1
|
Chin HS, Ravi Varadharajulu N, Lin ZH, Chen WY, Zhang ZH, Arumugam S, Lai CY, Yu SSF. Isolation, molecular identification, and genomic analysis of Mangrovibacter phragmitis strain ASIOC01 from activated sludge harboring the bioremediation prowess of glycerol and organic pollutants in high-salinity. Front Microbiol 2024; 15:1415723. [PMID: 38983623 PMCID: PMC11231211 DOI: 10.3389/fmicb.2024.1415723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
The physiological and genotypic characteristics of Mangrovibacter (MGB) remain largely unexplored, including their distribution and abundance within ecosystems. M. phragmitis (MPH) ASIOC01 was successfully isolated from activated sludge (AS), which was pre-enriched by adding 1,3-dichloro-2-propanol and 3-chloro-1,2-propanediol as carbon sources. The new isolate, MPH ASIOC01, exhibited resilience in a medium containing sodium chloride concentration up to 11% (with optimal growth observed at 3%) and effectively utilizing glycerol as their sole carbon source. However, species delimitation of MGBs remains challenging due to high 16S rRNA sequence similarity (greater than 99% ANI) among different MGBs. In contrast, among the housekeeping gene discrepancies, the tryptophan synthase beta chain gene can serve as a robust marker for fast species delimitation among MGBs. Furthermore, the complete genome of MPH ASIOC01 was fully sequenced and circlized as a single contig using the PacBio HiFi sequencing method. Comparative genomics revealed genes potentially associated with various phenotypic features of MGBs, such as nitrogen-fixing, phosphate-solubilizing, cellulose-digesting, Cr-reducing, and salt tolerance. Computational analysis suggested that MPH ASIOC01 may have undergone horizontal gene transfer events, possibly contributing unique traits such as antibiotic resistance. Finally, our findings also disclosed that the introduction of MPH ASIOC01 into AS can assist in the remediation of wastewater chemical oxygen demand, which was evaluated using gas chromatograph-mass spectrometry. To the best of our knowledge, this study offers the most comprehensive understanding of the phenotypic and genotypic features of MGBs to date.
Collapse
Affiliation(s)
- Hong Soon Chin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Narendrakumar Ravi Varadharajulu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Zhi-Han Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Wen-Yu Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Zong-Han Zhang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung City, Taiwan
| | | | - Ching-Yen Lai
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Steve S.-F. Yu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung City, Taiwan
| |
Collapse
|
2
|
Tynybayeva I, Tekebayeva Z, Bissenova G, Mynbayeva M, Sarmurzina Z. Multilocus genotyping for classification and genetic structuring of Lactobacillus casei: insights from source and geographical origin. World J Microbiol Biotechnol 2024; 40:93. [PMID: 38349588 DOI: 10.1007/s11274-024-03898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
The aim of the study in this article is to systematise the newly introduced strains of Lactobacillus based on determining the nucleotide sequence of a particular set of their genes (loci). The primary approach employed to address this issue involves conducting a laboratory experiment. During this experiment, a thorough examination was carried out on a set of organic compounds consisting of small DNA elements from the Lactobacillus genus. The Multilocus genotyping method served as the central technique, complemented by additional molecular-biological and population methods. These additional methods were utilized to determine the extent of phylogenetic similarity among pure cultures of Lactobacillus and to classify them accordingly. The article presents the gene isolates that were used for Multilocus typing; the number of L. casei isolates suitable for Multilocus genotyping was revealed; the gene alleles that allowed classifying L. casei isolates into five sequencing types were revealed; the effectiveness of genetic typing method for Multilocus sequencing was substantiated. The article is of practical value for microbiologists and geneticists in the field of molecular biology, as well as for technologists in the food industry. With the development of applied methods in genetic systematics, it has become possible to study pure culture of Lactobacillus species. The application of modern methods of genotypic classification of Lactobacillus species will make it possible to increase the efficiency of using better and safer products in the food industry and medicine.
Collapse
Affiliation(s)
- Indira Tynybayeva
- Laboratory of Genetics and Biochemistry of Microorganisms, Republican Collection of Microorganisms, Astana, 010000, Republic of Kazakhstan.
