1
|
Khan MI, Bertram H, Schmitt AO, Ramzan F, Gültas M. Computational Identification of Milk Trait Regulation Through Transcription Factor Cooperation in Murciano-Granadina Goats. BIOLOGY 2024; 13:929. [PMID: 39596884 PMCID: PMC11591944 DOI: 10.3390/biology13110929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
The Murciano-Granadina goat (MUG) is a renowned dairy breed, known for its adaptability and resilience, as well as for its exceptional milk traits characterized by high protein and fat content, along with low somatic cell counts. These traits are governed by complex biological processes, crucial in shaping phenotypic diversity. Thus, it is imperative to explore the factors regulating milk production and lactation for this breed. In this study, we investigated the genetic architecture of seven milk traits in MUGs, employing a two-step computational analysis to examine genotype-phenotype associations. Initially, a random forest algorithm identified the relative importance of each single-nucleotide polymorphism (SNP) in determining the traits of interest. The second step applied an information theory-based approach to exploring the complex genetic architecture of quantitative milk traits, focusing on epistatic interactions that may have been overlooked in the first step. These approaches allowed us to identify an almost distinct set of candidate genes for each trait. In contrast, by analyzing the promoter regions of these genes, we revealed common regulatory networks among the milk traits under study. These findings are crucial for understanding the molecular mechanisms underlying gene regulation, and they highlight the pivotal role of transcription factors (TFs) and their preferential interactions in the development of these traits. Notably, TFs such as DBP, HAND1E47, HOXA4, PPARA, and THAP1 were consistently identified for all traits, highlighting their important roles in immunity within the mammary gland and milk production during lactation.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany;
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany;
- Department of Livestock Production and Management, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Hendrik Bertram
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany;
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany;
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| | - Faisal Ramzan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Mehmet Gültas
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| |
Collapse
|
2
|
Ardenkjær-Skinnerup J, Saar D, Petersen PSS, Pedersen M, Svingen T, Kragelund BB, Hadrup N, Ravn-Haren G, Emanuelli B, Brown KA, Vogel U. PPARγ antagonists induce aromatase transcription in adipose tissue cultures. Biochem Pharmacol 2024; 222:116095. [PMID: 38423186 DOI: 10.1016/j.bcp.2024.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Aromatase is the rate-limiting enzyme in the biosynthesis of estrogens and a key risk factor for hormone receptor-positive breast cancer. In postmenopausal women, estrogens synthesized in adipose tissue promotes the growth of estrogen receptor positive breast cancers. Activation of peroxisome proliferator-activated receptor gamma (PPARγ) in adipose stromal cells (ASCs) leads to decreased expression of aromatase and differentiation of ASCs into adipocytes. Environmental chemicals can act as antagonists of PPARγ and disrupt its function. This study aimed to test the hypothesis that PPARγ antagonists can promote breast cancer by stimulating aromatase expression in human adipose tissue. Primary cells and explants from human adipose tissue as well as A41hWAT, C3H10T1/2, and H295R cell lines were used to investigate PPARγ antagonist-stimulated effects on adipogenesis, aromatase expression, and estrogen biosynthesis. Selected antagonists inhibited adipocyte differentiation, preventing the adipogenesis-associated downregulation of aromatase. NMR spectroscopy confirmed direct interaction between the potent antagonist DEHPA and PPARγ, inhibiting agonist binding. Short-term exposure of ASCs to PPARγ antagonists upregulated aromatase only in differentiated cells, and a similar effect could be observed in human breast adipose tissue explants. Overexpression of PPARG with or without agonist treatment reduced aromatase expression in ASCs. The data suggest that environmental PPARγ antagonists regulate aromatase expression in adipose tissue through two mechanisms. The first is indirect and involves inhibition of adipogenesis, while the second occurs more acutely.
