1
|
Gheno GC, Kappes R, França M, Haygert Velho IMP, Xavier ACH, Lobo E Silva LE, Wagner R, Velho JP, Neto AT. Linseed oil supplementation alters milk fatty acid profile, mitigates heat stress, and improves summer milk yield in grazing dairy cows. Trop Anim Health Prod 2024; 56:337. [PMID: 39390269 DOI: 10.1007/s11250-024-04127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Dietary supplementation of fat can be an important source of energy to compensate for the reduction in dry matter intake in dairy cows during heat stress periods. Studies have reported that supplementing dairy cow diets with linseed oil (LO) can increase milk yield and enhance the levels of beneficial fatty acids, such as omega-3 fatty acids, in the milk. The objective of this research was to evaluate the effect of LO supplementation on milk fatty acids profile, milk yield and composition, and physiological parameters of grazing cows. The study was conducted in two seasons, one in spring and one in summer. A 2 × 2 Latin square design was used in each experiment. Twelve Holstein and crossbred Holstein x Jersey cows were involved in each season. Cows were divided into two groups: control (TC) with no supplementation and treatment (TL) supplemented with 400 g/day of LO. The results showed that LO supplementation altered the milk fatty acid profile: decreased concentrations of short and medium-chain fatty acids (C10:0 - C17:1) except for C13:0 and increased concentrations of long-chain fatty acids (C18, C18:1 (both trans and cis isomers), C18:2 (specific conjugated linoleic acid - CLA isomers), and C18:3 n3 (omega-3)). Additionally, milk yield increased by 1.5 l per day during summer in LO-supplemented cows, while milk fat, protein, and casein content decreased. Milk stability increased by 2.2% in the LO-supplemented group. LO-supplemented cows reduced internal body temperature and heart frequency in the afternoon and increased daily rumination time by 20 min. In conclusion, LO supplementation can be an effective strategy to improve the nutritional profile of milk by altering fatty acid composition towards potentially healthier fats, mitigate the negative effects of heat stress on grazing cows during summer, as evidenced by reduced body temperature and heart frequency and increase milk yield.
Collapse
Affiliation(s)
- Gadriéli Cristina Gheno
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina - CAV/UDESC, Lages, Santa Catarina, Brazil
| | - Roberto Kappes
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina - CAV/UDESC, Lages, Santa Catarina, Brazil.
| | - Marciél França
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina - CAV/UDESC, Lages, Santa Catarina, Brazil
| | | | | | | | - Roger Wagner
- Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - João Pedro Velho
- Universidade Federal de Santa Maria, Palmeira das Missões, Rio Grande do Sul, Brazil
| | - André Thaler Neto
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina - CAV/UDESC, Lages, Santa Catarina, Brazil
| |
Collapse
|
2
|
Ghedini CP, Silva LHP, Moura DC, Brito AF. Supplementing flaxseed meal with sucrose, flaxseed oil, or both: Effects on milk enterolactone, ruminal microbiota profile, production performance, and nutrient utilization in dairy cows. J Dairy Sci 2024; 107:6834-6851. [PMID: 38762110 DOI: 10.3168/jds.2024-24649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/01/2024] [Indexed: 05/20/2024]
Abstract
Flaxseed is the richest source of secoisolariciresinol diglucoside, which is converted by ruminal microorganisms primarily to the mammalian lignan enterolactone. Our objective was to investigate the effect of diets containing soybean meal or flaxseed meal (FM) supplemented with sucrose, flaxseed oil, or both, on milk enterolactone concentration yield, diversity, and relative abundance of ruminal bacterial taxa, ruminal fermentation profile, production performance, milk fatty acids (FA) yield, and nutrient utilization in dairy cows. Sixteen Holstein cows (8 multiparous [4 ruminally cannulated] and 8 primiparous) averaging (mean ± SD) 134 ± 54.1 DIM and 679 ± 78.9 kg of BW in the beginning of the study were assigned to treatment sequences in a replicated 4 × 4 Latin square design. Each experimental period lasted 25 d, with 18 d for diet adaptation and 7 d for data and sample collection. Diets were formulated to contain a 60:40 forage:concentrate ratio and included the following (DM basis): (1) 8% soybean meal and 23% ground corn (SBM); (2) 15% FM, 10.7% ground corn, and 5% sucrose (FLX+S); (3) 15% FM, 15.4% ground corn, and 3% flaxseed oil (FLX+O); and (4) 15% FM, 10.2% ground corn, 5% sucrose, and 3% flaxseed oil (FLX+SO). Compared with SBM, the concentration and yield of milk enterolactone increased in cows fed the FM diets but did not differ among FLX+S, FLX+O, and FLX+SO. The relative abundances of the phyla Firmicutes, Verrucomicrobiota, and Actinobacteriota, and those of the bacterial genera Lachnospiraceae NK3A20 group, Eubacterium coprostanoligenes group, Anaeromusa-Anaeroarcus, WCHB1-41, and p-251-o5 decreased, whereas Prevotella and NK4A214 group increased when comparing SBM against at least 1 diet containing FM. Furthermore, the relative abundances of Firmicutes and Actinobacteriota and those of Prevotella, Lachnospiraceae NK3A20 group, Eubacterium coprostanoligenes group, Acetitomaculum, Lachnospiraceae unclassified, NK4A214 group, and Anaeromusa-Anaeroarcus changed (increased or decreased) across the FLX+S, FLX+O, and FLX+SO diets. However, all these changes in the relative abundance of the ruminal bacterial taxa were not conclusively associated with the effect of diets on milk enterolactone. Diets did not affect ruminal pH and concentrations of NH3-N and total VFA. Dry matter intake and yields of milk, milk fat, and milk true protein all decreased in cows fed FLX+O or FLX+SO. Yields of milk total odd-chain FA, branched-chain FA, total <16C FA, and total 16C FA decreased with feeding FLX+O and FLX+SO. The apparent total-tract digestibilities of DM and OM were lowest in the FLX+S and FLX+O diets, with CP and ADF digestibilities lowest in cows receiving FLX+S or FLX+O, respectively. Urinary excretion of total N was lowest with feeding SBM. Contrarily, diets did not affect the urinary excretion of total purine derivatives. In brief, despite the effect of diets on the relative abundance of several ruminal microbiota phyla and genera, we were unable to conclusively associate these changes with increased milk enterolactone in FM-containing diets versus SBM.
Collapse
Affiliation(s)
- C P Ghedini
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824
| | - L H P Silva
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824
| | - D C Moura
- Instituto de Ciências Agrárias e Ambientais, Universidade Federal de Mato Grosso-Campus Sinop, Sinop, MT, Brazil 78557-267
| | - A F Brito
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824.
| |
Collapse
|
3
|
Clark KL, Park K, Lee C. Exploring the cause of reduced production responses to feeding corn dried distillers grains in lactating dairy cows. J Dairy Sci 2024; 107:6717-6731. [PMID: 38642660 DOI: 10.3168/jds.2023-24356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/10/2024] [Indexed: 04/22/2024]
Abstract
An experiment was conducted to identify the factors that cause reduced production of cows fed a diet with high content of corn distillers grains with solubles (DDGS). We hypothesized that the factors could be high sulfur (S) content in DDGS, which may directly (S toxicity) or indirectly (DCAD) cause reduced production. We also hypothesized that high PUFA in DDGS could be another major factor. In a randomized complete block design, 60 lactating cows (15 primiparous and 45 multiparous; average ± SD at the beginning of the trial: milk yield, 44.0 ± 6.9 kg/d; DIM, 123 ± 50; BW, 672 ± 82 kg) were blocked, and cows in each block were randomly assigned to 1 of the following treatments: SBM (4.7% fatty acids [FA], 0.22% S, and 178 mEq/kg DM of DCAD), a diet containing soybean meal as the main protein source; DG, with SBM replacing mainly soybean byproducts and supplemental fat with distillers grains at 30% dietary DM (4.7% FA, 0.44% S, and 42 mEq/kg DM of DCAD); SBM+S, SBM with sodium bisulfate for additional dietary S (4.8% FA, 0.37% S, and 198 mEq/kg DM of DCAD); SBM+CO, SBM with corn oil (4.7% FA, 0.23%, and 165 mEq/kg DM of DCAD); and DG+DCAD, DG with increased DCAD (4.7% FA, 0.40% S, and 330 mEq/kg DM of DCAD). Due to the limited number of tiestalls, blocks 1 to 6 started the experiment first as phase 1, and the rest of the blocks, as phase 2, started the experiment after phase 1. All cows were fed the SBM diet for 10 d as a covariate period followed by the experimental period for 35 d. Data were analyzed using PROC MIXED of SAS (Version 9.4, SAS Institute Inc.); block and phase were random effects; and treatments, repeated week, and interaction were fixed effects. We found an interaction of week by treatment for DMI. Although milk yield did not change, milk fat concentration tended to decrease (2.78% vs. 3.34%) for DG compared with SBM. Dry matter, OM, NDF, and CP digestibilities were lower when cows were fed the DG diet compared with SBM. Additionally, cows fed DG had lower blood concentrations of HCO3-, base excess, and total (t)CO2 compared with SBM. The SBM+S diet did not affect production, nutrient digestibility, or blood parameters compared with SBM. The SBM+CO diet decreased milk fat concentration and yield compared with SBM. The DG+DCAD diet tended to increase milk fat yield and concentration (1.24 vs. 1.47 kg/d; 2.78% vs. 3.37%) and increased ECM (40.9 vs. 45.1 kg/d) compared with DG but did not improve nutrient digestibility. However, blood HCO3-, base excess, and tCO2 were greater for DG+DCAD compared with DG. In conclusion, the indirect role of S-, altering DCAD, along with the high PUFA content in DDGS, appear to be the factors causing reduced production responses to a high DDGS diet. Increasing DCAD to 300 mEq/kg DM in a high DDGS diet can be a feeding strategy to alleviate reduced production responses.
Collapse
Affiliation(s)
- K L Clark
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691
| | - K Park
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691
| | - C Lee
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691.
| |
Collapse
|
4
|
Dietary Polysaccharide-Rich Extract from Noni ( Morinda citrifolia L.) Fruit Modified Ruminal Fermentation, Ruminal Bacterial Community and Nutrient Digestion in Cashmere Goats. Animals (Basel) 2023; 13:ani13020221. [PMID: 36670760 PMCID: PMC9854603 DOI: 10.3390/ani13020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023] Open
Abstract
In two consecutive studies, we evaluated the effects of polysaccharide-rich noni (Morinda citrifolia L.) fruit extract (NFP) on ruminal fermentation, ruminal microbes and nutrient digestion in cashmere goats. In Exp. 1, the effects of a diet containing NFP of 0, 0.1%, 0.2%, 0.4% and 0.55% on in vitro ruminal fermentation at 3, 6, 9, 12 and 24 h were determined, whereas in Exp. 2, fourteen cashmere goats (46.65 ± 3.36 kg of BW ± SD) were randomly assigned to two treatments: the basal diet with or without (CON) supplementation of NFP at 4 g per kg DM (0.4%). The in vitro results showed that NFP linearly increased concentrations of volatile fatty acids (VFA), quadratically decreased ammonia-N concentration, and changed pH, protozoa number, gas production and the microbial protein (MCP) concentration, and was more effective at 0.4% addition, which yielded similar results in ruminal fermentation in Exp. 2. In addition, NFP increased the apparent digestibility of dry matter and crude protein and the abundance of Firmicutes, and reduced the abundance of Bacteroides and Actinobacteria. Ruminococcus_1 was positively associated with VFA concentration. The Rikenellaceae_RC9_gut_group was positively correlated with protozoa and negatively correlated with MCP concentration. Thus, NFP has potential as a ruminal fermentation enhancer for cashmere goats.
Collapse
|
5
|
Zagorakis K, Milis C. Prediction of degradability and digestibility parameters of protein supplements used in sheep nutrition from nutrient composition. Trop Anim Health Prod 2022; 54:393. [DOI: 10.1007/s11250-022-03389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
|
6
|
Milk yield and composition in dairy goats fed extruded flaxseed or a high-palmitic acid fat supplement. J DAIRY RES 2022; 89:355-366. [PMID: 36510795 DOI: 10.1017/s0022029922000784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We compared the potential of dietary lipid supplements of different fatty acid compositions to affect milk performance when early lactation dairy goats were fed a high-concentrate diet. Thirty Alpine goats at 23 ± 5 d in milk were allocated to 1 of 10 blocks according to parity and milk fat concentration. Within each block, goats were randomly assigned to receive, during a period of 41 d, either CONT) a basal diet with a forage to concentrate ratio of 45:55, used as control, or PALM) the basal diet + 2% of a palmitic acid-enriched fat supplement, or FLAX) the basal diet + 7% of extruded flaxseed. Body weight, dry matter intake and milk yield were not different between treatments. As compared with CONT, goats fed PALM and FLAX had a greater milk fat concentration. Moreover, milk fat yield was numerically (but non-significantly) greater with PALM than with CONT. Milk fat from goats receiving PALM had a greater concentration of 16:0 as compared with CONT and FLAX, whereas a greater concentration of cis-9, cis-12, cis-15 18:3 was observed when goats were fed FLAX as compared with CONT and PALM. Under the conditions of the current experiment, dietary fat supplementation had only minor impacts on the yield of major milk constituents, with the exception of a modest increase in fat yield when goats were fed PALM. The impact of a greater concentration of 16:0 in milk fat of goats receiving this feed ingredient on the nutritive value of dairy products remains to be determined.