| | - Zhanar Tekebayeva
- Laboratory of Microbiology, Republican Collection of Microorganisms, Astana, 010000, Republic of Kazakhstan
| | - Gulmira Bissenova
- Laboratory of Microbiology, Republican Collection of Microorganisms, Astana, 010000, Republic of Kazakhstan
| | - Maryana Mynbayeva
- Laboratory of Biotechnology, Astana Bioscience Business Centre LLP, Astana, 010000, Republic of Kazakhstan
| | - Zinigul Sarmurzina
- Center for Study of Antibiotics and Secondary Metabolites, Republican Collection of Microorganisms, Astana, 010000, Republic of Kazakhstan
| |
Collapse
|
3
|
Garavaglia M, Muzlera A, Valverde C. Comparative genomics and informational content analysis uncovered internal regions of the core genes rpoD, pepN and gltX for an MLSA with genome-level resolving power within the genus Pseudomonas. Mol Phylogenet Evol 2023; 179:107663. [PMID: 36372354 DOI: 10.1016/j.ympev.2022.107663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/31/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
In the field of prokaryotic taxonomy, there has been a recent transition towards phylogenomics as the gold standard approach. However, genome-based phylogenetics is still restrictive for its cost when managing large amounts of isolates. Fast, cheap, and taxonomically competent alternatives, like multilocus sequence analysis (MLSA) are thus recommendable. Nevertheless, the criteria for selecting the conserved genes for MLSA have not been explicit for different bacterial taxa, including the broadly diverse Pseudomonas genus. Here, we have carried out an unbiased and rational workflow to select internal sequence regions of Pseudomonas core genes (CG) for a MLSA with the best phylogenetic power, and with a resolution comparable to the genome-based ANI approach. A computational workflow was established to inspect 126 complete genomes of representatives from over 60 Pseudomonas species and subspecies, in order to identify the most informative CG internal regions and determine which combinations in sets of three partial CG sequences have comparable phylogenetic resolution to that of the current ANI standard. We found that the rpoD346-1196-pepN1711-2571-gltX86-909 concatenated sequences were the best performing in terms of phylogenetic robustness and resulted highly sensitive and specific when contrasted with ANI. The rpoD-pepN-gltX MLSA was validated in silico and in vitro. Altogether, the results presented here supports the proposal of the rpoD-pepN-gltX MLSA as a fast, affordable, and robust phylogenetic tool for members of the Pseudomonas genus.
Collapse
Affiliation(s)
- Matías Garavaglia
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - Andrés Muzlera
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Zhang Z, Dong Y, Xiang F, Wang Y, Hou Q, Ni H, Cai W, Liu W, Yang S, Guo Z. Analysis of bacterial diversity and genetic evolution of Lacticaseibacillus paracasei isolates in fermentation pit mud. J Appl Microbiol 2022; 133:1821-1831. [PMID: 35802775 DOI: 10.1111/jam.15672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
AIMS Since little is known about the genetic diversity of lactic acid bacteria (LAB) isolates from the fermentation pit mud (FPM), we sought to evaluate the bacterial structure, identify the LAB isolates and investigate the genotype and genetic diversity of the LAB isolates. METHODS AND RESULTS Using high-throughput MiSeq sequencing, we identified seven dominant bacterial genera in FPM. Lactobacillus had the highest abundance. We isolated 55 LAB strains. These isolates were all identified as Lacticaseibacillus paracasei. Using an extant multilocus sequence typing (MLST) scheme, isolates were assigned to 18 sequence types (STs) and three clonal complexes. ST1, the largest group, mainly comprised FPM isolates. Niche-specific ST2 to ST18 only contained FPM isolates. Isolates could be divided into four lineages, with most assigned to Lineage 1. Only one FPM isolate was classified as L. paracasei subsp. paracasei. Other isolates could not be classified at the subspecies level using the seven MLST loci. CONCLUSIONS Lactobacilli account for a high proportion of bacteria in pit mud. Based on the traditional culture method, L. paracasei was the dominant species, and these isolates exhibit a high ethanol tolerance, high intraspecific diversity and specific genetic profiles. SIGNIFICANCE AND IMPACT OF THE STUDY The study described the characterization of FPM bacterial diversity, giving an insight into the genetic diversity of L. paracasei strains present in FPM.
