria. The tet(W) tetracycline resistance gene was more than other antibiotic resistance genes in these bacteria and this gene was found in Bifidobacterium and Lactobacillus. In our study, the most numbers of antibiotic resistance genes were transferred with mobile genetic elements. We propose that probiotic companies before the use of a micro-organism as a probiotic, perform an antibiotic susceptibility testing for a large number of antibiotics. Also, they perform analysis of complete genome sequence for prediction of antibiotic resistance genes.
Collapse
Affiliation(s)
- Mehdi Fatahi-Bafghi
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .,Zoonotic Diseases Research Center, Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Sara Naseri
- Zoonotic Diseases Research Center, Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Alizehi
- International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
18
|
Stefańska I, Kwiecień E, Jóźwiak-Piasecka K, Garbowska M, Binek M, Rzewuska M. Antimicrobial Susceptibility of Lactic Acid Bacteria Strains of Potential Use as Feed Additives - The Basic Safety and Usefulness Criterion. Front Vet Sci 2021; 8:687071. [PMID: 34277757 PMCID: PMC8281277 DOI: 10.3389/fvets.2021.687071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/04/2021] [Indexed: 01/12/2023] Open
Abstract
The spread of resistance to antibiotics is a major health concern worldwide due to the increasing rate of isolation of multidrug resistant pathogens hampering the treatment of infections. The food chain has been recognized as one of the key routes of antibiotic resistant bacteria transmission between animals and humans. Considering that lactic acid bacteria (LAB) could act as a reservoir of transferable antibiotic resistance genes, LAB strains intended to be used as feed additives should be monitored for their safety. Sixty-five LAB strains which might be potentially used as probiotic feed additives or silage inoculants, were assessed for susceptibility to eight clinically relevant antimicrobials by a minimum inhibitory concentration determination. Among antimicrobial resistant strains, a prevalence of selected genes associated with the acquired resistance was investigated. Nineteen LAB strains displayed phenotypic resistance to one antibiotic, and 15 strains were resistant to more than one of the tested antibiotics. The resistance to aminoglycosides and tetracyclines were the most prevalent and were found in 37 and 26% of the studied strains, respectively. Phenotypic resistance to other antimicrobials was found in single strains. Determinants related to resistance phenotypes were detected in 15 strains as follows, the aph(3″)-IIIa gene in 9 strains, the lnu(A) gene in three strains, the str(A)-str(B), erm(B), msr(C), and tet(M) genes in two strains and the tet(K) gene in one strain. The nucleotide sequences of the detected genes revealed homology to the sequences of the transmissible resistance genes found in lactic acid bacteria as well as pathogenic bacteria. Our study highlights that LAB may be a reservoir of antimicrobial resistance determinants, thus, the first and key step in considering the usefulness of LAB strains as feed additives should be an assessment of their antibiotic resistance. This safety criterion should always precede more complex studies, such as an assessment of adaptability of a strain or its beneficial effect on a host. These results would help in the selection of the best LAB strains for use as feed additives. Importantly, presented data can be useful for revising the current microbiological cut-off values within the genus Lactobacillus and Pediococcus.
Collapse
Affiliation(s)
- Ilona Stefańska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewelina Kwiecień
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Katarzyna Jóźwiak-Piasecka
- Department of Fermentation Technology, Prof. Waclaw Dabrowski Institute of Agriculture and Food Biotechnology – State Research Institute, Warsaw, Poland
| | - Monika Garbowska
- Division of Milk Biotechnology, Department of Biotechnology, Microbiology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marian Binek
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
19
|
Zhang Y, Zhang Y, Zhou X, Wang S, Li P. Salt Replacement Changed the Bacterial Community Composition and Physicochemical Characteristics of Sodium-Reduced Fermented Sausages during Fermentation and Ripening. Foods 2021; 10:foods10030630. [PMID: 33802635 PMCID: PMC8002409 DOI: 10.3390/foods10030630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/27/2022] Open
Abstract
The impact on fermented sausages with 25% replacement of the sodium chloride content by 14% potassium chloride, 10% calcium ascorbate and 1% calcium glutamate during fermentation and ripening was evaluated based on the bacterial community composition and physicochemical and sensory characteristic analysis. Our results showed that the use of salt replacement varied the composition of the bacterial community and reduced the diversity of that in sodium-reduced fermented sausages. Moreover, the decrease in pH and the moisture content of fermented sausages with salt replacement accelerated the drying and ripening processes. The texture profile and color analysis did not reveal marked differences between normal fermented sausages and sodium-reduced products with salt replacement; however, salt replacement reduced resilience and lightness of fermented sausages. In addition, as shown in the principal component analysis, the comprehensive parameters of the fermented sausages with salt replacement were similar to those of normal salt products. These results indicate that the complex blends of salt replacement have great potential to be used to produce sodium-reduced fermented sausages.