Collapse
|
7
|
Sun X, Wang Y, Ma X, Li S, Wang W. Producing natural functional and low-carbon milk by regulating the diet of the cattle-The fatty acid associated rumen fermentation, biohydrogenation, and microorganism response. Front Nutr 2022; 9:955846. [PMID: 36337624 PMCID: PMC9626764 DOI: 10.3389/fnut.2022.955846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/03/2022] [Indexed: 03/05/2024] Open
Abstract
Conjugated linoleic acid (CLA) has drawn significant attention in the last two decades for its various potent beneficial effects on human health, such as anticarcinogenic and antidiabetic properties. CLA could be generally found in ruminant products, such as milk. The amount of CLA in ruminant products mainly depends on the diet of the animals. In general, the fat content in the ruminant diet is low, and dietary fat supplementation can be provided to improve rumen activity and the fatty acid (FA) profile of meat and milk. Especially, dietary 18-carbon polyunsaturated FA (C18 PUFA), the dominant fat source for ruminants, can modify the milk FA profile and other components by regulating the ruminal microbial ecosystem. In particular, it can improve the CLA in milk, intensify the competition for metabolic hydrogen for propionate producing pathways and decrease methane formation in the rumen. Therefore, lipid supplementation appears to be a promising strategy to naturally increase the additional nutritional value of milk and contribute to lower methane emissions. Meanwhile, it is equally important to reveal the effects of dietary fat supplementation on rumen fermentation, biohydrogenation (BH) process, feed digestion, and microorganisms. Moreover, several bacterial species and strains have been considered to be affected by C18 PUFA or being involved in the process of lipolysis, BH, CLA, or methane emissions. However, no review so far has thoroughly summarized the effects of C18 PUFA supplementation on milk CLA concentration and methane emission from dairy cows and meanwhile taken into consideration the processes such as the microorganisms, digestibility, rumen fermentation, and BH of dairy cattle. Therefore, this review aims to provide an overview of existing knowledge of how dietary fat affects rumen microbiota and several metabolic processes, such as fermentation and BH, and therefore contributes to functional and low-carbon milk production.
Collapse
Affiliation(s)
- Xiaoge Sun
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Wang
- Animal Production Systems Group, Wageningen University & Research, Wageningen, Netherlands
| | - Xiaoyan Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Razzaghi A, Leskinen H, Ahvenjärvi S, Aro H, Bayat A. Energy utilization and milk fat responses to rapeseed oil when fed to lactating dairy cows receiving different dietary forage to concentrate ratio. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Zhang X, Ke W, Ding Z, Xu D, Wang M, Chen M, Guo X. Microbial mechanisms of using feruloyl esterase-producing Lactobacillus plantarum A1 and grape pomace to improve fermentation quality and mitigate ruminal methane emission of ensiled alfalfa for cleaner animal production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114637. [PMID: 35124318 DOI: 10.1016/j.jenvman.2022.114637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
This study was conducted to investigate the influence of feruloyl esterase-producing Lactobacillus plantarum A1 (Lp A1) and grape pomace (GP) alone, or in combination (LG) on ensiling characteristics and bacterial community, in vitro ruminal fermentation, methane (CH4) emission, and the microbiota of ensiled alfalfa. Alfalfa at 42% dry matter (DM) was treated in a 2 × 2 factorial design: with the application of Lp A1 at 0 (control) or 1 × 106 cfu/g of fresh forage, and GP at 0 or 5% of fresh forage. After 60 d of ensiling, a decrease in nonprotein nitrogen (NPN) was observed in GP treated silage. Lp A1 inoculated silage had a lower fiber content than silages without Lp A1. The lowest NPN was found in silage treated with LG, and an obvious increase in the relative abundance of Lactobacillus paracasei was detected in silages treated with Lp A1 and LG, respectively. In vitro ruminal experiments indicated that, although the application of GP deceased ruminal total gas, CH4 production, nitrogen degradation and the number of methanogenic archaea in alfalfa silage, it also reduced silage DM digestibility. In contrast, inoculation with Lp A1 not only increased DM digestibility and populations of ruminal Ruminococcus flavefaciens and fungi, but also improved ruminal total gas and CH4 production. As expected, LG treatment decreased alfalfa silage ruminal total gas and CH4 production relative to Lp A1 treatment alone, and increased silage DM digestibility compared with GP treated silage. In conclusion, the application of LG before ensiling alfalfa, balanced silage proteolysis, feed digestibility, and CH4 emission, and could be a promising strategy for using food industry by-products to produce a nutritional and environmentally-friendly legume silage that will mitigate N and greenhouse gas emissions from ruminants.
Collapse
Affiliation(s)
- Xia Zhang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China; Probiotics and Bio-feed Research Center, Lanzhou University, Lanzhou, 730020, PR China
| | - Wencan Ke
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China; Probiotics and Bio-feed Research Center, Lanzhou University, Lanzhou, 730020, PR China
| | - Zitong Ding
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China; Probiotics and Bio-feed Research Center, Lanzhou University, Lanzhou, 730020, PR China
| | - Dongmei Xu
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China; Probiotics and Bio-feed Research Center, Lanzhou University, Lanzhou, 730020, PR China
| | - Musen Wang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China; Probiotics and Bio-feed Research Center, Lanzhou University, Lanzhou, 730020, PR China
| | - Menyan Chen
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China; Probiotics and Bio-feed Research Center, Lanzhou University, Lanzhou, 730020, PR China
| | - Xusheng Guo
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China; Probiotics and Bio-feed Research Center, Lanzhou University, Lanzhou, 730020, PR China.
| |
Collapse
|
10
|
Netto A, Gama M, Guido S, Bessa R, Inácio J, Monteiro C, Melo G, Ribeiro E, Ferreira M. Replacing Corn With Full-fat Corn Germ in a Basal Diet Containing Cactus (Opuntia strica) Cladodes and Sugarcane as Forage Sources Induces Milk Fat Depression Associated With the trans-10 Shift in Dairy Cows. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Kun B, Xiaoxu W, Kaiying W, Guangyu L, Hanlu L. Effects of conjugated linoleic acid on growth performance, nutrient digestibility and blood biochemical indexes of male sika deer (Cervus nippon). ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ContextConjugated linoleic acid (CLA) is very important for animals and humans. CLA has many important biological functions, such as reducing fat and increasing muscle, antioxidation, improving immunity and so on. CLA requirements for deer have not been established.AimsA single-factor test was conducted to evaluate the effects of CLA supplementation on male sika deer.MethodsSixteen deer were divided in four groups (from G0 to G3) of four animals, each according to their bodyweight. Deer in G0 were fed a basal diet without CLA supplementation. Deer in G1, G2 and G3 were fed diets supplemented with CLA at concentrations of 0.25%, 0.5% and 1.0%. Growth performance, nutrient digestibility and blood biochemical indexes were measured.Key resultsThe results suggested that the average daily gain of deer increased with conjugated linoleic acid supplementation (P<0.05); maximal growth performance was seen in G2. The average daily feed intake showed differences among the treatments (P<0.01). The highest average daily feed intake was observed in Group G2. Feed to gain ratio (F:G) in Groups G1, G2 and G3 was different from that in Group G0 (P<0.01). The digestibility of crude protein and ether extract was increased by conjugated linoleic acid concentrations (P<0.05). The alkaline phosphatase activity showed a significant increase (P<0.05) in Groups G2 and G3, compared with Group G0. There were significant differences in cholesterol between G1 and G2 groups (P<0.05).ConclusionsThe results indicated that conjugated linoleic acid supplementation to diet plays a positive role in the growth of sika deer.ImplicationsThis experiment has shown the effects of dietary supplementation with CLA in sika deer breeding. It has layed a good foundation for the application of CLA supplementation in sika deer industry to promote the healthy development of sika deer breeding industry.
Collapse
|
12
|
Effect of Linseeds and Hemp Seeds on Milk Production, Energy and Nitrogen Balance, and Methane Emissions in the Dairy Goat. Animals (Basel) 2021; 11:ani11092717. [PMID: 34573683 PMCID: PMC8470940 DOI: 10.3390/ani11092717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The inclusion of whole oilseeds in the diets of ruminants can be a useful strategy for reducing methane emissions and improving milk quality. This study evaluated the effects of the inclusion of whole hemp seeds or linseeds in the diet of dairy goats. The results showed that neither seed caused a reduction in methane emission or an increase in milk yield, but both seeds improved the milk quality in terms of fatty acid composition. Abstract The effect of whole linseeds or hemp seeds on milk production, energy and nitrogen balance, and methane emission was studied in 12 Alpine goats using respiration chambers. Diets tested were a control diet (C) and two diets supplemented with whole linseeds (L) or hemp seeds (H) at 9.3% on a dry matter (DM) basis. DM intake was similar among treatments, whereas DM and organic matter digestibility were lower for L compared to C. Milk yield (2.30 kg/d on average) and rumen fermentation profile were not affected by treatments. Treatment also did not affect the milk composition, with the exception of fat, which was higher in H and L compared to C (4.21, 3.94, and 3.20%, respectively). Oilseed supplementation caused a reduction in the concentration of de novo fatty acids (FA) (41.1, 48.8, and 64.1% of FA, for L, H, and C, respectively). Moreover, L and H diets reduced the sum of saturated FA, and increased monounsaturated FA, whereas only the L diet increased the concentration of polyunsaturated FA. Regarding methane production, and nitrogen and energy balances, no differences were registered among the diets. Our research indicates that including whole linseeds and hemp seeds in the dairy goat diet is an effective strategy for increasing milk fat content and positively modifying the milk FA composition, without a change in nitrogen and energy balances, but also without a reduction in enteric methane emission.
Collapse
|
13
|
Effects of vegetable oil supplementation on rumen fermentation and microbial population in ruminant: a review. Trop Anim Health Prod 2021; 53:422. [PMID: 34331142 DOI: 10.1007/s11250-021-02863-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Understanding the nature of ruminant nutrition and digestion is essential to improve feeding management and animal production. Among many approaches, manipulating ruminant nutrition and fermentation through feed supplementation is being practised and researched. Over the last decade, the utilization of vegetable oils in feed formulation and their effects on various aspects of ruminants have been reported by many researchers. It is important to understand the lipid metabolism in ruminants by microorganisms because it affects the quality of ruminant-derived products such as meat and milk. Majority of vegetable oil supplementation could reduce rumen protozoa population in ruminants due to the effects of medium-chain fatty acids (FAs). However, vegetable oil also contains unsaturated FAs that are known to have a negative effect on cellulolytic bacteria which could show inhibitory effects of the fibre digestion. In this paper, the physiology of nutrient digestion of ruminants is described. This paper also provides a current review of studies done on improvement and modification of rumen fermentation and microbial population through vegetable oil supplementation.
Collapse
|
14
|
Ababakri R, Dayani O, Khezri A, Naserian A. Effects of extruded flaxseed and dietary rumen undegradable
protein on reproductive traits and the blood metabolites
in Baluchi ewes. JOURNAL OF ANIMAL AND FEED SCIENCES 2021. [DOI: 10.22358/jafs/139153/2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Long-Term Effects of Dietary Supplementation with Olive Oil and Hydrogenated Vegetable Oil on the Rumen Microbiome of Dairy Cows. Microorganisms 2021; 9:microorganisms9061121. [PMID: 34067293 PMCID: PMC8224598 DOI: 10.3390/microorganisms9061121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
Dietary lipids increase energy density in dairy cow diets and in some cases can increase beneficial fatty acids (FA) in milk and dairy products. However, the degree of FA saturation may affect the rumen microbiome. The objective of this study was to determine the long-term effects of feeding saturated (hydrogenated vegetable oil; HVO) or unsaturated (olive oil; OO) fatty acid (FA) sources on the rumen microbiome of dairy cows. For 63 days, 15 mid-lactating cows were fed with either a basal diet (no fat supplement), or the basal diet supplemented with 3% dry matter (DM), either HVO or OO. Rumen contents were collected on days 21, 42 and 63 for 16S rRNA gene sequencing using the Illumina MiSeq platform. The results reveal dominance of the phyla Firmicutes (71.5%) and Bacteroidetes (26.2%), and their respective prevalent genera Succiniclasticum (19.4%) and Prevotella (16.6%). Succiniclasticum increased with both treatments at all time points. Prevotella was reduced on day 42 in both diets. Bacterial diversity alpha or beta were not affected by diets. Predicted bacterial functions by CowPI showed changes in energy and protein metabolism. Overall, 3% DM of lipid supplementation over 63 days can be used in dairy cow diets without major impacts on global bacterial community structure.