Collapse
Affiliation(s)
- Zhendong Zhang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Yun Dong
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Fanshu Xiang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Yurong Wang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Qiangchuan Hou
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Hui Ni
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China.,School of Food Science, Shihezi University, Shihezi, Xinjiang Autonomous Region, People's Republic of China
| | - Wenchao Cai
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China.,School of Food Science, Shihezi University, Shihezi, Xinjiang Autonomous Region, People's Republic of China
| | - Wenhui Liu
- Hubei Guxiangyang Liquor Industry Co., Ltd., Xiangyang, People's Republic of China
| | - Shaoyong Yang
- Hubei Guxiangyang Liquor Industry Co., Ltd., Xiangyang, People's Republic of China
| | - Zhuang Guo
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| |
Collapse
|
5
|
MLST analysis of genetic diversity of Bacillus coagulans strains to evaluate effects on constipation model. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Yu AO, Goldman EA, Brooks JT, Golomb BL, Yim IS, Gotcheva V, Angelov A, Kim EB, Marco ML. Strain diversity of plant-associated Lactiplantibacillus plantarum. Microb Biotechnol 2021; 14:1990-2008. [PMID: 34171185 PMCID: PMC8449665 DOI: 10.1111/1751-7915.13871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 01/05/2023] Open
Abstract
Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) is a lactic acid bacteria species found on plants that is essential for many plant food fermentations. In this study, we investigated the intraspecific phenotypic and genetic diversity of 13 L. plantarum strains isolated from different plant foods, including fermented olives and tomatoes, cactus fruit, teff injera, wheat boza and wheat sourdough starter. We found that strains from the same or similar plant food types frequently exhibited similar carbohydrate metabolism and stress tolerance responses. The isolates from acidic, brine‐containing ferments (olives and tomatoes) were more resistant to MRS adjusted to pH 3.5 or containing 4% w/v NaCl, than those recovered from grain fermentations. Strains from fermented olives grew robustly on raffinose as the sole carbon source and were better able to grow in the presence of ethanol (8% v/v or sequential exposure of 8% (v/v) and then 12% (v/v) ethanol) than most isolates from other plant types and the reference strain NCIMB8826R. Cell free culture supernatants from the olive‐associated strains were also more effective at inhibiting growth of an olive spoilage strain of Saccharomyces cerevisiae. Multi‐locus sequence typing and comparative genomics indicated that isolates from the same source tended to be genetically related. However, despite these similarities, other traits were highly variable between strains from the same plant source, including the capacity for biofilm formation and survival at pH 2 or 50°C. Genomic comparisons were unable to resolve strain differences, with the exception of the most phenotypically impaired and robust isolates, highlighting the importance of utilizing phenotypic studies to investigate differences between strains of L. plantarum. The findings show that L. plantarum is adapted for growth on specific plants or plant food types, but that intraspecific variation may be important for ecological fitness and strain coexistence within individual habitats.
Collapse
Affiliation(s)
- Annabelle O Yu
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Elissa A Goldman
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Jason T Brooks
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Benjamin L Golomb
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Irene S Yim
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Velitchka Gotcheva
- Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria
| | - Angel Angelov
- Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria
| | - Eun Bae Kim
- Department of Applied Animal Science, Kangwon National University, Chuncheon, Gangwon-Do, South Korea
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
7
|
Perkins V, Vignola S, Lessard MH, Plante PL, Corbeil J, Dugat-Bony E, Frenette M, Labrie S. Phenotypic and Genetic Characterization of the Cheese Ripening Yeast Geotrichum candidum. Front Microbiol 2020; 11:737. [PMID: 32457706 PMCID: PMC7220993 DOI: 10.3389/fmicb.2020.00737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/30/2020] [Indexed: 01/04/2023] Open
Abstract
The yeast Geotrichum candidum (teleomorph Galactomyces candidus) is inoculated onto mold- and smear-ripened cheeses and plays several roles during cheese ripening. Its ability to metabolize proteins, lipids, and organic acids enables its growth on the cheese surface and promotes the development of organoleptic properties. Recent multilocus sequence typing (MLST) and phylogenetic analyses of G. candidum isolates revealed substantial genetic diversity, which may explain its strain-dependant technological capabilities. Here, we aimed to shed light on the phenotypic and genetic diversity among eight G. candidum and three Galactomyces spp. strains of environmental and dairy origin. Phenotypic tests such as carbon assimilation profiles, the ability to grow at 35°C and morphological traits on agar plates allowed us to discriminate G. candidum from Galactomyces spp. The genomes of these isolates were sequenced and assembled; whole genome comparison clustered the G. candidum strains into three subgroups and provided a reliable reference for MLST scheme optimization. Using the whole genome sequence as a reference, we optimized an MLST scheme using six loci that were proposed in two previous MLST schemes. This new MLST scheme allowed us to identify 15 sequence types (STs) out of 41 strains and revealed three major complexes named GeoA, GeoB, and GeoC. The population structure of these 41 strains was evaluated with STRUCTURE and a NeighborNet analysis of the combined six loci, which revealed recombination events between and within the complexes. These results hint that the allele variation conferring the different STs arose from recombination events. Recombination occurred for the six housekeeping genes studied, but most likely occurred throughout the genome. These recombination events may have induced an adaptive divergence between the wild strains and the cheesemaking strains, as observed for other cheese ripening fungi. Further comparative genomic studies are needed to confirm this phenomenon in G. candidum. In conclusion, the draft assembly of 11 G. candidum/Galactomyces spp. genomes allowed us to optimize a genotyping MLST scheme and, combined with the assessment of their ability to grow under different conditions, provides a reliable tool to cluster and eventually improves the selection of G. candidum strains.