Collapse
|
20
|
Bs S, Thankappan B, Mahendran R, Muthusamy G, Femil Selta DR, Angayarkanni J. Evaluation of GABA Production and Probiotic Activities of Enterococcus faecium BS5. Probiotics Antimicrob Proteins 2021; 13:993-1004. [PMID: 33689135 DOI: 10.1007/s12602-021-09759-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
Gamma-aminobutyric acid (GABA) is a principal inhibitory neurotransmitter in the central nervous system and is produced by irreversible decarboxylation of glutamate. It possesses several physiological functions such as neurotransmission, diuretic, and tranquilizer effects and also regulates cardiovascular functions such as blood pressure and heart rate in addition to playing a role in the reduction of pain and anxiety. The objective of this study was to evaluate the GABA producing ability and probiotic capability of certain lactic acid bacteria strains isolated from dairy products. Around sixty-four bacterial isolates were collected and screened for their ability to produce GABA from monosodium glutamate, among which nine isolates were able to produce GABA. The most efficient GABA producer was Enterococcus faecium BS5. Further, assessment of several important and desirable probiotic properties showed that Ent. faecium BS5 was resistant to acid stress, bile salt, and antibiotics. Ent. faecium BS5 may potentially be used for large-scale industrial production of GABA and also for functional fermented product development.
Collapse
Affiliation(s)
- Sabna Bs
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, T.N., 641 046, India
| | - Bency Thankappan
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, T.N., 641 046, India
| | - Ramasamy Mahendran
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, T.N., 641 046, India
| | - Gayathri Muthusamy
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, T.N., 641 046, India
| | | | - Jayaraman Angayarkanni
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, T.N., 641 046, India.
| |
Collapse
|
21
|
Houngbédji M, Padonou SW, Parkouda C, Johansen PG, Hounsou M, Agbobatinkpo BP, Sawadogo-Lingani H, Jespersen L, Hounhouigan DJ. Multifunctional properties and safety evaluation of lactic acid bacteria and yeasts associated with fermented cereal doughs. World J Microbiol Biotechnol 2021; 37:34. [PMID: 33475896 DOI: 10.1007/s11274-021-02994-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 01/01/2021] [Indexed: 11/25/2022]
Abstract
Spontaneous cereal fermentations involve diverse lactic acid bacteria (LAB) and yeasts which may include multifunctional and safe or unsafe strains. This study assessed acidification ability, safety, antifungal activity and free amino acids release ability of LAB and yeasts previously isolated from spontaneously fermented cereal doughs in Benin. Fourteen LAB and thirteen yeast strains were studied in liquid media and/or in a model cereal dough prepared in laboratory conditions. Antifungal activity was assessed against Candida glabrata in liquid medium. Amino acids were determined by pre-column derivatization and separation with reversed-phase HPLC. Antimicrobial susceptibility was analysed by minimum inhibitory concentration determination. The acidification ability was higher for LAB compared to yeast strains. All LAB strains retarded the growth of C. glabrata Cg1 with the highest inhibition recorded for Weissella confusa Wc1 and Wc2. The highest free amino acid content was found in the doughs fermented with Pichia kudriavzevii Pk2 and Pk3. All the LAB strains were susceptible to ampicillin, chloramphenicol, erythromycin, but displayed phenotypic resistance to kanamycin, streptomycin and tetracycline. Positive PCR amplicon of resistance genes were detected in the following cases: 2 LAB strains were positive for kanamycin (aph(3)III), 5 strains were positive for streptomycin (aadA and/or strA and/or strB) and 3 strains were positive for tetracycline (tet (L) and/or tet (M)). For yeasts, most of the P. kudriavzevii strains were resistant to amphotericin B, fluconazole and itraconazole opposite to K. marxianus and Saccharomyces cerevisiae strains which were susceptible. The results obtained are valuable for selecting safe and multifunctional strains for cereal fermentation in West Africa.