Collapse
|
16
|
Pacheco-Pappenheim S, Yener S, Heck JML, Dijkstra J, van Valenberg HJF. Seasonal variation in fatty acid and triacylglycerol composition of bovine milk fat. J Dairy Sci 2021; 104:8479-8492. [PMID: 34024603 DOI: 10.3168/jds.2020-19856] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
The aim of this study was to assess the effects of seasonal variation on the changes of the fatty acid (FA) and triacylglycerol (TAG) composition of bovine milk fat (MF) in a nonseasonal milking system. Weekly milk samples were collected from 14 dairy factories and pooled per week as representative samples of the average Dutch bovine milk. The sample collection started in May 2017 and finished in April 2018, resulting in a total of 52 samples, corresponding to each week of the year. The samples were analyzed for MF content (%) and FA and TAG composition using gas chromatography with flame-ionization detection. The increased intake of C18:3 cis-9,12,15 through grass feeding in spring and summer was associated with major changes in MF FA composition, including reduced proportions of de novo synthesized FA and presence of several rumen biohydrogenation products and conjugated linoleic acid isomers in MF. These changes in seasonal FA composition had an effect on TAG seasonal variation. The TAG seasonal variation showed that all TAG groups were significantly different between months. The low molecular weight and the medium molecular weight TAG groups increased in winter and decreased in summer, whereas the high molecular weight TAG groups increased in summer and decreased in winter. Based on pooled monthly samples, MALDI-TOF-mass spectrometry allowed the analysis of even- and odd-chain TAG species in MF based on their total carbon number and number of double bonds. These analyses indicated saturated TAG species to be greatest in winter, whereas monounsaturated, polyunsaturated, and odd-chain TAG species were greatest in summer. Our study showed that TAG seasonal variation in a nonseasonal milking system is influenced by the variation in FA composition throughout the seasons.
Collapse
Affiliation(s)
- Sara Pacheco-Pappenheim
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, the Netherlands.
| | - Sine Yener
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, the Netherlands
| | - Jeroen M L Heck
- FrieslandCampina, PO Box 1551, 3800 BN, Amersfoort, the Netherlands
| | - Jan Dijkstra
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Hein J F van Valenberg
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
17
|
Osorio JAC, Daniel JLP, Cabral JF, Almeida KV, Guimarães KL, Sippert MR, Lourenço JCS, De Marchi FE, Velho JP, Santos GT. Annatto seeds as Antioxidants Source with Linseed Oil for Dairy Cows. Animals (Basel) 2021; 11:ani11051465. [PMID: 34065215 PMCID: PMC8161327 DOI: 10.3390/ani11051465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Currently, functional foods are gaining widespread attention. Polyunsaturated fatty acids (PUFA) and antioxidant compounds have beneficial effects on health. It is possible to increase the concentration of these compounds in the milk obtained from dairy cows by manipulating their diets, thereby improving milk quality and consequently the health of animals and humans who consume this milk. Annatto seed (Bixa orellana L.) is a source of antioxidants, whereas linseed oil is rich in omega 3 fatty acid. We evaluated the inclusion of annatto seeds and linseed oil in the diets of dairy cows and their effects on dry matter intake (DMI), nutrient digestibility, milk yield, milk composition and antioxidant capacity in milk and blood. There was no effect of treatment on nutrient digestibility and antioxidant capacity, but the addition of annatto seeds decreased DMI and milk production and linseed oil supplementation reduced milk fat content. Abstract This study aimed to evaluate the effects of annatto seeds, linseed oil and their combination on DMI, apparent total tract digestibility, antioxidant capacity and milk composition of dairy cows. Four lactating Holstein cows (120 ± 43 days in milk; 15.98 ± 2.02 kg of milk/day, mean ± SD) were allocated in a 4 × 4 Latin square with a 2 × 2 factorial arrangement (with or without annatto seeds at 15 g/kg of dry matter (DM); with or without linseed oil at 30 g/kg of DM) and provided four different diets: control (no annatto seeds or linseed oil); annatto seeds (15 g/kg of DM); linseed oil (30 g/kg of DM); and a combination of both annatto seeds and linseed oil. Annatto seeds reduced DM intake, and milk yield, protein and lactose, but increased content of fat, total solids and short chain fatty acid, with no effect on total antioxidant capacity of milk. Linseed oil supplementation decreased medium chain fatty acid proportion and n-6/n-3 ratio, conversely it increased long chain fatty acids and n-3 fatty acid content of milk, ether extract intake and total-tract digestibility. Thus, linseed oil supplementation in dairy cow diets improved the milk FA profile but decreased milk fat concentration, whereas annatto seeds did not influence antioxidant capacity and depressed feed intake and milk yield.
Collapse
Affiliation(s)
- Jesus A. C. Osorio
- Department of Animal Science, State University of Maringa, Maringa, PR 87020-900, Brazil; (J.A.C.O.); (J.L.P.D.); (J.F.C.); (K.V.A.); (K.L.G.); (M.R.S.); (J.C.S.L.); (F.E.D.M.)
| | - João L. P. Daniel
- Department of Animal Science, State University of Maringa, Maringa, PR 87020-900, Brazil; (J.A.C.O.); (J.L.P.D.); (J.F.C.); (K.V.A.); (K.L.G.); (M.R.S.); (J.C.S.L.); (F.E.D.M.)
| | - Jakeline F. Cabral
- Department of Animal Science, State University of Maringa, Maringa, PR 87020-900, Brazil; (J.A.C.O.); (J.L.P.D.); (J.F.C.); (K.V.A.); (K.L.G.); (M.R.S.); (J.C.S.L.); (F.E.D.M.)
| | - Kleves V. Almeida
- Department of Animal Science, State University of Maringa, Maringa, PR 87020-900, Brazil; (J.A.C.O.); (J.L.P.D.); (J.F.C.); (K.V.A.); (K.L.G.); (M.R.S.); (J.C.S.L.); (F.E.D.M.)
| | - Karoline L. Guimarães
- Department of Animal Science, State University of Maringa, Maringa, PR 87020-900, Brazil; (J.A.C.O.); (J.L.P.D.); (J.F.C.); (K.V.A.); (K.L.G.); (M.R.S.); (J.C.S.L.); (F.E.D.M.)
| | - Micheli R. Sippert
- Department of Animal Science, State University of Maringa, Maringa, PR 87020-900, Brazil; (J.A.C.O.); (J.L.P.D.); (J.F.C.); (K.V.A.); (K.L.G.); (M.R.S.); (J.C.S.L.); (F.E.D.M.)
| | - Jean C. S. Lourenço
- Department of Animal Science, State University of Maringa, Maringa, PR 87020-900, Brazil; (J.A.C.O.); (J.L.P.D.); (J.F.C.); (K.V.A.); (K.L.G.); (M.R.S.); (J.C.S.L.); (F.E.D.M.)
| | - Francilaine E. De Marchi
- Department of Animal Science, State University of Maringa, Maringa, PR 87020-900, Brazil; (J.A.C.O.); (J.L.P.D.); (J.F.C.); (K.V.A.); (K.L.G.); (M.R.S.); (J.C.S.L.); (F.E.D.M.)
| | - João P. Velho
- Department of Animal Science, Santa Maria Federal University, Palmeira das Missões, RS 98300-000, Brazil;
| | - Geraldo T. Santos
- Department of Animal Science, State University of Maringa, Maringa, PR 87020-900, Brazil; (J.A.C.O.); (J.L.P.D.); (J.F.C.); (K.V.A.); (K.L.G.); (M.R.S.); (J.C.S.L.); (F.E.D.M.)
- Correspondence: ; Tel.: +55-449-8819-0091
| |
Collapse
|
18
|
Sun CH, Lee JS, Nejad JG, Kim WS, Lee HG. Effect of a Rumen-Protected Microencapsulated Supplement from Linseed Oil on the Growth Performance, Meat Quality, and Fatty Acid Composition in Korean Native Steers. Animals (Basel) 2021; 11:ani11051253. [PMID: 33925315 PMCID: PMC8145495 DOI: 10.3390/ani11051253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary In vitro and in vivo studies on the supplementation of rumen-protected microencapsulated fatty acid from linseed oil (MO) on rumen digestibility, physiological profile, growth performance, meat quality, and meat fatty acid profile in Korean native steers were conducted. The in vitro study showed that 3% MO is an optimal dose, as there were decreases in the neutral detergent fiber and acid detergent fiber digestibility at 48 h. Supplementation with 3% MO not only promotes growth performance but also enhances the omega-3 fatty acid concentration of meat in Korean native steers. Abstract We evaluated the effects of a rumen-protected microencapsulated supplement from linseed oil (MO) on ruminal fluid, growth performance, meat quality, and fatty acid composition in Korean native steers. In an in vitro experiment, ruminal fluid was taken from two fistulated Holstein dairy cows. Different levels of MO (0%, 1%, 2%, 3%, and 4%) were added to the diet. In an in vivo experiment, eight steers (average body weight = 597.1 ± 50.26 kg; average age = 23.8 ± 0.12 months) were assigned to two dietary groups, no MO (control) and MO (3% MO supplementation on a DM basis), for 186 days. The in vitro study revealed that 3% MO is an optimal dose, as there were decreases in the neutral detergent fiber and acid detergent fiber digestibility at 48 h (p < 0.05). The in vivo study showed increases in the feed efficiency and average daily gain in the 3% MO group compared to the control group on days 1 to 90 (p < 0.05). Regarding meat quality, the shear force produced by the longissimus thoracis muscle in steers from the 3% MO group was lower than that produced by the control group (p < 0.05). Interestingly, in terms of the fatty acid profile, higher concentrations of C22:6n3 were demonstrated in the subcutaneous fat and higher concentrations of C18:3n3, C20:3n3, and C20:5n3 were found in the intramuscular fat from steers fed with 3% MO (p < 0.05). Our results indicate that supplementation with 3% MO supplements improves the growth performance and meat quality modulated by the omega-3 fatty acid content of meat in Korean native steers.
Collapse
|
19
|
Hassanat F, Benchaar C. Corn silage-based diet supplemented with increasing amounts of linseed oil: Effects on methane production, rumen fermentation, nutrient digestibility, nitrogen utilization, and milk production of dairy cows. J Dairy Sci 2021; 104:5375-5390. [PMID: 33663815 DOI: 10.3168/jds.2020-18853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/29/2020] [Indexed: 11/19/2022]
Abstract
In this study, we assessed the effects of increasing amounts of linseed oil (LSO) in corn silage-based diets on enteric CH4 production, rumen fermentation characteristics, protozoal population, nutrient digestibility, N utilization, and milk production. For this purpose, 12 multiparous lactating Holstein cows (84 ± 28 d in milk; mean ± SD) fitted with ruminal cannula were used in a replicated 4 × 4 Latin square design (35-d period). The cows were fed ad libitum a total mixed ration without supplementation (control) or supplemented [on a dry matter (DM) basis] with LSO at 2% (LSO2), 3% (LSO3) or 4% (LSO4). The forage:concentrate ratio was 61:39 (on DM basis) and was similar among the experimental diets. The forage portion consisted of corn silage (58% diet DM) and timothy hay (3% diet DM). The proportions of soybean meal, corn grain and soybean hulls decreased as the amount of LSO in the diet increased. Daily methane production (g/d) decreased quadratically as the amount of LSO increased in the diet. Increasing LSO dietary supplementation caused a linear decrease in CH4 emissions expressed on either DM intake (DMI) basis (-9, -20, and -28%, for LSO2, LSO3, and LSO4, respectively) or gross energy intake basis (-12, -22, and -31%, for LSO2, LSO3, and LSO4, respectively). At 2 and 3% LSO, the decrease in enteric CH4 emissions occurred without negatively affecting DMI or apparent total-tract digestibility of fiber and without changing protozoa numbers. However, these 2 diets caused a shift in volatile fatty acids pattern toward less acetate and more propionate. The effect of the LSO4 diet on enteric CH4 emissions was associated with a decrease in DMI, fiber apparent-total-tract digestibility, protozoa numbers (total and genera), and an increase in propionate proportion at the expense of acetate and butyrate proportions. Methane emission intensity [g of CH4/kg of energy-corrected milk (ECM)] decreased linearly (up to 28% decrease) with increasing LSO level in the diet. Milk fat yield decreased linearly (up to 19% decrease) with increasing inclusion of LSO in the diet. Milk protein yield increased at 2% or 3% LSO and decreased to the same level as that of the nonsupplemented diet at 4% LSO (quadratic effect). Yield of ECM was unchanged by LSO2 and LSO3 treatments but decreased (-2.8 kg/d) upon supplementation with 4% LSO (quadratic effect). Efficiency of milk production (kg ECM/kg DMI) was unaffected by the 3 levels of LSO. Ruminal NH3 concentration was quadratically affected by LSO supplementation; decreasing only at the highest level of LSO supplementation. The amount (g/d) of N excreted in feces and urine decreased linearly and quadratically, respectively, as the amount of LSO increased in the diet, mainly because of the reduction in N intake. Efficiency of dietary N used for milk N secretion increased linearly with increasing LSO supplementation in the diet. We conclude that supplementing corn silage-based diets with 2 or 3% of LSO can reduce enteric CH4 emissions up by to 20% without impairing animal productivity (i.e., ECM yield and feed efficiency).