Collapse
Affiliation(s)
- Vincent Perkins
- Department of Food Sciences and Nutrition, STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC, Canada
| | - Stéphanie Vignola
- Department of Food Sciences and Nutrition, STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC, Canada
| | - Marie-Hélène Lessard
- Department of Food Sciences and Nutrition, STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC, Canada
| | - Pier-Luc Plante
- Big Data Research Center, Université Laval, Quebec City, QC, Canada
| | - Jacques Corbeil
- Big Data Research Center, Université Laval, Quebec City, QC, Canada
| | - Eric Dugat-Bony
- Department of Food Sciences and Nutrition, STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC, Canada
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Thiverval-Grignon, France
| | - Michel Frenette
- Oral Ecology Research Group, Faculty of Dental Medicine, Université Laval, Quebec City, QC, Canada
- Faculty of Science and Engineering, Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, QC, Canada
| | - Steve Labrie
- Department of Food Sciences and Nutrition, STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
8
|
Diversity and evolution of Lactobacillus casei group isolated from fermented dairy products in Tibet. Arch Microbiol 2018; 200:1111-1121. [DOI: 10.1007/s00203-018-1528-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/30/2017] [Accepted: 05/18/2018] [Indexed: 12/16/2022]
|
9
|
Frantzen CA, Kleppen HP, Holo H. Lactococcus lactis Diversity in Undefined Mixed Dairy Starter Cultures as Revealed by Comparative Genome Analyses and Targeted Amplicon Sequencing of epsD. Appl Environ Microbiol 2018; 84:e02199-17. [PMID: 29222100 PMCID: PMC5772235 DOI: 10.1128/aem.02199-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022] Open
Abstract
Undefined mesophilic mixed (DL) starter cultures are used in the production of continental cheeses and contain unknown strain mixtures of Lactococcus lactis and leuconostocs. The choice of starter culture affects the taste, aroma, and quality of the final product. To gain insight into the diversity of Lactococcus lactis strains in starter cultures, we whole-genome sequenced 95 isolates from three different starter cultures. Pan-genomic analyses, which included 30 publically available complete genomes, grouped the strains into 21 L. lactis subsp. lactis and 28 L. lactis subsp. cremoris lineages. Only one of the 95 isolates grouped with previously sequenced strains, and the three starter cultures showed no overlap in lineage distributions. The culture diversity was assessed by targeted amplicon sequencing using purR, a core gene, and epsD, present in 93 of the 95 starter culture isolates but absent in most of the reference strains. This enabled an unprecedented discrimination of starter culture Lactococcus lactis and revealed substantial differences between the three starter cultures and compositional shifts during the cultivation of cultures in milk.IMPORTANCE In contemporary cheese production, standardized frozen seed stock starter cultures are used to ensure production stability, reproducibility, and quality control of the product. The dairy industry experiences significant disruptions of cheese production due to phage attacks, and one commonly used countermeasure to phage attack is to employ a starter rotation strategy, in which two or more starters with minimal overlap in phage sensitivity are used alternately. A culture-independent analysis of the lactococcal diversity in complex undefined starter cultures revealed large differences between the three starter cultures and temporal shifts in lactococcal composition during the production of bulk starters. A better understanding of the lactococcal diversity in starter cultures will enable the development of more robust starter cultures and assist in maintaining the efficiency and stability of the production process by ensuring the presence of key bacteria that are important to the characteristics of the product.
Collapse
Affiliation(s)
- Cyril A Frantzen
- Laboratory of Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Hans Petter Kleppen
- Laboratory of Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- ACD Pharmaceuticals AS, Leknes, Norway
| | - Helge Holo
- Laboratory of Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- TINE SA, Oslo, Norway
| |
Collapse
|
10
|
Pérez-Cataluña A, Tapiol J, Benavent C, Sarvisé C, Gómez F, Martínez B, Terron-Puig M, Recio G, Vilanova A, Pujol I, Ballester F, Rezusta A, Figueras MJ. Antimicrobial susceptibility, virulence potential and sequence types associated with Arcobacter strains recovered from human faeces. J Med Microbiol 2017; 66:1736-1743. [PMID: 29120301 DOI: 10.1099/jmm.0.000638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The genus Arcobacter includes bacteria that are considered emergent pathogens because they can produce infections in humans and animals. The most common symptoms are bloody and non-bloody persistent diarrhea but cases with abdominal cramps without diarrhea or asymptomatic cases have also been described as well as cases with bacteremia. The objective was to characterize Arcobacter clinical strains isolated from the faeces of patients from three Spanish hospitals. METHODOLOGY We have characterized 28 clinical strains (27 of A. butzleri and one of A. cryaerophilus) isolated from faeces, analysing their epidemiological relationship using the multilocus sequence typing (MLST) approach and screening them for their antibiotic susceptibility and for the presence of virulence genes.Results/Key findings. Typing results showed that only one of the 28 identified sequence types (i.e. ST 2) was already present in the MLST database. The other 27 STs constituted new records because they included new alleles for five of the seven genes or new combinations of known alleles of the seven genes. All strains were positive for the ciaB virulence gene and sensitive to tetracycline. However, 7.4 % of the A. butzleri and A. cryaerophilus strains showed resistance to ciprofloxacin. CONCLUSION The fact that epidemiological unrelated strains show the same ST indicates that other techniques with higher resolution should be developed to effectively recognize the infection source. Resistance to ciprofloxacin, one of the antibiotics recommended for the treatment of Arcobacter intestinal infections, demonstrated in 10.7 % of the strains, indicates the importance of selecting the most appropriate effective treatment.