Collapse
Affiliation(s)
- Marcel Houngbédji
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03, BP 2819, Jéricho, Cotonou, Benin.
| | - S Wilfrid Padonou
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03, BP 2819, Jéricho, Cotonou, Benin.,ESTCTPA, Université Nationale d'Agriculture, 01, BP 55, Porto-Novo, Benin
| | - Charles Parkouda
- Département Technologie Alimentaire/IRSAT/CNRST, 03, BP 7047, Ouagadougou 03, Burkina Faso
| | - Pernille Greve Johansen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C., Denmark
| | - Mathias Hounsou
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03, BP 2819, Jéricho, Cotonou, Benin
| | - B Pélagie Agbobatinkpo
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03, BP 2819, Jéricho, Cotonou, Benin
| | - Hagretou Sawadogo-Lingani
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03, BP 2819, Jéricho, Cotonou, Benin.,Département Technologie Alimentaire/IRSAT/CNRST, 03, BP 7047, Ouagadougou 03, Burkina Faso
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C., Denmark
| | - D Joseph Hounhouigan
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03, BP 2819, Jéricho, Cotonou, Benin
| |
Collapse
|
22
|
Abstract
The absence of acquired resistance to antimicrobials has become an important criterion in evaluation of the biosafety of lactobacilli used as industrial starter or probiotic cultures. The aim of this study was to assess antibiotic resistance in starter and non-starter lactobacilli of food origin. Minimal inhibitory concentrations of ampicillin, chloramphenicol, clindamycin, erythromycin, gentamicin, kanamycin, streptomycin, tetracycline and vancomycin were established in 81 strains of lactobacilli (L. acidophilus, L. animalis, L. brevis, L. curvatus, L. delbrueckii, L. fermentum, L. helveticus, L. paracasei, L. plantarum, L. rhamnosus and L. sakei) by the microdilution method. The strains were classified as susceptible or resistant to antimicrobials based on the cut-off values according to the EFSA guideline. Sixty-two strains (77% food isolates, 76% starter or adjunct cultures) were resistant to at least one antimicrobial agent (the most frequently to aminoglycosides). Adjunct cultures showed a higher antibiotic resistance (80%) than starters (60%). Four multiresistant strains (3 food isolates, 1 adjunct culture) were analyzed by whole genome sequencing. One potentially transferable aadE gene (responsible for streptomycin resistance) was detected only in one multi-drug resistant strain of L. animalis originating from an adjunct culture. Thus, there is a risk of horizontal transmission of this gene. It is necessary to eliminate such strains from use in the food industry. This study provides relevant data concerning the use of lactobacilli in safe food production. To ensure food safety, detailed characterization of resistance to antimicrobials is necessary not only in starter strains but also in non-starter lactic acid bacteria isolated from food products.