Collapse
Affiliation(s)
- F Hassanat
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College Street, Sherbrooke, QC, Canada J1M 0C8
| | - C Benchaar
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College Street, Sherbrooke, QC, Canada J1M 0C8.
| |
Collapse
|
20
|
Boland TM, Pierce KM, Kelly AK, Kenny DA, Lynch MB, Waters SM, Whelan SJ, McKay ZC. Feed Intake, Methane Emissions, Milk Production and Rumen Methanogen Populations of Grazing Dairy Cows Supplemented with Various C 18 Fatty Acid Sources. Animals (Basel) 2020; 10:E2380. [PMID: 33322624 PMCID: PMC7764364 DOI: 10.3390/ani10122380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/05/2023] Open
Abstract
Emissions of methane (CH4) from dairy production systems are environmentally detrimental and represent an energy cost to the cow. This study evaluated the effect of varying C18 fatty acid sources on CH4 emissions, milk production and rumen methanogen populations in grazing lactating dairy cows. Forty-five Holstein Friesian cows were randomly allocated to one of three treatments (n = 15). Cows were offered 15 kg dry matter (DM)/d of grazed pasture plus supplementary concentrates (4 kg DM/d) containing either stearic acid (SA), linseed oil (LO), or soy oil (SO). Cows offered LO and SO had lower pasture DM intake (DMI) than those offered SA (11.3, 11.5 vs. 12.6 kg/d). Cows offered LO and SO had higher milk yield (21.0, 21.3 vs. 19.7 kg/d) and milk protein yield (0.74, 0.73 vs. 0.67 kg/d) than those offered SA. Emissions of CH4 (245 vs. 293, 289 g/d, 12.4 vs. 15.7, 14.8 g/kg of milk and 165 vs. 207, 195 g/kg of milk solids) were lower for cows offered LO than those offered SA or SO. Methanobrevibacter ruminantium abundance was reduced in cows offered LO compared to SA. Offering supplementary concentrates containing LO can reduce enteric CH4 emissions from pasture fed dairy cows.
Collapse
Affiliation(s)
- Tommy M. Boland
- School of Agriculture and Food Science, University College Dublin, Dublin 4 D04 V1W8, Ireland; (K.M.P.); (A.K.K.); (M.B.L.); (Z.C.M.)
| | - Karina M. Pierce
- School of Agriculture and Food Science, University College Dublin, Dublin 4 D04 V1W8, Ireland; (K.M.P.); (A.K.K.); (M.B.L.); (Z.C.M.)
| | - Alan K. Kelly
- School of Agriculture and Food Science, University College Dublin, Dublin 4 D04 V1W8, Ireland; (K.M.P.); (A.K.K.); (M.B.L.); (Z.C.M.)
| | - David A. Kenny
- Teagasc Animal and Bioscience Department, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, C15 PW93, Ireland; (D.A.K.); (S.M.W.)
| | - Mary B. Lynch
- School of Agriculture and Food Science, University College Dublin, Dublin 4 D04 V1W8, Ireland; (K.M.P.); (A.K.K.); (M.B.L.); (Z.C.M.)
| | - Sinéad M. Waters
- Teagasc Animal and Bioscience Department, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, C15 PW93, Ireland; (D.A.K.); (S.M.W.)
| | | | - Zoe C. McKay
- School of Agriculture and Food Science, University College Dublin, Dublin 4 D04 V1W8, Ireland; (K.M.P.); (A.K.K.); (M.B.L.); (Z.C.M.)
| |
Collapse
|
21
|
Ebeid HM, Hassan FU, Li M, Peng L, Peng K, Liang X, Yang C. Camelina sativa L. Oil Mitigates Enteric in vitro Methane Production, Modulates Ruminal Fermentation, and Ruminal Bacterial Diversity in Buffaloes. Front Vet Sci 2020; 7:550. [PMID: 33005640 PMCID: PMC7479821 DOI: 10.3389/fvets.2020.00550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
This study was aimed to evaluate the effects of Camelina sativa oil (CO) on fermentation kinetics and methane (CH4) production in rations with different roughage (R) to concentrate (C) ratios. Three total mixed rations (TMRs) were used as substrates (R70:C30, R50:C50, and R30:C70) supplemented with different levels of CO (0, 2, 4, 6, and 8% on dry matter basis) in an in vitro batch culture system. The enteric CH4 production was determined at different times of incubation while fermentation parameters were measured at the end of incubation. Results revealed that CO significantly decreased (P < 0.05) CH4 production at 48 h in medium (R50:C50) and low- (R30:C70) roughage diets than control. Camelina oil at all levels significantly (P < 0.05) affected ammonia nitrogen (NH3-N) and microbial protein (MCP) in all rations. Propionate concentration was increased by supplementing 8% CO to R70:C30 TMR, but it decreased with increasing levels of CO for low- and medium-roughage diets. Acetate concentration was significantly (P < 0.05) higher at 4% CO supplementation, but it decreased with 8% CO level in R30:C70 TMR. For all rations, CO decreased (P < 0.001) total bacteria, protozoa, and methanogens. Total fungi counts were affected by CO in all rations, especially with a 6% level in two rations (R30:C70 and R50:C50) and 8% level with high-roughage ration (R70:C30). Supplementation of CO in medium-roughage ration (R50:C50) showed a linear (P < 0.05) decrease in bacterial richness and evenness indices along with Shannon diversity as compared to the control. Moreover, CO also increased Firmicutes to Bacteroidetes ratio in all TMRs more effectively at higher levels. Camelina oil also affected the relative abundance of Prevotella in both low- and medium-roughage diets while increasing the abundance of Ruminobacter and Pseudobutyrivibrio. The present study concluded that CO enhanced fermentation kinetics while decreasing enteric in vitro CH4 production from fibrous diets. Thus, it may be considered as a potentially effective and environmentally friendly way of mitigating CH4 emission from livestock.
Collapse
Affiliation(s)
- Hossam M Ebeid
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,Dairy Science Department, National Research Centre, Giza, Egypt
| | - Faiz-Ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Mengwei Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Lijuan Peng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Kaiping Peng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Xin Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
22
|
Tan C, Ramírez-Restrepo CA, Shah AM, Hu R, Bell M, Wang Z, McSweeney C. The community structure and microbial linkage of rumen protozoa and methanogens in response to the addition of tea seed saponins in the diet of beef cattle. J Anim Sci Biotechnol 2020; 11:80. [PMID: 32832076 PMCID: PMC7422560 DOI: 10.1186/s40104-020-00491-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
Background This study investigated changes in rumen protozoal and methanogenic communities, along with the correlations among microbial taxa and methane (CH4) production of six Belmont Red Composite beef steers fed tea seed saponins (TSS). Animals were fed in three consecutive feeding periods, a high-grain basal diet for 14 d (BD period) then a period of progressive addition of TSS to the basal diet up to 30 g/d for 20 d (TSS period), followed by the basal diet for 13 d without TSS (BDP post-control period). Results The study found that TSS supplementation decreased the amount of the protozoal genus Entodinium and increased Polyplastron and Eudiplodinium genera. During BDP period, the protozoa community of steers did not return to the protozoal profiles observed in BD period, with higher proportions of Metadinium and Eudiplodinium and lower Isotricha. The addition of TSS was found to change the structure of methanogen community at the sub-genus level by decreasing the abundance of methanogens in the SGMT clade and increasing the abundance of methanogens in the RO clade. The correlation analysis indicated that the abundance of SGMT clade methanogens were positively correlated with Isotricha, and Isotricha genus and SGMT clade methanogens were positively correlated with CH4 production. While RO clade were positively correlated with the proportion of Metadinium genus, which was negatively correlated with CH4 emission. Conclusions These results suggest that different genera of rumen protozoa ciliates appear to be selectively inhibited by TSS, and the change in methanogen community at the subgenus level may be due to the mutualistic relationships between methanogens and rumen ciliates.
Collapse
Affiliation(s)
- Cui Tan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Carlos A Ramírez-Restrepo
- Commonwealth Scientific and Industrial Research Organisation, CSIRO Agriculture and Food, Australian Tropical Sciences and Innovation Precinct, James Cook University, Townsville, QLD 4811 Australia.,Present address: CR Eco-efficient Agriculture Consultancy (CREAC), 46 Bilbao Place, Bushland Beach, QLD 4818 Australia
| | - Ali Mujtaba Shah
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 Sichuan China.,Department of Livestock Production, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh 67210 Pakistan
| | - Rui Hu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 Sichuan China.,"Low Carbon Breeding Cattle and Safety Production", University Key Laboratory of Sichuan Province, Ya'an, 625014 Sichuan China
| | - Matt Bell
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Zhisheng Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 Sichuan China.,"Low Carbon Breeding Cattle and Safety Production", University Key Laboratory of Sichuan Province, Ya'an, 625014 Sichuan China
| | - Chris McSweeney
- CSIRO Agriculture, Queensland BioScience Precinct, St Lucia, Brisbane, QLD 4067 Australia
| |
Collapse
|
23
|
Agustinho BC, Zeoula LM, Santos NW, Machado E, Yoshimura EH, Ribas JCR, Bragatto JM, Stemposki MR, dos Santos VJ, Faciola AP. Effects of Flaxseed Oil and Vitamin E Supplementation on Digestibility and Milk Fatty Composition and Antioxidant Capacity in Water Buffaloes. Animals (Basel) 2020; 10:ani10081294. [PMID: 32751092 PMCID: PMC7460195 DOI: 10.3390/ani10081294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Flaxseed oil is rich in n-3 fatty acids, while vitamin E is a potent antioxidant. Both have been tested in dairy cows’ diets to increase n-3 concentration and antioxidant capacity in the milk. However, there is no published research testing flaxseed oil and vitamin E supplementation simultaneously in lactating dairy buffaloes, which can have a different response compared to dairy cows. Increasing milk unsaturated fatty acids while not increasing lipid oxidation is a challenge; however, in this experiment we demonstrated that it is possible to achieve these in buffalo milk by supplementing the diet with flaxseed oil and vitamin E. Flaxseed oil supplementation increased the n-3 fatty acid concentration and oxidation products in the milk, while vitamin E supplementation increased milk’s antioxidant capacity. Abstract This study aimed to evaluate the effects of the supplementation of flaxseed oil and/or vitamin E on dry matter (DM) and nutrient digestibility, milk composition, fatty acid composition, and antioxidant capacity in buffalo milk. Four crossbred female dairy water buffaloes (97 ± 22 days in milk; 6.57 ± 2.2 kg of milk/day, mean ± SD) were distributed in a 4 × 4 Latin square design, with a 2 × 2 factorial arrangement (with or without flaxseed oil at 25 g/kg dry matter; with or without vitamin E at 375 IU/kg dry matter). The experimental period was divided into four periods of 21 days each (16 days for adaptation; five days for data collection). There were four treatments: control diet (no flaxseed oil and no added vitamin E); flaxseed oil diet (flaxseed oil at 25 g/kg DM); vitamin E diet (vitamin E at 375 IU/kg DM), and a combination of both flaxseed oil and vitamin E. The animals were fed total mixed ratios. For all response variables, there was no interaction between flaxseed oil and vitamin E. Flaxseed oil supplementation reduced neutral detergent fiber (NDF) and acid detergent fiber (ADF) apparent total tract digestibility, increased the n-3 fatty acid concentration in milk approximately three-fold while reducing the n-6/n-3 ratio from 9.3:1 to 2.4:1. Vitamin E supplementation increased NDF apparent total tract digestibility and milk total antioxidant capacity. Although there was no interaction between the treatments; flaxseed oil supplementation in lactating buffaloes increased polyunsaturated fatty acid, while vitamin E supplementation increased antioxidant capacity and decreased oxidation products.