Collapse
Affiliation(s)
- Alba Pérez-Cataluña
- Unitat de Microbiología, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | | | | | | | | | | | | | - Gemma Recio
- Hospital Universitari Joan XXIII, Tarragona, Spain
| | | | | | | | | | - María Jose Figueras
- Unitat de Microbiología, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
11
|
Laroute V, Tormo H, Couderc C, Mercier-Bonin M, Le Bourgeois P, Cocaign-Bousquet M, Daveran-Mingot ML. From Genome to Phenotype: An Integrative Approach to Evaluate the Biodiversity of Lactococcus lactis. Microorganisms 2017; 5:microorganisms5020027. [PMID: 28534821 PMCID: PMC5488098 DOI: 10.3390/microorganisms5020027] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 01/09/2023] Open
Abstract
Lactococcus lactis is one of the most extensively used lactic acid bacteria for the manufacture of dairy products. Exploring the biodiversity of L. lactis is extremely promising both to acquire new knowledge and for food and health-driven applications. L. lactis is divided into four subspecies: lactis, cremoris, hordniae and tructae, but only subsp. lactis and subsp. cremoris are of industrial interest. Due to its various biotopes, Lactococcus subsp. lactis is considered the most diverse. The diversity of L. lactis subsp. lactis has been assessed at genetic, genomic and phenotypic levels. Multi-Locus Sequence Type (MLST) analysis of strains from different origins revealed that the subsp. lactis can be classified in two groups: “domesticated” strains with low genetic diversity, and “environmental” strains that are the main contributors of the genetic diversity of the subsp. lactis. As expected, the phenotype investigation of L. lactis strains reported here revealed highly diverse carbohydrate metabolism, especially in plant- and gut-derived carbohydrates, diacetyl production and stress survival. The integration of genotypic and phenotypic studies could improve the relevance of screening culture collections for the selection of strains dedicated to specific functions and applications.
Collapse
Affiliation(s)
- Valérie Laroute
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - Hélène Tormo
- Département des Sciences Agronomiques et Agroalimentaire, équipe Agroalimentaire et Nutrition, Université de Toulouse, INP-Purpan, Toulouse, France.
| | - Christel Couderc
- Département des Sciences Agronomiques et Agroalimentaire, équipe Agroalimentaire et Nutrition, Université de Toulouse, INP-Purpan, Toulouse, France.
| | - Muriel Mercier-Bonin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Pascal Le Bourgeois
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
- Université de Toulouse III, Université Paul Sabatier, F-31062 Toulouse, France.
| | | | - Marie-Line Daveran-Mingot
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
- Université de Toulouse III, Université Paul Sabatier, F-31062 Toulouse, France.
| |
Collapse
|
12
|
Luiz LMP, Chuat V, Madec MN, Araújo EA, de Carvalho AF, Valence F. Mesophilic Lactic Acid Bacteria Diversity Encountered in Brazilian Farms Producing Milk with Particular Interest in Lactococcus lactis Strains. Curr Microbiol 2016; 73:503-11. [PMID: 27356514 DOI: 10.1007/s00284-016-1086-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/17/2016] [Indexed: 11/25/2022]
Abstract
The milk produced in regions with different traditions in Brazil is used for artisanal product production, which is characterized by different sensorial characteristics. This study aimed to identify the bacterial ecosystem of farms located in a traditional dairy region in the state of Minas Gerais and to characterize Lactococcus lactis strains, the species of interest in this study, using a multilocus sequence typing (MLST) protocol and pulsed-field gel electrophoresis (PFGE) technique. Samples were collected from raw milk and dairy environment from six farms. A total of 50 isolates were analyzed using 16S rRNA sequencing and species-specific PCR. Five genera were identified: Lactobacillus, Leuconostoc, Lactococcus, Enterococcus, and Staphylococcus, from ten different species. MLST (with six housekeeping genes) and PFGE (with SmaI endonuclease) were used for the characterization of 20 isolates of Lactococcus lactis from a dairy collection in this study. Both methods revealed a high clonal diversity of strains with a higher discriminatory level for PFGE (15 pulsotypes), compared to MLST (12 ST). This study contributes to the preservation of the Brazilian dairy heritage and provides insights into a part of the LAB population found in raw milk and dairy environment.