Collapse
Affiliation(s)
- Jacob Ardenkjær-Skinnerup
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark; The National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Daniel Saar
- REPIN and Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Patricia S S Petersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen N, Denmark
| | - Mikael Pedersen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Terje Svingen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Birthe B Kragelund
- REPIN and Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Niels Hadrup
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark; The National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Gitte Ravn-Haren
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Brice Emanuelli
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen N, Denmark
| | - Kristy A Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Ulla Vogel
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark; The National Research Centre for the Working Environment, Copenhagen Ø, Denmark.
| |
Collapse
|
3
|
Robles M, Rousseau-Ralliard D, Dubois C, Josse T, Nouveau É, Dahirel M, Wimel L, Couturier-Tarrade A, Chavatte-Palmer P. Obesity during Pregnancy in the Horse: Effect on Term Placental Structure and Gene Expression, as Well as Colostrum and Milk Fatty Acid Concentration. Vet Sci 2023; 10:691. [PMID: 38133242 PMCID: PMC10748288 DOI: 10.3390/vetsci10120691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
In horses, the prevalence of obesity is high and associated with serious metabolic pathologies. Being a broodmare has been identified as a risk factor for obesity. In other species, maternal obesity is known to affect the development of the offspring. This article is a follow-up study of previous work showing that Obese mares (O, n = 10, body condition score > 4.25 at insemination) were more insulin resistant and presented increased systemic inflammation during pregnancy compared to Normal mares (N, n = 14, body condition score < 4 at insemination). Foals born to O mares were more insulin-resistant, presented increased systemic inflammation, and were more affected by osteoarticular lesions. The objective of the present study was to investigate the effect of maternal obesity on placental structure and function, as well as the fatty acid profile in the plasma of mares and foals, colostrum, and milk until 90 days of lactation, which, to our knowledge, has been poorly studied in the horse. Mares from both groups were fed the same diet during pregnancy and lactation. During lactation, mares were housed in pasture. A strong heat wave, followed by a drought, occurred during their 2nd and 3rd months of lactation (summer of 2016 in the Limousin region, France). In the present article, term placental morphometry, structure (stereology), and gene expression (RT-qPCR, genes involved in nutrient transport, growth, and development, as well as vascularization) were studied. Plasma of mares and their foals, as well as colostrum and milk, were sampled at birth, 30 days, and 90 days of lactation. The fatty acid composition of these samples was measured using gas chromatography. No differences between the N and O groups were observed for term placental morphometry, structure, or gene expression. No difference in plasma fatty acid composition was observed between groups in mares. The plasma fatty acid profile of O foals was more pro-inflammatory and indicated an altered placental lipid metabolism between birth and 90 days of age. These results are in line with the increased systemic inflammation and altered glucose metabolism observed until 18 months of age in this group. The colostrum fatty acid profile of O mares was more pro-inflammatory and indicated an increased transfer and/or desaturation of long-chain fatty acids. Moreover, O foals received a colostrum poorer in medium-chain saturated fatty acid, a source of immediate energy for the newborn that can also play a role in immunity and gut microbiota development. Differences in milk fatty acid composition indicated a decreased ability to adapt to heat stress in O mares, which could have further affected the metabolic development of their foals. In conclusion, maternal obesity affected the fatty acid composition of milk, thus also influencing the foal's plasma fatty acid composition and likely participating in the developmental programming observed in growing foals.
Collapse
Affiliation(s)
- Morgane Robles
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
- Institut Polytechnique Unilasalle, 76130 Mont-Saint-Aignan, France
| | - Delphine Rousseau-Ralliard
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Cédric Dubois
- Institut Français du Cheval et de l’Equitation, Station Expérimentale de la Valade, 19370 Chamberet, France (L.W.)
| | - Tiphanie Josse
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Émilie Nouveau
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Michele Dahirel
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Laurence Wimel
- Institut Français du Cheval et de l’Equitation, Station Expérimentale de la Valade, 19370 Chamberet, France (L.W.)