Collapse
|
23
|
Molecular identification and antibiotic resistance of bacteriocinogenic lactic acid bacteria isolated from table olives. Arch Microbiol 2020; 203:597-607. [PMID: 32995979 DOI: 10.1007/s00203-020-02053-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 01/18/2023]
Abstract
In the present study, lactic acid bacteria were isolated from table olive in Morocco. Random Amplified Polymorphic DNA fingerprinting with (GTG)'(5) primer revealed a remarquable variability within isolates. According to the molecular identification, Enterococcus faecium was the most dominant species isolated with 32 strains (84.21%), followed by 4 strains of Weissella paramesenteroides (10.52%), 1 strain of Leuconostoc mesenteroides (2.63%) and Lactobacillus plantarum (2.63%). All of the strains that were identified showed occurrence of more than one bacteriocin-encoding gene. Based on the results obtained, L. plantarum 11 showed a mosaic of loci coding for nine bacteriocins (pln A, pln D, pln K, pln G, pln B, pln C, pln N, pln J, ent P). A phenotypic and genotypic antibiotic resistance was also examined. L. plantarum 11, L. mesenteroides 62, W. paramesenteroides 9 and W. paramesenteroides 36 as well as all the strains of E. faecium were susceptible to ampicillin, clindamycin and teicoplanin; however, isolates showed a resistance profile against tetracycline and erythromycin. Except E. faecium 114, E. faecium 130 and L. plantarum 11, no antibiotic resistance genes were detected in all of the strains, which might be due to resistances resulting from non-transferable or non-acquired resistance determinants (intrinsic mechanism).
Collapse
|
24
|
Jin Z, Ding G, Yang G, Li G, Zhang W, Yang L, Li W. Rapid detection of antibiotic resistance genes in lactic acid bacteria using PMMA-based microreactor arrays. Appl Microbiol Biotechnol 2020; 104:6375-6383. [PMID: 32488313 DOI: 10.1007/s00253-020-10699-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 12/25/2022]
Abstract
The emergence of lactic acid bacteria (LABs) resistant to existing antimicrobial drugs is a growing health crisis. To decrease the overuse of antibiotics, molecular diagnostic systems that can rapidly determine the presence of antibiotic resistance (AR) genes in LABs from yogurt samples are needed. This paper describes a fully integrated, miniaturized plastic chip and closed-tube detection chemistry that performs multiplex nucleic acid amplification. High-throughput identification of AR genes was achieved through this approach, and six AR genes were analyzed simultaneously in < 2 h. This time-to-result included the time required for the extraction of DNA. The detection limit of the chip was 103 CFU mL-1, which was consistent with that of tube LAMP. We detected and identified multiple DNAs, including streptomycin, tetracycline, and vancomycin resistance-associated genes, with complete concordance to the Kirby-Bauer disk diffusion method.Key Points• A miniaturized chip was presented, and multiplex nucleic acid amplification was performed.• The device can be integrated with LAMP for rapid detection of antibiotic resistance genes.• The approach had a high throughput of AR gene analysis in lactic acid bacteria.
Collapse
Affiliation(s)
- Zengjun Jin
- School of Medicine, Hebei University of Engineering, Handan, 056000, Hebei Province, China
| | - Guotao Ding
- Handan Municipal Centre for Disease Control and Prevention, Handan, 056000, Hebei Province, China
| | - Guoxing Yang
- Handan Municipal Centre for Disease Control and Prevention, Handan, 056000, Hebei Province, China
| | - Guiying Li
- School of Medicine, Hebei University of Engineering, Handan, 056000, Hebei Province, China
| | - Wei Zhang
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Lixin Yang
- Hebei Centre for Disease Control and Prevention, Shijiazhuang, 050021, Hebei Province, China
| | - Weihao Li
- Handan Municipal Centre for Disease Control and Prevention, Handan, 056000, Hebei Province, China.