Collapse
Affiliation(s)
- L M P Luiz
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa-UFV, Viçosa, MG, Brazil.
| | - V Chuat
- INRA UMR 1253, Science et Technologie du Lait et de l'Œuf, F-35042, Rennes, France
- UMR 1253, Agrocampus Ouest, Science et technologie du lait et de l'Œuf, F-35042, Rennes, France
| | - M N Madec
- INRA UMR 1253, Science et Technologie du Lait et de l'Œuf, F-35042, Rennes, France
| | - E A Araújo
- Universidade Federal do Triângulo Mineiro-UFTM, Uberaba, MG, Brazil
| | - A F de Carvalho
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa-UFV, Viçosa, MG, Brazil
| | - F Valence
- INRA UMR 1253, Science et Technologie du Lait et de l'Œuf, F-35042, Rennes, France
- UMR 1253, Agrocampus Ouest, Science et technologie du lait et de l'Œuf, F-35042, Rennes, France
| |
Collapse
|
13
|
Bao Q, Song Y, Xu H, Yu J, Zhang W, Menghe B, Zhang H, Sun Z. Multilocus sequence typing of Lactobacillus casei isolates from naturally fermented foods in China and Mongolia. J Dairy Sci 2016; 99:5202-5213. [PMID: 27179867 DOI: 10.3168/jds.2016-10857] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/28/2016] [Indexed: 11/19/2022]
Abstract
Lactobacillus casei is a lactic acid bacterium used in manufacturing of many fermented food products. To investigate the genetic diversity and population biology of this food-related bacterium, 224 Lb. casei isolates and 5 reference isolates were examined by multilocus sequence typing (MLST). Among them, 224 Lb. casei isolates were isolated from homemade fermented foods, including naturally fermented dairy products, acidic gruel, and Sichuan pickles from 38 different regions in China and Mongolia. The MLST scheme was developed based on the analysis of 10 selected housekeeping genes (carB, clpX, dnaA, groEL, murE, pyrG, pheS, recA, rpoC, and uvrC). All 229 isolates could be allocated to 171 unique sequence types, including 25 clonal complexes and 71 singletons. The high index of association value (1.3524) and standardized index of association value (0.1503) indicate the formation of an underlying clonal population by all the isolates. However, split-decomposition, relative frequency of occurrence of recombination and mutation, and relative effect of recombination and mutation in the diversification values confirm that recombination may have occurred, and were more frequent than mutation during the evolution of Lb. casei. Results from Structure analyses (version 2.3; http://pritch.bsd.uchicago.edu/structure.html) demonstrated that there were 5 lineages in the Lb. casei isolates, and the overall relatedness built by minimum spanning tree showed no clear relationship between the clonal complexes with either the isolation sources or sampling locations of the isolates. Our newly developed MLST scheme of Lb. casei was an easy and valuable tool that, together with the construction of an MLST database, will contribute to further detailed studies on the evolution and population genetics of Lb. casei from various niches.
Collapse
Affiliation(s)
- Qiuhua Bao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Yuqin Song
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Haiyan Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China.
| |
Collapse
|
14
|
Song Y, Sun Z, Guo C, Wu Y, Liu W, Yu J, Menghe B, Yang R, Zhang H. Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods. Sci Rep 2016; 6:22704. [PMID: 26940047 PMCID: PMC4778129 DOI: 10.1038/srep22704] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/18/2016] [Indexed: 11/30/2022] Open
Abstract
Lactobacillus delbrueckii subsp. bulgaricus is one of the most widely used starter culture strains in industrial fermented dairy manufacture. It is also common in naturally fermented dairy foods made using traditional methods. The subsp. bulgaricus strains found in naturally fermented foods may be useful for improving current industrial starter cultures; however, little is known regarding its genetic diversity and population structure. Here, a collection of 298 L. delbrueckii strains from naturally fermented products in Mongolia, Russia, and West China was analyzed by multi-locus sequence typing based on eight conserved genes. The 251 confirmed subsp. bulgaricus strains produced 106 unique sequence types, the majority of which were assigned to five clonal complexes (CCs). The geographical distribution of CCs was uneven, with CC1 dominated by Mongolian and Russian isolates, and CC2–CC5 isolates exclusively from Xinjiang, China. Population structure analysis suggested six lineages, L1–L6, with various homologous recombination rates. Although L2–L5 were mainly restricted within specific regions, strains belonging to L1 and L6 were observed in diverse regions, suggesting historical transmission events. These results greatly enhance our knowledge of the population diversity of subsp. bulgaricus strains, and suggest that strains from CC1 and L4 may be useful as starter strains in industrial fermentation.