| | - Anne Couturier-Tarrade
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Pascale Chavatte-Palmer
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
4
|
Wang K, Xin Z, Chen Z, Li H, Wang D, Yuan Y. Progress of Conjugated Linoleic Acid on Milk Fat Metabolism in Ruminants and Humans. Animals (Basel) 2023; 13:3429. [PMID: 37958184 PMCID: PMC10647460 DOI: 10.3390/ani13213429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
As a valuable nutrient in milk, fat accounts for a significant proportion of the energy requirements of ruminants and is largely responsible for determining milk quality. Fatty acids (FAs) are a pivotal component of milk fat. Conjugated linoleic acid (CLA) is one of the naturally occurring FAs prevalent in ruminant dairy products and meat. Increasing attention has been given to CLA because of its anti-cancer, anti-inflammatory, immune regulation, and lipid metabolism regulation properties, and these benefits potentially contribute to the growth and health of infants. In breast milk, CLA is present in trace amounts, mainly in the form of cis-9, trans-11 CLA. Notably, cis-9, trans-11 CLA improves the milk fat rate while trans-10, cis-12 CLA inhibits it. Apart from having multiple physiological functions, CLA is also a pivotal factor in determining the milk quality of ruminants, especially milk fat rate. In response to growing interest in green and healthy functional foods, more and more researchers are exploring the potential of CLA to improve the production performance of animals and the nutritional value of livestock products. Taken together, it is novel and worthwhile to investigate how CLA regulates milk fat synthesis. It is the purpose of this review to clarify the necessity for studying CLA in ruminant milk fat and breast milk fat.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou 310058, China; (K.W.); (Z.X.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Zimeng Xin
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou 310058, China; (K.W.); (Z.X.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Huanan Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Diming Wang
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou 310058, China; (K.W.); (Z.X.)
| | - Yuan Yuan
- School of Nursing, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Yao D, Zhao X, Zhao S, Shi H, Ma Y, Li J. Characterization of the fatty acid binding protein 3 (FABP3) promoter and its transcriptional regulation by cAMP response element binding protein 1 (CREB1) in goat mammary epithelial cells. Anim Biotechnol 2023; 34:1960-1967. [PMID: 35416753 DOI: 10.1080/10495398.2022.2061504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Fatty acid binding protein 3 (FABP3) is involved in signal transduction pathways, and in the uptake and utilization of long-chain fatty acids. However, the transcriptional regulation of FABP3 in goat is unclear. In this study, the FABP3 5' flanking region was amplified from goat (Capra hircus) genomic DNA. Luciferase reporter vectors containing promoter fragments of five different lengths were constructed and transfected into dairy goat mammary epithelial cells. The region of the promoter located between -1801 and -166 bp upstream of the transcription start site (TSS) exhibited the highest luciferase activity, and contained two cAMP response elements (CREs) located at -1632 bp and -189 bp. Interference with CREB1 significantly downregulated FABP3 promoter activity. In addition, FABP3 promoter activity was significantly reduced after mutation of the CRE1 (-1632 bp) and CRE2 (-189 bp) sites. Further analysis indicated that the CRE2 site was essential for the transcriptional activity induced by CREB1. These results demonstrated that CREB1 is involved in the transcriptional regulation of FABP3 expression in the goat mammary gland via a direct mechanism, thus revealing a novel signaling pathway involved in fatty acid metabolism in goat.
Collapse
Affiliation(s)
- Dawei Yao
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xin Zhao
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Life Science, Nankai University, Tianjin, China
| | - Shuying Zhao
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Tianjin, China
| | - Hengbo Shi
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yi Ma
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Jun Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
6
|
Yao R, Wang M, Zhao Y, Ji Q, Feng X, Bai L, Bao L, Wang Y, Hao H, Li X, Wang Z. Chlorogenic acid enhances PPARγ-mediated lipogenesis through preventing Lipin 1 nuclear translocation in Staphylococcus aureus-exposed bovine mammary epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159396. [PMID: 37717905 DOI: 10.1016/j.bbalip.2023.159396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Chlorogenic acid (CGA) as one of the most ubiquitously dietary polyphenolic compounds, has been reported to have various antimicrobial effects and exhibit strong anti-inflammatory ability. Staphylococcus aureus is a gram-positive bacterium that can induce mastitis. However, the mechanism through which S. aureus infection affects lipid synthesis and whether CGA have protective effect on S. aureus reduced lipid synthesis is not fully understood. In this study, the internalization of S. aureus reduced intracellular lipid droplet formation, decreased the levels of intracellular triacylglycerol, total cholesterol and 7 types of fatty acid and downregulated the expression of lipogenic genes FAS, ACC, and DGAT1 in bovine mammary epithelial cells (BMECs). In addition, we found that S. aureus intracellular infection attenuated mTORC1 activation resulting in Lipin 1 nuclear localization. Remarkablely, S. aureus infection-mediated repression of lipid synthesis related to the mTORC1 signaling and Lipin 1 nuclear localization can be alleviated by CGA. Thus, our findings provide a novel mechanism by which lipid synthesis is regulated under S. aureus infection and the protective effects of CGA on lipid synthesis in BMECs.