| |
Collapse
|
25
|
Zhang Y, Qin Y, Wang Y, Huang Y, Li P, Li P. Lactobacillus plantarum LPL-1, a bacteriocin producing strain, changed the bacterial community composition and improved the safety of low-salt fermented sausages. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
|
27
|
Kang MS, Yeu JE, Hong SP. Safety Evaluation of Oral Care Probiotics Weissella cibaria CMU and CMS1 by Phenotypic |and Genotypic Analysis. Int J Mol Sci 2019; 20:E2693. [PMID: 31159278 PMCID: PMC6601035 DOI: 10.3390/ijms20112693] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022] Open
Abstract
Weissella cibaria CMU and CMS1 are known to exert beneficial effects on the oral cavity but have not yet been determined to be generally recognized as safe (GRAS), although they are used as commercial strains in Korea. We aimed to verify the safety of W. cibaria CMU and CMS1 strains through phenotypic and genotypic analyses. Their safety was evaluated by a minimum inhibitory concentration assay for 14 antibiotics, DNA analysis for 28 antibiotic resistance genes (ARGs) and one conjugative element, antibiotic resistance gene transferability, virulence gene analysis, hemolysis, mucin degradation, toxic metabolite production, and platelet aggregation reaction. W. cibaria CMU showed higher kanamycin resistance than the European Food Safety Authority (EFSA) cut-off, but this resistance was not transferred to the recipient strain. W. cibaria CMU and CMS1 lacked ARGs in chromosomes and plasmids, and genetic analysis confirmed that antibiotic resistance of kanamycin was an intrinsic characteristic of W. cibaria. Additionally, these strains did not harbor virulence genes associated with pathogenic bacteria and lacked toxic metabolite production, β-hemolysis, mucin degradation, bile salt deconjugation, β-glucuronidase, nitroreductase activity, gelatin liquefaction, phenylalanine degradation, and platelet aggregation. Our findings demonstrate that W. cibaria CMU and CMS1 can achieve the GRAS status in future.
Collapse
Affiliation(s)
- Mi-Sun Kang
- Research Institute, Oradentics Inc., 1805-ho, 25 Seongsuil-ro-4-gil, Seongdong-gu, Seoul 04781, Korea.
| | - Ji-Eun Yeu
- Research Institute, Oradentics Inc., 1805-ho, 25 Seongsuil-ro-4-gil, Seongdong-gu, Seoul 04781, Korea.
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Sang-Phil Hong
- Division of Strategic Food Research, Korea Food Research Institute (KFRI), 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea.
| |
Collapse
|
28
|
Li Y, Li L, Kromann S, Chen M, Shi L, Meng H. Antibiotic Resistance of Lactobacillus spp. and Streptococcus thermophilus Isolated from Chinese Fermented Milk Products. Foodborne Pathog Dis 2019; 16:221-228. [DOI: 10.1089/fpd.2018.2516] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yiming Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Research Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Lili Li
- Research Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Sofie Kromann
- Department of Veterinary Disease Biology, Faculty Health and Medicine, University of Copenhagen, Frederiksberg Copenhagen, Denmark
| | - Miaorui Chen
- Xiamen Hongyi Testing Co., Ltd., Xiamen, Fujian, China
| | - Lei Shi
- Research Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
29
|
Wang J, Li M, Wang J, Liu M, Yang K, Zhang J, Fan M, Wei X. Antibiotic Resistance of Coagulase-Negative Staphylococci and Lactic Acid Bacteria Isolated from Naturally Fermented Chinese Cured Beef. J Food Prot 2018; 81:2054-2063. [PMID: 30485765 DOI: 10.4315/0362-028x.jfp-18-195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This study provided phenotypic and molecular analysis of the antibiotic resistance within coagulase-negative staphylococci and lactic acid bacteria isolated from naturally fermented Chinese cured beef. A total of 49 strains were isolated by selective medium and identified at the species level by 16S rRNA gene sequencing as follows: Staphylococcus carnosus (37), Lactobacillus plantarum (6), Weissella confusa (4), Lactobacillus sakei (1), and Weissella cibaria (1). All strains were typed by random amplified polymorphic DNA fingerprinting, and their antibiotic resistances profiles to 15 antibiotics were determined as the MIC by using the agar dilution method. All the tested strains were sensitive to ampicillin, and most of them were also sensitive to penicillin, gentamycin, neomycin, norfloxacin, and ciprofloxacin with low MICs. High resistance to streptomycin, vancomycin, erythromycin, roxithromycin, lincomycin, and