Collapse
Affiliation(s)
- Yuqin Song
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Chenyi Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| |
Collapse
|
15
|
Cavanagh D, Casey A, Altermann E, Cotter PD, Fitzgerald GF, McAuliffe O. Evaluation of Lactococcus lactis Isolates from Nondairy Sources with Potential Dairy Applications Reveals Extensive Phenotype-Genotype Disparity and Implications for a Revised Species. Appl Environ Microbiol 2015; 81:3961-72. [PMID: 25841018 PMCID: PMC4524136 DOI: 10.1128/aem.04092-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/26/2015] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is predominantly associated with dairy fermentations, but evidence suggests that the domesticated organism originated from a plant niche. L. lactis possesses an unusual taxonomic structure whereby strain phenotypes and genotypes often do not correlate, which in turn has led to confusion in L. lactis classification. A bank of L. lactis strains was isolated from various nondairy niches (grass, vegetables, and bovine rumen) and was further characterized on the basis of key technological traits, including growth in milk and key enzyme activities. Phenotypic analysis revealed all strains from nondairy sources to possess an L. lactis subsp. lactis phenotype (lactis phenotype); however, seven of these strains possessed an L. lactis subsp. cremoris genotype (cremoris genotype), determined by two separate PCR assays. Multilocus sequence typing (MLST) showed that strains with lactis and cremoris genotypes clustered together regardless of habitat, but it highlighted the increased diversity that exists among "wild" strains. Calculation of average nucleotide identity (ANI) and tetranucleotide frequency correlation coefficients (TETRA), using the JSpecies software tool, revealed that L. lactis subsp. cremoris and L. lactis subsp. lactis differ in ANI values by ∼14%, below the threshold set for species circumscription. Further analysis of strain TIFN3 and strains from nonindustrial backgrounds revealed TETRA values of <0.99 in addition to ANI values of <95%, implicating that these two groups are separate species. These findings suggest the requirement for a revision of L. lactis taxonomy.
Collapse
Affiliation(s)
- Daniel Cavanagh
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland Department of Microbiology, University College Cork, County Cork, Ireland
| | - Aidan Casey
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Eric Altermann
- Animal Nutrition and Health, AgResearch Ltd., Palmerston North, New Zealand
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | | | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|
16
|
Dan T, Liu W, Song Y, Xu H, Menghe B, Zhang H, Sun Z. The evolution and population structure of Lactobacillus fermentum from different naturally fermented products as determined by multilocus sequence typing (MLST). BMC Microbiol 2015; 15:107. [PMID: 25990318 PMCID: PMC4437502 DOI: 10.1186/s12866-015-0447-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/14/2015] [Indexed: 11/11/2022] Open
Abstract
Background Lactobacillus fermentum is economically important in the production and preservation of fermented foods. A repeatable and discriminative typing method was devised to characterize L. fermentum at the molecular level. The multilocus sequence typing (MLST) scheme developed was based on analysis of the internal sequence of 11 housekeeping gene fragments (clpX, dnaA, dnaK, groEL, murC, murE, pepX, pyrG, recA, rpoB, and uvrC). Results MLST analysis of 203 isolates of L. fermentum from Mongolia and seven provinces/ autonomous regions in China identified 57 sequence types (ST), 27 of which were represented by only a single isolate, indicating high genetic diversity. Phylogenetic analyses based on the sequence of the 11 housekeeping gene fragments indicated that the L. fermentum isolates analyzed belonged to two major groups. A standardized index of association (IAS) indicated a weak clonal population structure in L. fermentum. Split decomposition analysis indicated that recombination played an important role in generating the genetic diversity observed in L. fermentum. The results from the minimum spanning tree strongly suggested that evolution of L. fermentum STs was not correlated with geography or food-type. Conclusions The MLST scheme developed will be valuable for further studies on the evolution and population structure of L. fermentum isolates used in food products. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0447-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tong Dan
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| | - Yuqin Song
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| | - Haiyan Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| |
Collapse
|
17
|
Sun Z, Liu W, Song Y, Xu H, Yu J, Bilige M, Zhang H, Chen Y. Population structure of Lactobacillus helveticus isolates from naturally fermented dairy products based on multilocus sequence typing. J Dairy Sci 2015; 98:2962-72. [DOI: 10.3168/jds.2014-9133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/23/2015] [Indexed: 01/14/2023]
|
18
|