Collapse
Affiliation(s)
- Ruiyuan Yao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Manshulin Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yue Zhao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qiang Ji
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xue Feng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Hohhot No. 1 High School, Hohhot 010030, China
| | - Linfeng Bai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lili Bao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Xihe Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Hohhot 010070, China; Inner Mongolia SaiKexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China.
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
7
|
Zeng L, Zhou J, Zhang Y, Wang X, Li Y, Song J, Shao J, Su P. Paternal cadmium exposure induces glucolipid metabolic reprogramming in offspring mice via PPAR signaling pathway. CHEMOSPHERE 2023; 339:139592. [PMID: 37482320 DOI: 10.1016/j.chemosphere.2023.139592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
In industrialized societies, the prevalence of metabolic diseases has substantially increased over the past few decades, yet the underlying causes remain unclear. Cadmium (Cd) is a hazardous heavy metal and pervasive environmental endocrine disruptor. Here, we investigate the effects of paternal Cd exposure on offspring glucolipid metabolism. Paternal Cd exposure (1 mg kg-1 body weight) impaired glucose tolerance, increased random serum glucose and fasting serum insulin, elevated serum total cholesterol, and low-density lipoprotein in offspring mice. Untargeted metabolomics analysis of male offspring liver tissue revealed that paternal Cd exposure can affect offspring glucolipid metabolic reprogramming, which involved biosynthesis of phenylalanine, tyrosine and tryptophan, biosynthesis of unsaturated fatty acids, metabolism of linoleic acid, arachidonic acid and α-linolenic acid. Transcriptome sequencing of male offspring liver tissue showed that arachidonic acid metabolism, AMPK signaling pathway, PPAR signaling pathway and adipocytokine signaling pathway were significantly inhibited in the Cd-exposed group. The mRNA expression levels of PPAR signaling pathway related genes (Acsl1, Cyp4a14, Cyp4a10, Cd36, Ppard and Pck1) were significantly decreased. The protein expression levels of ACSL1, CD36, PPARD and PCK1 were also significantly reduced. Collectively, our findings suggest that paternal Cd exposure affect offspring glucolipid metabolic reprogramming via PPAR signaling pathway.
Collapse
Affiliation(s)
- Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Yamin Li
- Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China.
| | - Jieping Song
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China.
| | - JingFan Shao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
8
|
Uncovering the Gene Regulatory Network of Endothelial Cells in Mouse Duchenne Muscular Dystrophy: Insights from Single-Nuclei RNA Sequencing Analysis. BIOLOGY 2023; 12:biology12030422. [PMID: 36979114 PMCID: PMC10045518 DOI: 10.3390/biology12030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Introduction: Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disorder caused by mutations in the dystrophin gene, which leads to heart and respiratory failure. Despite the critical impact of DMD on endothelial cells (ECs), there is limited understanding of its effect on the endothelial gene network. The aim of this study was to investigate the impact of DMD on the gene regulatory network of ECs. Methods and Results: To gain insights into the role of the dystrophin muscular dystrophy gene (DMD) in ECs from Duchenne muscular dystrophy; the study utilized single-nuclei RNA sequencing (snRNA-seq) to evaluate the transcriptomic profile of ECs from skeletal muscles in DMD mutant mice (DMDmut) and wild-type control mice. The analysis showed that the DMD mutation resulted in the suppression of several genes, including SPTBN1 and the upregulation of multiple long noncoding RNAs (lncRNAs). GM48099, GM19951, and GM15564 were consistently upregulated in ECs and skeletal muscle cells from DMDmut, indicating that these dysregulated lncRNAs are conserved across different cell types. Gene ontology (GO) enrichment analysis revealed that the DMD mutation activated the following four pathways in ECs: fibrillary collagen trimer, banded collagen fibril, complex of collagen trimers, and purine nucleotide metabolism. The study also found that the metabolic pathway activity of ECs was altered. Oxidative phosphorylation (OXPHOS), fatty acid degradation, glycolysis, and pyruvate metabolism were decreased while purine metabolism, pyrimidine metabolism, and one carbon pool by folate were increased. Moreover, the study investigated the impact of the DMD mutation on ECs from skeletal muscles and found a significant decrease in their overall number, but no change in their proliferation. Conclusions: Overall, this study provides new insights into the gene regulatory program in ECs in DMD and highlights the importance of further research in this area.