Collapse
Affiliation(s)
- Bruna C. Agustinho
- Department of Animal Science, State University of Maringa, Maringa PR 87020-900, Brazil; (L.M.Z.); (N.W.S.); (E.M.); (E.H.Y.); (J.C.R.R.); (J.M.B.); (M.R.S.)
- Correspondence: ; Tel.: +1-(352)-870-3589
| | - Lucia M. Zeoula
- Department of Animal Science, State University of Maringa, Maringa PR 87020-900, Brazil; (L.M.Z.); (N.W.S.); (E.M.); (E.H.Y.); (J.C.R.R.); (J.M.B.); (M.R.S.)
| | - Nadine W. Santos
- Department of Animal Science, State University of Maringa, Maringa PR 87020-900, Brazil; (L.M.Z.); (N.W.S.); (E.M.); (E.H.Y.); (J.C.R.R.); (J.M.B.); (M.R.S.)
| | - Erica Machado
- Department of Animal Science, State University of Maringa, Maringa PR 87020-900, Brazil; (L.M.Z.); (N.W.S.); (E.M.); (E.H.Y.); (J.C.R.R.); (J.M.B.); (M.R.S.)
| | - Emerson H. Yoshimura
- Department of Animal Science, State University of Maringa, Maringa PR 87020-900, Brazil; (L.M.Z.); (N.W.S.); (E.M.); (E.H.Y.); (J.C.R.R.); (J.M.B.); (M.R.S.)
| | - Jessyca C. R. Ribas
- Department of Animal Science, State University of Maringa, Maringa PR 87020-900, Brazil; (L.M.Z.); (N.W.S.); (E.M.); (E.H.Y.); (J.C.R.R.); (J.M.B.); (M.R.S.)
| | - Janaina M. Bragatto
- Department of Animal Science, State University of Maringa, Maringa PR 87020-900, Brazil; (L.M.Z.); (N.W.S.); (E.M.); (E.H.Y.); (J.C.R.R.); (J.M.B.); (M.R.S.)
| | - Mariana R. Stemposki
- Department of Animal Science, State University of Maringa, Maringa PR 87020-900, Brazil; (L.M.Z.); (N.W.S.); (E.M.); (E.H.Y.); (J.C.R.R.); (J.M.B.); (M.R.S.)
| | | | - Antonio P. Faciola
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
24
|
Productive Performance, Milk Composition and Milk Fatty Acids of Goats Supplemented with Sunflower and Linseed Whole Seeds in Grass Silage-Based Diets. Animals (Basel) 2020; 10:ani10071143. [PMID: 32640645 PMCID: PMC7401592 DOI: 10.3390/ani10071143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to determine productive performance, milk composition and milk fatty acids (FA) of goats supplemented with sunflower and linseed whole seeds in grass silage-based diets. Nine Alpine goats were grouped in a replicated 3 × 3 Latin square design (n = 3), that included three 21-d periods. Treatments were based on grass silage offered ad libitum and a concentrate mixture supplemented with either 40 g/d of Megalac-R® (control), 80 g/d of sunflower seed (SF), or 80 g/d of linseed (LS). Dry matter intake (1292 ± 14.0 g/d) and digestibility (g/kg) of dry matter (640 ± 32.1), organic matter (668 ± 32.4), neutral detergent fiber (628 ± 41.4) and acid detergent fiber (567 ± 60.9) was not affected by treatments (p > 0.05). Treatment did not affect milk fat yield (39.9 ± 1.24 g/d), protein content (4.5 ± 0.03 %) and protein yield (34.7 ± 1.22 g/d). Compared to control, SF and LS, decreased C16:0 (28.2 vs. 23.1 and 22.4 g/100 g), and increased total C18:1 (24.1 vs. 27.6 and 28.4 g/100 g) respectively. Overall, SF and LS resulted an effective strategy for altering the FA composition of goat´s milk towards a healthier profile for humans without deleterious effects on animal performance.
Collapse
|
25
|
Dewanckele L, Toral PG, Vlaeminck B, Fievez V. Invited review: Role of rumen biohydrogenation intermediates and rumen microbes in diet-induced milk fat depression: An update. J Dairy Sci 2020; 103:7655-7681. [PMID: 32600765 DOI: 10.3168/jds.2019-17662] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/18/2020] [Indexed: 12/22/2022]
Abstract
To meet the energy requirements of high-yielding dairy cows, grains and fats have increasingly been incorporated in ruminant diets. Moreover, lipid supplements have been included in ruminant diets under experimental or practical conditions to increase the concentrations of bioactive n-3 fatty acids and conjugated linoleic acids in milk and meat. Nevertheless, those feeding practices have dramatically increased the incidence of milk fat depression in dairy cattle. Although induction of milk fat depression may be a management tool, most often, diet-induced milk fat depression is unintended and associated with a direct economic loss. In this review, we give an update on the role of fatty acids, particularly originating from rumen biohydrogenation, as well as of rumen microbes in diet-induced milk fat depression. Although this syndrome seems to be multi-etiological, the best-known causal factor remains the shift in rumen biohydrogenation pathway from the formation of mainly trans-11 intermediates toward greater accumulation of trans-10 intermediates, referred to as the trans-11 to trans-10 shift. The microbial etiology of this trans-11 to trans-10 shift is not well understood yet and it seems that unraveling the microbial mechanisms of diet-induced milk fat depression is challenging. Potential strategies to avoid diet-induced milk fat depression are supplementation with rumen stabilizers, selection toward more tolerant animals, tailored management of cows at risk, selection toward more efficient fiber-digesting cows, or feeding less concentrates and grains.
Collapse
Affiliation(s)
- L Dewanckele
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium
| | - P G Toral
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - B Vlaeminck
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium
| | - V Fievez
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium.
| |
Collapse
|
26
|
Methane Emissions and Milk Fatty Acid Profiles in Dairy Cows Fed Linseed, Measured at the Group Level in a Naturally Ventilated Housing and Individually in Respiration Chambers. Animals (Basel) 2020; 10:ani10061091. [PMID: 32599809 PMCID: PMC7341325 DOI: 10.3390/ani10061091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/13/2020] [Accepted: 06/22/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cows emit the greenhouse gas methane (CH4) as a result of microbial feed digestion. Methane emissions can be reduced by adopting nutritional strategies, such as dietary supplementation of linseed. Additionally, the oil in linseed increases the proportion of favorable fatty acids in milk fat. This study evaluated the effect of linseed on CH4 emission and milk fatty acid composition measured in a group of cows in a naturally ventilated barn and in individual cows in respiration chambers. The substantially higher proportions of favorable fatty acids in the milk of linseed-fed cows were detected in individual milk samples and in the milk of the herd. Therefore, the analysis of bulk milk could be a suitable control instrument for retailers. Visualizing the course of CH4 emissions over a whole day showed slightly lower CH4 values in linseed-supplemented individuals and groups. However, we found no significant reduction of CH4 as a result of linseed supplementation. Feed supplements in concentrations that are effective in reducing CH4 must show whether the reduction potential is comparable when determined at the group and individual levels. Abstract The present study evaluated the effects of linseed supplementation on CH4 emission and milk fatty acid composition in dairy cows measured at the group level in an experimental dairy loose housing using a tracer gas technique and individually in tied stalls and respiration chambers. Cows (2 × 20) were maintained in two separate sections under loose-housing conditions and received a diet supplemented with extruded linseed (L) lipids (29 g·kg−1 dry matter) or a control (C) diet containing corn flour. Subsequently, 2 × 6 cows per dietary group were investigated in a tied-housing system and respiration chambers. Substantially higher proportions of favorable milk fatty acids were recovered in L cows when compared with C cows at the group level, making the analysis of bulk milk a suitable control instrument for retailers. Linseed supplementation resulted in a slightly lower diurnal course of CH4 emission intensity than the control at the group and individual levels. However, we found no more than a trend for a CH4 mitigating effect, unlike in other studies supplementing similar linseed lipid levels. Feed supplements in concentrations that lead to a significant reduction in CH4 emissions must show whether the reduction potential determined at the group and individual levels is comparable.
Collapse
|
27
|
Dai X, Faciola AP. Evaluating Strategies to Reduce Ruminal Protozoa and Their Impacts on Nutrient Utilization and Animal Performance in Ruminants - A Meta-Analysis. Front Microbiol 2019; 10:2648. [PMID: 31803167 PMCID: PMC6873214 DOI: 10.3389/fmicb.2019.02648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/30/2019] [Indexed: 11/13/2022] Open
Abstract
Several studies have evaluated the effects of complete or partial ruminal protozoa (RP) inhibition; however, to this date, no practical suppressant has been identified and used in large scale. This meta-analysis quantitatively evaluates the effectiveness of multiple strategies on inhibiting RP numbers and their influence on ruminal fermentation and animal performance. This study compared 66 peer-reviewed articles (16 manuscripts for complete and 50 manuscripts for partial RP inhibition that used supplemental phytochemicals and lipids, published from 2000 to 2018, to inhibit RP in vivo. Data were structured to allow a meta-analytical evaluation of differences in response to different treatments (complete RP inhibition, phytochemicals, and lipids). Data were analyzed using mixed models with the random effect of experiment and weighted by the inverse of pooled standard error of the mean (SEM) squared. Supplemental phytochemicals and LCFA had no effects on inhibiting RP numbers; however, supplemental MCFA had a potent antiprotozoal effect. Both complete and partial RP (supplemental phytochemicals and lipids) inhibition decreased methane production, total tract digestibility of OM and NDF, and ruminal NH3-N concentration and increased propionate molar proportion. Methane production, molar proportions of acetate and propionate, total tract NDF digestibility were affected by the interaction of treatment (supplemental phytochemicals and lipids) and RP numbers. Supplemental phytochemicals and lipids can be effective in reducing methane production when RP numbers is below 7 Log10 cells/mL, especially by supplemental saponins, tannins, and MCFA. In terms of animal performance, supplemental tannins could be recommended to control methane emissions without affecting animal performance. However, their negative effects on total tract digestibility could be a drawback when feeding tannins to ruminants. The negative effects of supplemental lipids on milk fat composition should be considered when feeding lipids to ruminants. In conclusion, ruminal protozoa play important roles on methanogenesis, fiber digestion, and ruminal NH3-N concentration, regardless of experimental diets and conditions; supplemental phytochemicals and lipids can be effective on reducing methane production when RP numbers is below 7 Log10 cells/mL. Among these partial RP inhibition strategies, supplemental tannins could be recommended to control methane production.
Collapse
Affiliation(s)
- Xiaoxia Dai
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Antonio P Faciola
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
28
|
Kamel HE, Al-Dobaib SN, Salem AZ. Dietary supplementation of sunflower oil and quebracho tannins in sheep feeding: in vivo nutrient digestibility, nitrogen utilization and in vitro ruminal degradation kinetics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4211-4217. [PMID: 30790286 DOI: 10.1002/jsfa.9651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The effect of the inclusion of sunflower oil (SF) and quebracho tannin (QT) in a sheep diet was evaluated. Nutrient digestibility and nitrogen (N) utilization, as well as in vitro ruminal degradation kinetics, were evaluated at three levels [0, 20 and 40 g kg-1 of diet dry matter] of SF and QT in a 32 arrangement. The treatments were 0 (control); 20 and 40 g of QT and/or SF kg-1 of the diet. Four intact male sheep (45 ± 1.3 kg) for each treatment were used in the digestibility trial and kept individually in metabolic cages. RESULTS Nutrient digestibility and N balance were not affected by SF. However, QT at 40 g kg-1 of dry matter decreased (P < 0.05) nutrient digestibility and also increased the proportion of absorbed N. Both SF and QT reduced (P < 0.05) the slowly degraded fraction and rate for organic matter and N. Even though the QT had a negative (P < 0.05) effect on nutrient digestibility, this effect was mild (P > 0.05) when SF was included in the QT-added diets. Moreover, an interaction (P < 0.05) of SF × QT was observed on the synchronization index as an indicator of the efficiency of rumen microbial protein synthesis. CONCLUSION Supplementation of either SF or QT to sheep diets reduced ruminal organic matter and N degradability, reflecting the compensatory digestion in the post-ruminal track for organic matter feed utilization. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hosam Em Kamel
- Faculty of Agriculture, Department of Animal and Fish Production, University of Alexandria (El-Shatby), Alexandria, Egypt
| | - Soliman N Al-Dobaib
- Faculty of Agriculture and Veterinary Medicine, Department of Animal Production and Breeding, Qassim University, Buriedah, Saudi Arabia
| | - Abdelfattah Zm Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
29
|
Changes in the Rumen Microbiota of Cows in Response to Dietary Supplementation with Nitrate, Linseed, and Saponin Alone or in Combination. Appl Environ Microbiol 2019; 85:AEM.02657-18. [PMID: 30504215 DOI: 10.1128/aem.02657-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 01/21/2023] Open
Abstract
Dietary supplementation with linseed, saponins, and nitrate is a promising methane mitigation strategy in ruminant production. Here, we aimed to assess the effects of these additives on the rumen microbiota in order to understand underlying microbial mechanisms of methane abatement. Two 2-by-2 factorial design studies were conducted simultaneously, which also allowed us to make a broad-based assessment of microbial responses. Eight nonlactating cows were fed diets supplemented with linseed or saponin in order to decrease hydrogen production and nitrate to affect hydrogen consumption; also, combinations of linseed plus nitrate or saponin plus nitrate were used to explore the interaction between dietary treatments. Previous work assessed effects on methane and fermentation patterns. Rumen microbes were studied by sequencing 18S and 16S rRNA genes and ITS1 amplicons. Methanogen activity was monitored by following changes in mcrA transcript abundance. Nitrate fed alone or in combination in both studies dramatically affected the composition and structure of rumen microbiota, although impacts were more evident in one of the studies. Linseed moderately modified only bacterial community structure. Indicator operational taxonomic unit (OTU) analysis revealed that both linseed and nitrate reduced the relative abundance of hydrogen-producing Ruminococcaceae Linseed increased the proportion of bacteria known to reduce succinate to propionate, whereas nitrate supplementation increased nitrate-reducing bacteria and decreased the metabolic activity of rumen methanogens. Saponins had no effect on the microbiota. Inconsistency found between the two studies with nitrate supplementation could be explained by changes in microbial ecosystem functioning rather than changes in microbial community structure.IMPORTANCE This study aimed at identifying the microbial mechanisms of enteric methane mitigation when linseed, nitrate, and saponins were fed to nonlactating cows alone or in a combination. Hydrogen is a limiting factor in rumen methanogenesis. We hypothesized that linseed and saponins would affect hydrogen producers and nitrate would affect hydrogen consumption, leading to reduced methane production in the rumen. Contrary to what was predicted, both linseed and nitrate had a deleterious effect on hydrogen producers; linseed also redirected hydrogen consumption toward propionate production, whereas nitrate stimulated the growth of nitrate-reducing and, hence, hydrogen-consuming bacterial taxa. This novel knowledge of microbial mechanisms involved in rumen methanogenesis provides insights for the development and optimization of methane mitigation strategies.