Zhang W, Liu W, Song Y, Xu H, Menghe B, Zhang H, Sun Z. Multilocus sequence typing of a dairy-associated Leuconostoc mesenteroides population reveals clonal structure with intragenic homologous recombination. J Dairy Sci 2015; 98:2284-93. [DOI: 10.3168/jds.2014-9227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/31/2014] [Indexed: 11/19/2022]
|
19
|
Wang T, Li H, Wang H, Su J. Multilocus sequence typing and pulsed-field gel electrophoresis analysis of Oenococcus oeni from different wine-producing regions of China. Int J Food Microbiol 2015; 199:47-53. [PMID: 25625911 DOI: 10.1016/j.ijfoodmicro.2015.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 12/18/2014] [Accepted: 01/08/2015] [Indexed: 11/16/2022]
Abstract
The present study established a typing method with NotI-based pulsed-field gel electrophoresis (PFGE) and stress response gene schemed multilocus sequence typing (MLST) for 55 Oenococcus oeni strains isolated from six individual regions in China and two model strains PSU-1 (CP000411) and ATCC BAA-1163 (AAUV00000000). Seven stress response genes, cfa, clpL, clpP, ctsR, mleA, mleP and omrA, were selected for MLST testing, and positive selective pressure was detected for these genes. Furthermore, both methods separated the strains into two clusters. The PFGE clusters are correlated with the region, whereas the sequence types (STs) formed by the MLST confirm the two clusters identified by PFGE. In addition, the population structure was a mixture of evolutionary pathways, and the strains exhibited both clonal and panmictic characteristics.
Collapse
Affiliation(s)
- Tao Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Su
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
20
|
Cavanagh D, Fitzgerald GF, McAuliffe O. From field to fermentation: the origins of Lactococcus lactis and its domestication to the dairy environment. Food Microbiol 2014; 47:45-61. [PMID: 25583337 DOI: 10.1016/j.fm.2014.11.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/22/2014] [Accepted: 11/01/2014] [Indexed: 11/18/2022]
Abstract
Lactococcus lactis is an organism of substantial economic importance, used extensively in the production of fermented foods and widely held to have evolved from plant strains. The domestication of this organism to the milk environment is associated with genome reduction and gene decay, and the acquisition of specific genes involved in protein and lactose utilisation by horizontal gene transfer. In recent years, numerous studies have focused on uncovering the physiology and molecular biology of lactococcal strains from the wider environment for exploitation in the dairy industry. This in turn has facilitated comparative genome analysis of lactococci from different environments and provided insight into the natural phenotypic and genetic diversity of L. lactis. This diversity may be exploited in dairy fermentations to develop products with improved quality and sensory attributes. In this review, we discuss the classification of L. lactis and the problems that arise with phenotype/genotype designation. We also discuss the adaptation of non-dairy lactococci to milk, the traits associated with this adaptation and the potential application of non-dairy lactococci to dairy fermentations.
Collapse
Affiliation(s)
- Daniel Cavanagh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; Department of Microbiology, University College Cork, Co. Cork, Ireland.
| | | | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
21
|
Dan T, Liu W, Sun Z, Lv Q, Xu H, Song Y, Zhang H. A novel multi-locus sequence typing (MLST) protocol for Leuconostoc lactis isolates from traditional dairy products in China and Mongolia. BMC Microbiol 2014; 14:150. [PMID: 24912963 PMCID: PMC4063691 DOI: 10.1186/1471-2180-14-150] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Economically, Leuconostoc lactis is one of the most important species in the genus Leuconostoc. It plays an important role in the food industry including the production of dextrans and bacteriocins. Currently, traditional molecular typing approaches for characterisation of this species at the isolate level are either unavailable or are not sufficiently reliable for practical use. Multilocus sequence typing (MLST) is a robust and reliable method for characterising bacterial and fungal species at the molecular level. In this study, a novel MLST protocol was developed for 50 L. lactis isolates from Mongolia and China. RESULTS Sequences from eight targeted genes (groEL, carB, recA, pheS, murC, pyrG, rpoB and uvrC) were obtained. Sequence analysis indicated 20 different sequence types (STs), with 13 of them being represented by a single isolate. Phylogenetic analysis based on the sequences of eight MLST loci indicated that the isolates belonged to two major groups, A (34 isolates) and B (16 isolates). Linkage disequilibrium analyses indicated that recombination occurred at a low frequency in L. lactis, indicating a clonal population structure. Split-decomposition analysis indicated that intraspecies recombination played a role in generating genotypic diversity amongst isolates. CONCLUSIONS Our results indicated that MLST is a valuable tool for typing L. lactis isolates that can be used for further monitoring of evolutionary changes and population genetics.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P, R, China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, P, R, China.
| |
Collapse
|