kanamycin was widely observed, while the resistant levels to tetracycline, oxytetracycline, and chloramphenicol varied. The presence of corresponding resistance genes in resistant isolates was investigated by PCR, with the following genes detected: tet(M) gene in 9 S. carnosus strains and 1 W. confusa strain; erm(F) gene in 10 S. carnosus strains; ere(A) gene in 6 S. carnosus strains; ere(A) gene in 4 S. carnosus strains and 1 L. plantarum strain; and str(A) gene and str(B) gene in 3 S. carnosus strains. The results indicated that multiple antibiotic resistances were common in coagulase-negative staphylococci and lactic acid bacteria strains isolated from naturally fermented Chinese cured beef. Safety analysis and risk assessment should be performed for application in meat products.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Mingyue Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Miaomiao Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Kun Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| |
Collapse
|
30
|
Wang J, Wang J, Yang K, Liu M, Zhang J, Wei X, Fan M. Screening for potential probiotic from spontaneously fermented non-dairy foods based on in vitro probiotic and safety properties. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1386-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
31
|
Wang J, Wei X, Fan M. Assessment of Antibiotic Susceptibility within Lactic Acid Bacteria and Coagulase-Negative Staphylococci Isolated from Hunan Smoked Pork, a Naturally Fermented Meat Product in China. J Food Sci 2018; 83:1707-1715. [PMID: 29786847 DOI: 10.1111/1750-3841.14147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 02/20/2018] [Accepted: 03/08/2018] [Indexed: 01/10/2023]
Abstract
The aim of this study was to evaluate the antibiotic susceptibility of lactic acid bacteria (LAB) and coagulase-negative staphylococci (CNS) strains isolated from naturally fermented smoked pork produced in Hunan, China. A total of 48 strains were isolated by selective medium and identified at the species level by 16S rRNA gene sequencing as follows: Staphylococcus carnosus (23), Lactobacillus plantarum (12), Lactobacillus brevis (10), Lactobacillus sakei (1), Weissella confusa (1), and Weissella cibaria (1). All strains were typed by RAPD-PCR, and their susceptibility to 15 antibiotics was determined and expressed as the minimum inhibitory concentration (MIC) using agar dilution method. High resistance to penicillin G, streptomycin, gentamycin, vancomycin, chloramphenicol, norfloxacin, ciprofloxacin, kanamycin, and neomycin was found among the isolates. All the strains were sensitive to ampicillin, while the susceptibility to tetracycline, oxytetracycline, erythromycin, lincomycin, and roxithromycin varied. The presence of relevant resistance genes was investigated by PCR and sequencing, with the following genes detected: str(A), str(B), tet(O), tet(M), ere(A), and catA. Eleven strains, including 3 S. carnosus, 6 L. plantarum, and 2 L. brevis, harbored more than 3 antibiotic resistance genes. Overall, multiple antibiotic resistance patterns were widely observed in LAB and S. carnosus strains isolated from Hunan smoked pork. Risk assessment should be carried out with regard to the safe use of LAB and CNS in food production. PRACTICAL APPLICATION We evaluated the antibiotic resistance of lactic acid bacteria and coagulase-negative staphylococci strains isolated from Chinese naturally fermented smoked pork. Our results may provide important data on establishing breakpoint standards for LAB and CNS and evaluating the safety risk of these strains for commercial use.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Science and Engineering, Northwest A&F Univ., Yangling, 712100, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F Univ., Yangling, 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F Univ., Yangling, 712100, China
| |
Collapse
|
32
|
Yang J, Wang J, Yang K, Liu M, Qi Y, Zhang T, Fan M, Wei X. Antibacterial activity of selenium-enriched lactic acid bacteria against common food-borne pathogens in vitro. J Dairy Sci 2018; 101:1930-1942. [DOI: 10.3168/jds.2017-13430] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/26/2017] [Indexed: 11/19/2022]
|
33
|
Oh A, Daliri EBM, Oh DH. Screening for potential probiotic bacteria from Korean fermented soybean paste: In vitro and Caenorhabditis elegans model testing. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Preethi C, Thumu SCR, Halami PM. Occurrence and distribution of multiple antibiotic-resistant Enterococcus and Lactobacillus spp. from Indian poultry: in vivo transferability of their erythromycin, tetracycline and vancomycin resistance. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1270-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