Collapse
|
30
|
Ibeagha-Awemu EM, Li R, Dudemaine PL, Do DN, Bissonnette N. Transcriptome Analysis of Long Non-Coding RNA in the Bovine Mammary Gland Following Dietary Supplementation with Linseed Oil and Safflower Oil. Int J Mol Sci 2018; 19:E3610. [PMID: 30445766 PMCID: PMC6274745 DOI: 10.3390/ijms19113610] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 02/08/2023] Open
Abstract
This study aimed to characterize the long non-coding RNA (lncRNA) expression in the bovine mammary gland and to infer their functions in dietary response to 5% linseed oil (LSO) or 5% safflower oil (SFO). Twelve cows (six per treatment) in mid lactation were fed a control diet for 28 days followed by a treatment period (control diet supplemented with 5% LSO or 5% SFO) of 28 days. Mammary gland biopsies were collected from each animal on day-14 (D-14, control period), D+7 (early treatment period) and D+28 (late treatment period) and were subjected to RNA-Sequencing and subsequent bioinformatics analyses. Functional enrichment of lncRNA was performed via potential cis regulated target genes located within 50 kb flanking regions of lncRNAs and having expression correlation of >0.7 with mRNAs. A total of 4955 lncRNAs (325 known and 4630 novel) were identified which potentially cis targeted 59 and 494 genes in LSO and SFO treatments, respectively. Enrichments of cis target genes of lncRNAs indicated potential roles of lncRNAs in immune function, nucleic acid metabolism and cell membrane organization processes as well as involvement in Notch, cAMP and TGF-β signaling pathways. Thirty-two and 21 lncRNAs were differentially expressed (DE) in LSO and SFO treatments, respectively. Six genes (KCNF1, STARD13, BCL6, NXPE2, HHIPL2 and MMD) were identified as potential cis target genes of six DE lncRNAs. In conclusion, this study has identified lncRNAs with potential roles in mammary gland functions and potential candidate genes and pathways via which lncRNAs might function in response to LSO and SFA.
Collapse
Affiliation(s)
- Eveline M Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
| | - Ran Li
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Pier-Luc Dudemaine
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
| | - Duy N Do
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
- Department of Animal Science, McGill University, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada.
| | - Nathalie Bissonnette
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada.
| |
Collapse
|
31
|
Nur Atikah I, Alimon AR, Yaakub H, Abdullah N, Jahromi MF, Ivan M, Samsudin AA. Profiling of rumen fermentation, microbial population and digestibility in goats fed with dietary oils containing different fatty acids. BMC Vet Res 2018; 14:344. [PMID: 30558590 PMCID: PMC6297943 DOI: 10.1186/s12917-018-1672-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 10/25/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The effects of the dietary oils with differing fatty acid profiles on rumen fermentation, microbial population, and digestibility in goats were investigated. In Experiment I, rumen microbial population and fermentation profiles were evaluated on 16 fistulated male goats that were randomly assigned to four treatment groups: i) control (CNT), ii) olive oil (OL), iii) palm olein oil (PO), and iv) sunflower oil (SF). In Experiment II, another group of 16 male goats was randomly assigned to the same dietary treatments for digestibility determination. RESULTS Rumen ammonia concentration was higher in CNT group compared to treatment groups receiving dietary oils. The total VFA and acetate concentration were higher in SF and OL groups, which showed that they were significantly affected by the dietary treatments. There were no differences in total microbial population. However, fibre degrading bacteria populations were affected by the interaction between treatment and day of sampling. Significant differences were observed in apparent digestibility of crude protein and ether extract of treatment groups containing dietary oils compared to the control group. CONCLUSIONS This study demonstrated that supplementation of different dietary oils containing different fatty acid profiles improved rumen fermentation by reducing ammonia concentration and increasing total VFA concentration, altering fibre degrading bacteria population, and improving apparent digestibility of crude protein and ether extract.
Collapse
Affiliation(s)
- I. Nur Atikah
- Institute of Tropical Agriculture, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - A. R. Alimon
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - H. Yaakub
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - N. Abdullah
- Institute of Tropical Agriculture, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - M. F. Jahromi
- Institute of Tropical Agriculture, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - M. Ivan
- Institute of Tropical Agriculture, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| | - A. A. Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
32
|
Crushed flaxseed versus flaxseed oil in the diets of Nubian goats: Effect on feed intake, digestion, ruminal fermentation, blood chemistry, milk production, milk composition and milk fatty acid profile. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Freitas JE, Takiya CS, Del Valle TA, Barletta RV, Venturelli BC, Vendramini THA, Mingoti RD, Calomeni GD, Gardinal R, Gandra JR, Bettero VP, Ferreira de Jesus E, Oliveira MDS, Rennó FP. Ruminal biohydrogenation and abomasal flow of fatty acids in lactating cows fed diets supplemented with soybean oil, whole soybeans, or calcium salts of fatty acids. J Dairy Sci 2018; 101:7881-7891. [PMID: 30007815 DOI: 10.3168/jds.2017-13666] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/13/2018] [Indexed: 12/17/2023]
Abstract
Ruminants have a unique metabolism and digestion of unsaturated fatty acids (UFA). Unlike monogastric animals, the fatty acid (FA) profile ingested by ruminants is not the same as that reaching the small intestine. The objective of this study was to evaluate whole raw soybeans (WS) in diets as a replacer for calcium salts of fatty acids (CSFA) in terms of UFA profile in the abomasal digesta of early- to mid-lactation cows. Eight Holstein cows (80 ± 20 d in milk, 22.9 ± 0.69 kg/d of milk yield, and 580 ± 20 kg of body weight; mean ± standard deviation) with ruminal and abomasal cannulas were used in a 4 × 4 Latin square experiment with 22-d periods. The experiment evaluated different fat sources rich in linoleic acid on ruminal kinetics, ruminal fermentation, FA abomasal flow, and milk FA profile of cows assigned to treatment sequences containing a control (CON), with no fat source; soybean oil, added at 2.68% of diet dry matter (DM); WS, addition of WS at 14.3% of diet DM; and CSFA, addition of CSFA at 2.68% of diet DM. Dietary fat supplementation had no effect on nutrient intake and digestibility, with the exception of ether extract. Cows fed fat sources tended to have lower milk fat concentration than those fed CON. In general, diets containing fat sources tended to decrease ruminal neutral detergent fiber digestibility in relation to CON. Cows fed WS had lower ruminal digestibility of DM and higher abomasal flow of DM in comparison to cows fed CSFA. As expected, diets containing fat supplements increased FA abomasal flow of C18:0 and total FA. Cows fed WS tended to present a higher concentration of UFA in milk when compared with those fed CSFA. This study suggests that under some circumstances, abomasal flow of UFA in early lactation cows can be increased by supplementing their diet with fat supplements rich in linoleic acid, regardless of rumen protection, with small effects on ruminal DM digestibility.
Collapse
Affiliation(s)
- J E Freitas
- Department of Animal Science, Federal University of Bahia, Salvador, Brazil, 0170-110
| | - C S Takiya
- Department of Animal Nutrition and Animal Production, University of São Paulo, Pirassununga, Brazil, 13635-900
| | - T A Del Valle
- Department of Animal Nutrition and Animal Production, University of São Paulo, Pirassununga, Brazil, 13635-900
| | - R V Barletta
- Department of Animal Nutrition and Animal Production, University of São Paulo, Pirassununga, Brazil, 13635-900
| | - B C Venturelli
- Department of Animal Nutrition and Animal Production, University of São Paulo, Pirassununga, Brazil, 13635-900
| | - T H A Vendramini
- Department of Animal Nutrition and Animal Production, University of São Paulo, Pirassununga, Brazil, 13635-900
| | - R D Mingoti
- Department of Animal Nutrition and Animal Production, University of São Paulo, Pirassununga, Brazil, 13635-900
| | - G D Calomeni
- Department of Animal Nutrition and Animal Production, University of São Paulo, Pirassununga, Brazil, 13635-900
| | - R Gardinal
- Department of Animal Nutrition and Animal Production, University of São Paulo, Pirassununga, Brazil, 13635-900
| | - J R Gandra
- Department of Animal Science, Federal University of Grande Dourados, Dourados, Brazil, 79825-070
| | - V P Bettero
- Department of Animal Science, Sao Paulo State University, Jaboticabal, Brazil, 14884-900
| | - E Ferreira de Jesus
- Department of Animal Science, Sao Paulo State University, Jaboticabal, Brazil, 14884-900
| | - M D S Oliveira
- Department of Animal Science, Sao Paulo State University, Jaboticabal, Brazil, 14884-900
| | - F P Rennó
- Department of Animal Nutrition and Animal Production, University of São Paulo, Pirassununga, Brazil, 13635-900.
| |
Collapse
|
34
|
Yoshimura E, Santos N, Machado E, Agustinho B, Pereira L, de Aguiar S, Franzolin R, Gasparino E, dos Santos G, Zeoula L. Effects of dairy cow diets supplied with flaxseed oil and propolis extract, with or without vitamin E, on the ruminal microbiota, biohydrogenation, and digestion. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Bai S, Cao ZJ, Cao BB, Yang HJ, Li SL, Liu JX. Effects of different forage combinations in total mixed rations on in vitro gas production kinetics, ruminal and milk fatty acid profiles of lactating cows. Anim Sci J 2018; 89:1261-1270. [PMID: 29877003 DOI: 10.1111/asj.13036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 03/06/2018] [Indexed: 11/30/2022]
Abstract
This study aimed to determine the effects of different forage combinations on in vitro gas production (GP) kinetics, ruminal and milk fatty acid profiles. Forty-five lactating cows were randomly arranged into three groups and fed three total mixed rations (TMRs) with different forage combinations: TMR1, 23% alfalfa hay, 7% Chinese wild ryegrass hay and 15% whole corn silage; TMR2, 30% corn stover plus 15% whole corn silage; TMR3, 30% rice straw plus 15% whole corn silage. In vitro dry matter disappearance ranked: TMR1 > TMR2 > TMR3, and highest cumulative GP and asymptotic GP occurred in TMR1 while no difference occurred between TMR2 and TMR3. The average GP rate ranked: TMR1 > TMR2 > TMR3. TMR1 in comparison with TMR2 and TMR3 presented lower rumen contents of acetate and butyrate and greater rumen contents of propionate, valerate, C13:0, C14:0, C15:0, C18:1cis-9, C18:2n-6, C18:3n-3, C20:0 and C22:0 as well as milk C18:2n-6 and C18:3n-3 proportions. Transfer efficiencies of C18:2n-6 and C18:3n-3 from diet to milk ranked: TMR1 > TMR2 > TMR3. The findings suggest TMRs containing alfalfa hay and Chinese wild ryegrass hay in comparison with corn stover or rice straw improve rumen fermentation and transfer efficiency of C18:2n-6 and C18:3n-3.