Collapse
|
9
|
PPARγ-AGPAT6 signaling mediates acetate-induced mTORC1 activation and milk fat synthesis in mammary epithelial cells of dairy cows. J DAIRY RES 2022; 89:410-412. [PMID: 36398416 DOI: 10.1017/s0022029922000668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This research communication investigated the role and the underlying mechanism of sn-1-acylglycerol-3-phosphate O-acyltransferase 6 (AGPAT6) in acetate-induced mTORC1 signaling activation and milk fat synthesis in dairy cow mammary epithelial cells. The data showed AGPAT6 knockdown significantly decreased acetate-induced phosphorylation of mTORC1 signaling molecules and intracellular triacylglycerol (TAG) content, whereas this inhibition effect was reversed after the addition of 16:0,18:1 phosphatidic acid (PA), suggesting that AGPAT6 could generate PA in response to acetate simulation, that in turn activates mTORC1 signaling. PPARγ is the upstream regulator of AGPAT6 upon acetate stimulation. Luciferase assay with clones containing various deletions and mutation in AGPAT6 promoter showed that there is a RXRα binding sequence located at -96 bp of AGPAT6 promoter. Acetate stimulation significantly increased the interaction between PPARγ and AGPAT6 via this RXRα binding site. Taken together, our data indicated that AGPAT6 could activate mTORC1 signaling by producing PA during acetate-induced milk fat synthesis, and PPARγ acts as a transcription factor to mediate the effect of acetate on AGPAT6 via RXRα.
Collapse
|
10
|
Mu T, Hu H, Ma Y, Feng X, Zhang J, Gu Y. Regulation of Key Genes for Milk Fat Synthesis in Ruminants. Front Nutr 2021; 8:765147. [PMID: 34901115 PMCID: PMC8659261 DOI: 10.3389/fnut.2021.765147] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Milk fat is the most important and energy-rich substance in milk and plays an important role in the metabolism of nutrients during human growth and development. It is mainly used in the production of butter and yogurt. Milk fat not only affects the flavor and nutritional value of milk, but also is the main target trait of ruminant breeding. There are many key genes involve in ruminant milk fat synthesis, including ACSS2, FASN, ACACA, CD36, ACSL, SLC27A, FABP3, SCD, GPAM, AGPAT, LPIN, DGAT1, PLIN2, XDH, and BTN1A1. Taking the de novo synthesis of fatty acids (FA) and intaking of long-chain fatty acids (LCFA) in blood to the end of lipid droplet secretion as the mainline, this manuscript elucidates the complex regulation model of key genes in mammary epithelial cells (MECs) in ruminant milk fat synthesis, and constructs the whole regulatory network of milk fat synthesis, to provide valuable theoretical basis and research ideas for the study of milk fat regulation mechanism of ruminants.
Collapse
Affiliation(s)
| | | | | | | | | | - Yaling Gu
- School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
11
|
Bernard L, Pomiès D, Aronen I, Ferlay A. Effect of concentrate enriched with palmitic acid versus rapeseed oil on dairy performance, milk fatty acid composition, and mammary lipogenic gene expression in mid-lactation Holstein cows. J Dairy Sci 2021; 104:11621-11633. [PMID: 34364640 DOI: 10.3168/jds.2020-20023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/26/2021] [Indexed: 11/19/2022]
Abstract
This study was performed to characterize the effect of a concentrate supplemented with free palmitic acid (4% on a DM basis; PA) or rapeseed oil (4% on a DM basis; RO) compared with a no-added-lipid control concentrate (CT) on the performance of dairy cows fed a corn silage-based diet over a 9-wk period. After a 3-wk pre-experimental period, 54 Holstein cows were randomly allocated to 3 experimental treatments to receive forage ad libitum with a fixed amount of CT, RO, or PA (8 kg/d for 2-yr-old primiparous; 10 kg/d for older cows). During the experiment, dry matter intake, milk yield and composition, fatty acid (FA) yields and FA profile, and feed efficiency were determined. At wk 9 of the experimental period, the mRNA levels of 10 genes involved in lipid metabolism in mammary tissue biopsy samples were measured. Compared with CT, RO and PA increased forage intake. Compared with CT, RO increased concentrate intake, the value being intermediate for PA. Compared with CT, RO increased milk yield (+2.0 kg/d) and decreased milk fat and protein content (-3.8 and -1.2 g/kg, respectively), whereas PA increased milk fat content (+4.1 g/kg). Compared with CT and RO treatments, PA increased milk fat yield (+179 g/d) and 3.5% fat-corrected milk and energy-corrected milk output (+2.8 and +2.3 kg/d, respectively), and thus improved feed efficiency (+7.3%). Compared with CT treatment, RO increased milk contents of the sum of >C16 FA, monounsaturated FA, polyunsaturated FA, trans FA, and n-3 FA, whereas PA decreased these FA contents (except n-3 FA) and also decreased n-6 FA. The variations in milk fat yield and content and FA secretion at wk 9 were not associated with modifications in mammary expression of 10 genes involved in major lipid pathways, except for the transcription factor PPARG1, which tended to be higher in PA versus RO treatment. This study demonstrated that PA improved milk fat yield and feed efficiency compared with RO and suggests that factors other than gene expression, such as substrate availability for mammary metabolism or other levels of regulation (transcriptional, posttranscriptional, translational or posttranslational), could play a key role in milk fat and FA responses to changes in diet composition in cows.