35
|
In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1258-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
36
|
Guo H, Pan L, Li L, Lu J, Kwok L, Menghe B, Zhang H, Zhang W. Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products. J Food Sci 2017; 82:724-730. [PMID: 28182844 DOI: 10.1111/1750-3841.13645] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/30/2016] [Accepted: 01/09/2017] [Indexed: 11/29/2022]
Abstract
Lactobacilli are widely used as starter cultures or probiotics in yoghurt, cheese, beer, wine, pickles, preserved food, and silage. They are generally recognized as safe (GRAS). However, recent studies have shown that some lactic acid bacteria (LAB) strains carry antibiotic resistance genes and are resistant to antibiotics. Some of them may even transfer their intrinsic antibiotic resistance genes to other LAB or pathogens via horizontal gene transfer, thus threatening human health. A total of 33 Lactobacillus strains was isolated from fermented milk collected from different areas of China. We analyzed (1) their levels of antibiotic resistance using a standardized dilution method, (2) their antibiotic resistance gene profiles by polymerase chain reaction (PCR) using gene-specific primers, and (3) the transferability of some of the detected resistance markers by a filter mating assay. All Lactobacillus strains were found to be resistant to vancomycin, but susceptible to gentamicin, linezolid, neomycin, erythromycin, and clindamycin. Their susceptibilities to tetracycline, kanamycin, ciprofloxacin, streptomycin, quinupristin/dalfopristin, trimethoprim, ampicillin, rifampicin, and chloramphenicol was different. Results from our PCR analysis revealed 19 vancomycin, 10 ciprofloxacin, and 1 tetracycline-resistant bacteria that carried the van(X), van(E), gyr(A), and tet(M) genes, respectively. Finally, no transferal of the monitored antibiotic resistance genes was observed in the filter mating assay. Taken together, our study generated the antibiotic resistance profiles of some milk-originated lactobacilli isolates and preliminarily assessed their risk of transferring antibiotic gene to other bacteria. The study may provide important data concerning the safe use of LAB.
Collapse
Affiliation(s)
- Huiling Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education PRC, Inner Mongolia Agricultural Univ., Hohhot, 010018, China
| | - Lin Pan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education PRC, Inner Mongolia Agricultural Univ., Hohhot, 010018, China
| | - Lina Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education PRC, Inner Mongolia Agricultural Univ., Hohhot, 010018, China
| | - Jie Lu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education PRC, Inner Mongolia Agricultural Univ., Hohhot, 010018, China
| | - Laiyu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education PRC, Inner Mongolia Agricultural Univ., Hohhot, 010018, China
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education PRC, Inner Mongolia Agricultural Univ., Hohhot, 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education PRC, Inner Mongolia Agricultural Univ., Hohhot, 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education PRC, Inner Mongolia Agricultural Univ., Hohhot, 010018, China
| |
Collapse
|
37
|
Sornplang P, Sakulsawasdiphan K, Piyadeatsoontorn S, Surasorn B. Antimicrobial susceptibility of lactic acid bacteria isolated from human and food-producing animal feces in Khon Kaen Province, Thailand. Trop Anim Health Prod 2016; 48:1739-1745. [DOI: 10.1007/s11250-016-1116-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
|
38
|
Jiang X, Yu T, Zhou D, Ji S, Zhou C, Shi L, Wang X. Characterization of quinolone resistance mechanisms in lactic acid bacteria isolated from yogurts in China. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
39
|
Abriouel H, Casado Muñoz MDC, Lavilla Lerma L, Pérez Montoro B, Bockelmann W, Pichner R, Kabisch J, Cho GS, Franz CMAP, Gálvez A, Benomar N. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res Int 2015; 78:465-481. [PMID: 28433315 DOI: 10.1016/j.foodres.2015.09.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 11/17/2022]
Affiliation(s)
- Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain.