Collapse
Affiliation(s)
- Sarvvl Bai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhi-Jun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bin-Bin Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hong-Jian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sheng-Li Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Xin Liu
- Institute of Dairy Science, MoE Key laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Prieto-Manrique E, Mahecha-Ledesma L, Vargas-Sánchez JE, Angulo-Arizala J. The effect of sunflower seed oil supplementation on the milk fatty acid contents of cows fed leucaena in an intensive silvopastoral system. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Rezaeenia A, Naserian AA, Valizadeh R, Tahmasbi AM, Mokhtarpour A. Effect of dietary inclusion of date seed (Phoenix dactylifera L.) on intake, digestibility, milk production, and milk fatty acid profile of Holstein dairy cows. Trop Anim Health Prod 2018; 50:1427-1433. [PMID: 29582341 DOI: 10.1007/s11250-018-1576-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/14/2018] [Indexed: 11/29/2022]
Abstract
The objective of this experiment was to investigate the influence of ground date seed (GDS) on intake, digestibility, and milk yield and milk fatty acid (FA) composition of lactating Holstein cows. The experimental design was a 4 × 4 replicated Latin square with eight lactating dairy cows with an average milk production of 35.5 ± 1.5 kg and 75 ± 5 days in milk (DIM). Dairy cows were fed one of the four treatments contained 0, 2, 4, and 6% of diet dry matter (DM) GDS in replacement of wheat bran. All diets contained the same amount of forages (alfalfa hay and corn silage). Dietary treatments had no effect on DM intake (DMI), total tract apparent digestibility, milk yield, and milk composition. Increasing GDS linearly decreased concentration of C13:0 and increased cis-9 C14:1 and trans-11 C18:1 (vaccenic acid) (P < 0.05). A linear tendency for more C16:1 content in milk fat was observed with increasing GDS (P = 0.06). Feeding GDS resulted in a linear decrease (P < 0.01) in saturated FA (SFA) but increased milk fat monounsaturated FA (MUFA) and trans FA (TFA) (P < 0.05). Therefore, low levels of GDS (up to 6%) in the diet of Holstein dairy cows can beneficially modify milk FA composition without any adverse effects on intake, digestibility, and milk yield.
Collapse
Affiliation(s)
- A Rezaeenia
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - A A Naserian
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - R Valizadeh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - A M Tahmasbi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - A Mokhtarpour
- Research Center of Special Domestic Animals, University of Zabol, Zabol, Iran.
| |
Collapse
|
38
|
Bayat A, Tapio I, Vilkki J, Shingfield K, Leskinen H. Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield. J Dairy Sci 2018; 101:1136-1151. [DOI: 10.3168/jds.2017-13545] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/13/2017] [Indexed: 01/07/2023]
|
39
|
Ammah AA, Benchaar C, Bissonnette N, Gévry N, Ibeagha-Awemu EM. Treatment and post-treatment effects of dietary supplementation with safflower oil and linseed oil on milk components and blood metabolites of Canadian Holstein cows. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2017.1422256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Adolf A. Ammah
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
- Department of Biology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Chaouki Benchaar
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| | - Nathalie Bissonnette
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| | - Nicolas Gévry
- Department of Biology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
40
|
Brossillon V, Reis SF, Moura DC, Galvão JGB, Oliveira AS, Côrtes C, Brito AF. Production, milk and plasma fatty acid profile, and nutrient utilization in Jersey cows fed flaxseed oil and corn grain with different particle size. J Dairy Sci 2017; 101:2127-2143. [PMID: 29274984 DOI: 10.3168/jds.2017-13478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/01/2017] [Indexed: 12/23/2022]
Abstract
We aimed to compare the effects of ground (GC) or cracked corn (CC), with or without flaxseed oil (FSO), on milk yield, milk and plasma fatty acid (FA) profile, and nutrient digestibility in Jersey cows fed diets formulated to contain similar starch concentrations. Twelve multiparous organic-certified Jersey cows averaging (mean ± standard deviation) 455 ± 41.9 kg of body weight and 152 ± 34 d in milk and 4 primiparous organic-certified Jersey cows averaging (mean ± standard deviation) 356 ± 2.41 kg of body weight and 174 ± 30 d in milk in the beginning of the experiment were used. Cows were randomly assigned to treatment sequences in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Each period lasted 24 d with 18 d for diet adaptation and 6 d for data and sample collection. Treatments were fed as total mixed rations consisting of (dry matter basis): (1) 0% FSO + 27.1% GC, (2) 0% FSO + 28.3% CC, (3) 3% FSO + 27.1% GC, and (4) 3% FSO + 28.3% CC. All cows were offered 55% of the total diet dry matter as mixed grass-legume baleage and treatments averaged 20% starch. Significant FSO × corn grain particle size interactions were observed for some variables including milk concentration of lactose and proportions of cis-9,cis-12,cis-15 18:3 in milk and plasma. The proportion of cis-9,cis-12,cis-15 18:3 in milk and plasma decreased slightly when comparing GC versus CC in 0% FSO cows, but a larger reduction was observed in 3% FSO cows. Dry matter intake did not differ and averaged 16.1 kg/d across diets. Feeding 3% FSO increased yields of milk and milk fat and lactose and feed and milk N efficiencies, but decreased fat, true protein, and MUN concentrations and apparent total-tract digestibility of fiber. The Σ branched-chain, Σ<16C, Σ16C, and Σn-6 FA decreased, whereas Σ18C, Σcis-18:1, and Σtrans-18:1 FA increased in 3% versus 0% FSO cows. No effect of corn particle size was observed for production and milk components. However, the apparent total-tract digestibility of starch was greater in GC than CC cows. Compared with CC, GC increased Σ branched-chain, Σ<16C, Σ16C, Σn-6 FA, and decreased Σ18C and Σ cis-18:1 FA in milk fat. Overall, results of this study are more directly applicable to dairy cows fed low starch, mixed grass-legume baleage-based diets.
Collapse
Affiliation(s)
- V Brossillon
- Ecole Supérieure d'Agricultures, Angers, France 49007
| | - S F Reis
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824
| | - D C Moura
- Instituto de Ciências Agrárias e Ambientais, Universidade Federal de Mato Grosso, Campus Sinop, Sinop, MT, Brazil 78557-267
| | - J G B Galvão
- Instituto Federal de Educação do Rio Grande do Norte, Ipanguaçu, RN, Brazil 59508-000
| | - A S Oliveira
- Instituto de Ciências Agrárias e Ambientais, Universidade Federal de Mato Grosso, Campus Sinop, Sinop, MT, Brazil 78557-267
| | - C Côrtes
- Ecole Supérieure d'Agricultures, Angers, France 49007
| | - A F Brito
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824.
| |
Collapse
|
41
|
He Y, Qiu Q, Shao T, Niu W, Xia C, Wang H, Li Q, Gao Z, Yu Z, Su H, Cao B. Dietary Alfalfa and Calcium Salts of Long-Chain Fatty Acids Alter Protein Utilization, Microbial Populations, and Plasma Fatty Acid Profile in Holstein Freemartin Heifers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10859-10867. [PMID: 29179547 DOI: 10.1021/acs.jafc.7b04173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study presented the effects of alfalfa and calcium salts of long-chain fatty acids (CSFA) on feed intake, apparent digestibility, rumen fermentation, microbial community, plasma biochemical parameters, and fatty acid profile in Holstein freemartin heifers. Eight Holstein freemartin heifers were randomly divided into a 4 × 4 Latin Square experiment with 2 × 2 factorial diets, with or without alfalfa or CSFA. Dietary supplementation of CSFA significantly increased the apparent digestibility of dry matter, crude protein, neutral detergent fiber, organic matter, and significantly reduced N retention (P < 0.05). CSFA increased the concentration of ammonia nitrogen in the ruminal fluid (P < 0.05), but alfalfa increased the concentration of valerate and isovalerate (P < 0.05). CSFA increased the concentration of ammonia nitrogen and the relative population of Streptococcus bovis in the rumen (P < 0.05) and inhibited the relative population of Ruminococcus flavefaciens, methanogens, and protozoa (P < 0.05). Alfalfa instead of Leymus chinensis increased the relative population of Butyrivibrio fibrisolvens and Ruminobacter amylophilus in the rumen (P < 0.05) and reduced the relative population of the Ruminococcus albus and Megasphaera elsdenii (P < 0.05). Supplemental CSFA increased the concentration of cholesterol and low-density lipoprotein cholesterol in the plasma (P < 0.05). And it also altered the composition of fatty acids in the plasma, which was expressed in reducing saturated fatty acid (ΣSFA) ratio and C14-C17 fatty acids proportion except C16:0 (P < 0.05) and increasing the proportion of polyunsaturated fatty acid (ΣPUFA) and unsaturated fatty acid (ΣUFA) (P < 0.05). The results showed that alfalfa and CSFA had interaction effect on the apparent digestibility of ether extracts, plasma triglyceride concentration, isobutyrate concentration, and Ruminococcus albus relative abundance in the rumen. It was concluded that alfalfa substituting Leymus chinensis did not change the apparent digestibility of nutrients in the final stage of fattening Holstein freemartin heifers, while CSFA increased the cholesterol and the proportion of unsaturated fatty acids in plasma. Alfalfa and CSFA had mutual interaction effect on fat digestion and plasma triglycerides.
Collapse
Affiliation(s)
- Yang He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 100193 Beijing, China
| | - Qinghua Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 100193 Beijing, China
| | - Taoqi Shao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 100193 Beijing, China
| | - Wenjing Niu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 100193 Beijing, China
| | - Chuanqi Xia
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 100193 Beijing, China
| | - Haibo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 100193 Beijing, China
| | - Qianwen Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 100193 Beijing, China
| | - Zhibiao Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 100193 Beijing, China
| | - Zhantao Yu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 100193 Beijing, China
| | - Huawei Su
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 100193 Beijing, China
| | - Binghai Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 100193 Beijing, China
| |
Collapse
|
42
|
van Gastelen S, Visker M, Edwards J, Antunes-Fernandes E, Hettinga K, Alferink S, Hendriks W, Bovenhuis H, Smidt H, Dijkstra J. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows. J Dairy Sci 2017; 100:8939-8957. [DOI: 10.3168/jds.2016-12367] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 08/02/2017] [Indexed: 02/01/2023]
|
43
|
Leduc M, Létourneau-Montminy MP, Gervais R, Chouinard P. Effect of dietary flax seed and oil on milk yield, gross composition, and fatty acid profile in dairy cows: A meta-analysis and meta-regression. J Dairy Sci 2017; 100:8906-8927. [DOI: 10.3168/jds.2017-12637] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/15/2017] [Indexed: 11/19/2022]
|
44
|
Enjalbert F, Combes S, Zened A, Meynadier A. Rumen microbiota and dietary fat: a mutual shaping. J Appl Microbiol 2017; 123:782-797. [DOI: 10.1111/jam.13501] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 01/01/2023]
Affiliation(s)
- F. Enjalbert
- GenPhySE; Université de Toulouse, INRA, INPT, ENVT; Castanet Tolosan France
| | - S. Combes
- GenPhySE; Université de Toulouse, INRA, INPT, ENVT; Castanet Tolosan France
| | - A. Zened
- GenPhySE; Université de Toulouse, INRA, INPT, ENVT; Castanet Tolosan France
| | - A. Meynadier
- GenPhySE; Université de Toulouse, INRA, INPT, ENVT; Castanet Tolosan France
| |
Collapse
|
45
|
Effect of calcium salts of polyunsaturated fatty acids with different particle sizes on lactation performance and milk fatty acid profile in dairy cows. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Popova M, McGovern E, McCabe MS, Martin C, Doreau M, Arbre M, Meale SJ, Morgavi DP, Waters SM. The Structural and Functional Capacity of Ruminal and Cecal Microbiota in Growing Cattle Was Unaffected by Dietary Supplementation of Linseed Oil and Nitrate. Front Microbiol 2017; 8:937. [PMID: 28596764 PMCID: PMC5442214 DOI: 10.3389/fmicb.2017.00937] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/09/2017] [Indexed: 01/13/2023] Open
Abstract
Microorganisms in the digestive tract of ruminants differ in their functionality and ability to use feed constituents. While cecal microbiota play an important role in post-rumen fermentation of residual substrates undigested in the rumen, limited knowledge exists regarding its structure and function. In this trial we investigated the effect of dietary supplementation with linseed oil and nitrate on methane emissions and on the structure of ruminal and cecal microbiota of growing bulls. Animals were allocated to either a CTL (control) or LINNIT (CTL supplemented with 1.9% linseed and 1.0% nitrates) diet. Methane emissions were measured using the GreenFeed system. Microbial diversity was assessed using amplicon sequencing of microbial genomic DNA. Additionally, total RNA was extracted from ruminal contents and functional mcrA and mtt genes were targeted in amplicon sequencing approach to explore the diversity of functional gene expression in methanogens. LINNIT had no effect on methane yield (g/kg DMI) even though it decreased methane production by 9% (g/day; P < 0.05). Methanobrevibacter- and Methanomassiliicoccaceae-related OTUs were more abundant in cecum (72 and 24%) compared to rumen (60 and 11%) irrespective of the diet (P < 0.05). Feeding LINNIT reduced the relative abundance of Methanomassiliicoccaceae mcrA cDNA reads in the rumen. Principal component analysis revealed significant differences in taxonomic composition and abundance of bacterial communities between rumen and cecum. Treatment decreased the relative abundance of a few Ruminococcaceae genera, without affecting global bacterial community structure. Our research confirms a high level of heterogeneity in species composition of microbial consortia in the main gastrointestinal compartments where feed is fermented in ruminants. There was a parallel between the lack of effect of LINNIT on ruminal and cecal microbial community structure and functions on one side and methane emission changes on the other. These results suggest that the sequencing strategy used here to study microbial diversity and function accurately reflected the absence of effect on methane phenotypes in bulls treated with linseed plus nitrate.