| | - María Del Carmen Casado Muñoz
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Leyre Lavilla Lerma
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Beatriz Pérez Montoro
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Wilhelm Bockelmann
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Haid-und-Neu-Str. 9, D-76131 Karlsruhe, Germany
| | - Rohtraud Pichner
- Hochschule Fulda, University of Applied Sciences, Department of Nutritional, Food and Consumer Sciences, Leipziger Straße 123, 36037 Fulda, Germany
| | - Jan Kabisch
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Haid-und-Neu-Str. 9, D-76131 Karlsruhe, Germany
| | - Gyu-Sung Cho
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Haid-und-Neu-Str. 9, D-76131 Karlsruhe, Germany
| | - Charles M A P Franz
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Haid-und-Neu-Str. 9, D-76131 Karlsruhe, Germany
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| |
Collapse
|
40
|
Morandi S, Silvetti T, Miranda Lopez J, Brasca M. Antimicrobial Activity, Antibiotic Resistance and the Safety of Lactic Acid Bacteria in Raw Milk Valtellina Casera Cheese. J Food Saf 2014. [DOI: 10.1111/jfs.12171] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- S. Morandi
- Institute of Sciences of Food Production; Italian National Research Council; Via Celoria 2 Milan 20133 Italy
| | - T. Silvetti
- Institute of Sciences of Food Production; Italian National Research Council; Via Celoria 2 Milan 20133 Italy
| | - J.M. Miranda Lopez
- Department of Analytical Chemistry, Nutrition and Bromatology; Veterinary Faculty; University of Santiago de Compostela; Lugo Spain
| | - M. Brasca
- Institute of Sciences of Food Production; Italian National Research Council; Via Celoria 2 Milan 20133 Italy
| |
Collapse
|
41
|
Loiko NG, Krasnova MA, Pichugina TV, Grinevich AI, Ganina VI, Kozlova AN, Nikolaev YA, Gal’chenko VF, El’-Registan GI. Changes in the phase variant spectra in the populations of lactic acid bacteria under antibiotic treatment. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714030114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
Sharma P, Tomar SK, Goswami P, Sangwan V, Singh R. Antibiotic resistance among commercially available probiotics. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.01.025] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
43
|
Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update). EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3449] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
44
|
Devirgiliis C, Zinno P, Perozzi G. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Front Microbiol 2013; 4:301. [PMID: 24115946 PMCID: PMC3792357 DOI: 10.3389/fmicb.2013.00301] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/19/2013] [Indexed: 12/21/2022] Open
Abstract
Lactobacilli represent a major Lactic Acid Bacteria (LAB) component within the complex microbiota of fermented foods obtained from meat, dairy, and vegetable sources. Lactococci, on the other hand, are typical of milk and fermented dairy products, which in turn represent the vast majority of fermented foods. As is the case for all species originating from the environment, foodborne lactobacilli and lactococci consist of natural, uncharacterized strains, whose biodiversity depends on geographical origin, seasonality, animal feeding/plant growth conditions. Although a few species of opportunistic pathogens have been described, lactobacilli and lactococci are mostly non-pathogenic, Gram-positive bacteria displaying probiotic features. Since antibiotic resistant (AR) strains do not constitute an immediate threat to human health, scientific interest for detailed studies on AR genes in these species has been greatly hindered. However, increasing evidence points at a crucial role for foodborne LAB as reservoir of potentially transmissible AR genes, underlining the need for further, more detailed studies aimed at identifying possible strategies to avoid AR spread to pathogens through fermented food consumption. The availability of a growing number of sequenced bacterial genomes has been very helpful in identifying the presence/distribution of mobile elements associated with AR genes, but open questions and knowledge gaps still need to be filled, highlighting the need for systematic and datasharing approaches to implement both surveillance and mechanistic studies on transferability of AR genes. In the present review we report an update of the recent literature on AR in lactobacilli and lactococci following the 2006 EU-wide ban of the use of antibiotics as feed additives in animal farming, and we discuss the limits of the present knowledge in evaluating possible risks for human health.
Collapse
Affiliation(s)
- Chiara Devirgiliis
- CRA-NUT, Food and Nutrition Research Center, Agricultural Research Council Roma, Italy
| | | | | |
Collapse
|