Collapse
Affiliation(s)
- Milka Popova
- UMR1213 Herbivores, Institut National de la Recherche Agronomique, VetAgro Sup, Clermont Université, Université de LyonSaint Genès-Champanelle, France
| | - Emily McGovern
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, TeagascDunsany, County Meath, Ireland
| | - Matthew S McCabe
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, TeagascDunsany, County Meath, Ireland
| | - Cécile Martin
- UMR1213 Herbivores, Institut National de la Recherche Agronomique, VetAgro Sup, Clermont Université, Université de LyonSaint Genès-Champanelle, France
| | - Michel Doreau
- UMR1213 Herbivores, Institut National de la Recherche Agronomique, VetAgro Sup, Clermont Université, Université de LyonSaint Genès-Champanelle, France
| | - Marie Arbre
- UMR1213 Herbivores, Institut National de la Recherche Agronomique, VetAgro Sup, Clermont Université, Université de LyonSaint Genès-Champanelle, France
| | - Sarah J Meale
- UMR1213 Herbivores, Institut National de la Recherche Agronomique, VetAgro Sup, Clermont Université, Université de LyonSaint Genès-Champanelle, France
| | - Diego P Morgavi
- UMR1213 Herbivores, Institut National de la Recherche Agronomique, VetAgro Sup, Clermont Université, Université de LyonSaint Genès-Champanelle, France
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, TeagascDunsany, County Meath, Ireland
| |
Collapse
|
47
|
Ebrahimi M, Rajion MA, Adeyemi KD, Jafari S, Jahromi MF, Oskoueian E, Meng GY, Ghaffari MH. Dietary n-6:n-3 Fatty Acid Ratios Alter Rumen Fermentation Parameters and Microbial Populations in Goats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:737-744. [PMID: 28052203 DOI: 10.1021/acs.jafc.6b04704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Revealing the ruminal fermentation patterns and microbial populations as affected by dietary n-6:n-3 PUFA ratio would be useful for further clarifying the role of the rumen in the lipid metabolism of ruminants. The objective of the present study was to investigate the effects of dietary n-6:n-3 PUFA ratios on fermentation characteristics, fatty acid (FA) profiles, and microbial populations in the rumen of goats. A total of twenty-one goats were randomly assigned to three dietary treatments with different n-6:n-3 PUFA ratios of 2.27:1 (low ratio, LR), 5.01:1 (medium ratio, MR), and 10.38:1 (high ratio, HR). After 100 days of feeding, all goats were slaughtered. Dietary n-6:n-3 PUFA ratios had no effect (P > 0.05) on rumen pH and NH3N concentration. Goats fed HR diet had lower (P < 0.05) propionate and total volatile fatty acids and higher (P < 0.05) butyrate compared with those fed the MR and LR diets. The proportion of C18:0 decreased (P < 0.05) as dietary n-6:n-3 PUFA ratios increased. The proportions of C18:1 trans-11, C18:2n-6, cis-9 trans-11 CLA, and C20:4n-6 were greater in the HR goats compared with the MR and LR goats. Lowering dietary n-6:n-3 PUFA ratios enhanced (P < 0.05) the proportion of C18:3n-3 and total n-3 PUFA in the rumen fluid of goats. The populations of R. albus and R. flavefaciens decreased (P < 0.05) as the n-6:n-3 PUFA ratios increased in diet. Diet had no effect (P > 0.05) on the ruminal populations of F. succinogenes, total bacteria, methanogens, total protozoa, Entiodinium, and Holotrich. The population of B. fibrisolvens was lower (P < 0.05) in the LR goats compared with the MR and HR goats. It was concluded that HR would increase the concentration of cis-9 trans-11 CLA and C18:1 trans-11 in the rumen. However, LR whould decrease the B. fibrisolvens population, which is involved in the BH process in the rumen. Further research is needed to evaluate the potential role and contribution of rumen microbiome in the metabolism of FA in the rumen.
Collapse
Affiliation(s)
| | | | - Kazeem Dauda Adeyemi
- Department of Animal Production University of Ilorin , PMB 1515, Ilorin, Nigeria
| | | | - Mohammad Faseleh Jahromi
- Agriculture Biotechnology Research Institute of Iran (ABRII) , East and North-East Branch, P.O.B. 91735 844, Mashhad, Iran
| | - Ehsan Oskoueian
- Agriculture Biotechnology Research Institute of Iran (ABRII) , East and North-East Branch, P.O.B. 91735 844, Mashhad, Iran
| | | | - Morteza Hosseini Ghaffari
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton, T6G 2P5 Canada
| |
Collapse
|
48
|
Weld KA, Armentano LE. The effects of adding fat to diets of lactating dairy cows on total-tract neutral detergent fiber digestibility: A meta-analysis. J Dairy Sci 2017; 100:1766-1779. [PMID: 28088408 DOI: 10.3168/jds.2016-11500] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/31/2016] [Indexed: 11/19/2022]
Abstract
The objective of this meta-analysis was to determine the effects of supplemental fat on fiber digestibility in lactating dairy cattle. Published papers that evaluated the effects of adding fat to the diets of lactating dairy cattle on total-tract neutral detergent fiber digestibility (ttNDFd) and dry matter intake (DMI) were compiled. The final data set included 108 fat-supplemented treatment means, not including low-fat controls, from 38 publications. The fat-supplemented treatment means exhibited a wide range of ttNDFd (49.4% ± 9.3, mean ± standard deviation) and DMI (21.3 kg/d ± 3.5). Observations were summarized as the difference between the treatment means for fat-supplemented diets minus their respective low-fat control means. Additionally, those differences were divided by the difference in diet fatty acid (FA) concentration between the treatment and control diets. Treatment means were categorized by the type of fat supplement. Supplementing 3% FA in the diet as medium-chain fats (containing predominately 12- and 14-carbon saturated FA) or unsaturated vegetable oil decreased ttNDFd by 8.0 and 1.2 percentage units, respectively. Adding 3% calcium salts of long-chain FA or saturated fats increased ttNDFd by 3.2 and 1.3 percentage units, respectively. No other fat supplement type affected ttNDFd. Except for saturated fats and animal-vegetable fats, supplementing dietary fat decreased DMI. When the values for changes in ttNDFd are regressed on changes in DMI there was a positive relationship, though the coefficient of determination is only 0.20. When changes in ttNDFd were regressed on changes in DMI, within individual fat supplement types, there was no relationship within calcium salt supplements. There was a positive relationship between changes in ttNDFd and changes in DMI for saturated fats. Neither relationship suggested that the increased ttNDFd with calcium salts or saturated FA was due to decreased DMI for these fat sources. A subset of the means included measured ruminal neutral detergent fiber digestion. Analysis of this smaller data set did not suggest that ruminal neutral detergent fiber digestibility is depressed by fat supplementation more than ttNDFd. Adding fats, other than those with medium-chain FA, consistently increased digestible energy density of the diet. However, due to reduced DMI, this increased energy density may not result in increased digestible nutrient intake.
Collapse
Affiliation(s)
- K A Weld
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706
| | - L E Armentano
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706.
| |
Collapse
|
49
|
Dorea JRR, Armentano LE. Effects of common dietary fatty acids on milk yield and concentrations of fat and fatty acids in dairy cattle. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an17335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objective of the present article was to summarise the effects of five common dietary fatty acids (C16:0, C18:0, C18:1, C18:2 and C18:3) on the major milk fat groups (<C16, C16 and C18). Forty published papers were reviewed to evaluate the effect of adding free fat or oil supplements rich in C16 and C18 fatty acids on the response of milk fat secretion and composition. From those 40 studies, 21 were used to investigate the effect of total dietary concentration of C16:0, C18:0, C18:1, C18:2 and C18:3 on milk secretion or concentrations of milk <C16, C16 and C18 fatty acid groups. The results indicated that C16 supplementation increased total milk fatty acids, mainly by increasing milk C16 yield, without affecting milk <C16 and C18 yield. Supplements rich in unsaturated fatty acid decreased total milk fatty acid by inhibiting secretion of milk fatty acids shorter than C18, with linoleic acid being the most inhibitory. Mixtures of feed fatty acid (C16:0 + C18:0 and C16:0 + C18:1) did not significantly affect total milk fatty acid yield. According to regression of milk C16 yield on dietary fatty acid, endogenous C16 contributes ~80% of total milk C16, but this proportion varies with the level and type of dietary fatty acid fed. Milk mid-infrared analysis can be used to routinely measure the presence of milk <C16 fatty acid, the concentration of which provides a good indicator of inhibition of milk fatty acid secretion. In contrast, measurement of total milk fat content is less effective as a diagnostic tool due to the masking effect of the exogenous supply of C16 and C18 dietary fatty acids.
Collapse
|
50
|
Naves AB, Freitas Júnior JE, Barletta RV, Gandra JR, Calomeni GD, Gardinal R, Takiya CS, Vendramini THA, Mingoti RD, Rennó FP. Effect of raw soya bean particle size on productive performance and digestion of dairy cows. J Anim Physiol Anim Nutr (Berl) 2016; 100:778-88. [PMID: 26453023 DOI: 10.1111/jpn.12413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/26/2015] [Indexed: 12/01/2022]
Abstract
Differing soya bean particle sizes may affect productive performance and ruminal fermentation due to the level of fatty acid (FA) exposure of the cotyledon in soya bean grain and because the protein in small particles is more rapidly degraded than the protein in large particles, which influence ruminal fibre digestion and the amounts of ruminally undegradable nutrients. The objective of this experiment was to investigate the effects of raw soya bean particle size on productive performance, digestion and milk FA profile of dairy cows. Twelve Holstein cows were assigned to three 4 × 4 Latin squares with 21-day periods. At the start of the experiment, cows were 121 days in milk (DIM) and yielded 30.2 kg/day of milk. Cows were fed 4 diets: (i) control diet (CO), without raw soya bean; (ii) whole raw soya bean (WRS); (iii) cracked raw soya bean in Wiley mill 4-mm screen (CS4); and (iv) cracked raw soya bean in Wiley mill 2-mm screen (CS2). The inclusion of soya beans (whole or cracked) was 200 g/kg on dry matter (DM) basis and partially replaced ground corn and soya bean meal. Uncorrected milk yield and composition were not influenced by experimental diets; however, fat-corrected milk (FCM) decreased when cows were fed soya bean treatments. Soya bean diets increased the intake of ether extract (EE) and net energy of lactation (NEL ), and decreased the intake of DM and non-fibre carbohydrate (NFC). Ruminal propionate concentration was lower in cows fed WRS than cows fed CS2 or CS4. Cows fed cracked raw soya bean presented lower nitrogen in faeces than cows fed WRS. The milk of cows fed WRS, CS2 and CS4 presented higher unsaturated FA than cows fed CO. The addition of raw soya bean in cow diets, regardless of the particle size, did not impair uncorrected milk yield and nutrient digestion, and increased the concentration of unsaturated FA in milk. Cows fed cracked raw soya bean presented similar productive performance to cows fed whole raw soya bean.
Collapse
Affiliation(s)
- A B Naves
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga, Brazil
| | - J E Freitas Júnior
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga, Brazil
| | - R V Barletta
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga, Brazil
| | - J R Gandra
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga, Brazil
| | - G D Calomeni
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga, Brazil
| | - R Gardinal
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga, Brazil
| | - C S Takiya
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga, Brazil
| | - T H A Vendramini
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga, Brazil
| | - R D Mingoti
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga, Brazil
| | - F P Rennó
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga, Brazil
| |
Collapse
|