Collapse
Affiliation(s)
- L Bernard
- VetAgroSup, UMR Herbivores, Université Clermont Auvergne, INRAE, 63122 Saint-Genès-Champanelle, France
| | - D Pomiès
- VetAgroSup, UMR Herbivores, Université Clermont Auvergne, INRAE, 63122 Saint-Genès-Champanelle, France
| | - I Aronen
- Raisio Plc, PO Box 101, Raisionkaari 55, FIN-21201 Raisio, Finland
| | - A Ferlay
- VetAgroSup, UMR Herbivores, Université Clermont Auvergne, INRAE, 63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
12
|
Mukha A, Kalkhoven E, van Mil SWC. Splice variants of metabolic nuclear receptors: Relevance for metabolic disease and therapeutic targeting. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166183. [PMID: 34058349 DOI: 10.1016/j.bbadis.2021.166183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Metabolic nuclear receptors are ligand-activated transcription factors which control a wide range of metabolic processes and signaling pathways in response to nutrients and xenobiotics. Targeting these NRs is at the forefront of our endeavours to generate novel treatment options for diabetes, metabolic syndrome and fatty liver disease. Numerous splice variants have been described for these metabolic receptors. Structural changes, as a result of alternative splicing, lead to functional differences among NR isoforms, resulting in the regulation of different metabolic pathways by these NR splice variants. In this review, we describe known splice variants of FXR, LXRs, PXR, RXR, LRH-1, CAR and PPARs. We discuss their structure and functions, and elaborate on the regulation of splice variant abundance by nutritional signals. We conclude that NR splice variants pose an intriguing new layer of complexity in metabolic signaling, which needs to be taken into account in the development of treatment strategies for metabolic diseases.
Collapse
Affiliation(s)
- Anna Mukha
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Saskia W C van Mil
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Zhou F, Teng X, Wang P, Zhang Y, Miao Y. Isolation, identification, expression and subcellular localization of PPARG gene in buffalo mammary gland. Gene 2020; 759:144981. [PMID: 32707300 DOI: 10.1016/j.gene.2020.144981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 11/15/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARG), as a member of the nuclear receptor superfamily, plays an important role in adipocyte differentiation and regulation of lipid and glucose metabolism. In this study, the transcripts of PPARG gene were isolated and identified in buffalo mammary gland. The results showed that two types of transcripts (PPARG1 and PPARG2) of PPARG gene produced by alternative 5' end use were expressed in buffalo mammary gland, and each of them had four different alternative splicing variants. The PPARG1 includes PPARG1a, PPARG1b, PPARG1c and PPARG1d, while the PPARG2 contains PPARG2a, PPARG2b, PPARG2c and PPARG2d. Among them, only PPARG1a, PPARG2a and PPARG2d can encode complete functional proteins with three complete functional domains, and the rest encode truncated proteins with incomplete functional domains. All the eight variants of PPARG protein do not contain transmembrane regions and signal peptides, but their conserved domain, secondary and tertiary structure and subcellular localization were different. Subcellular localization confirmed that the main transcripts PPARG1a and PPARG2a played a functional role in the nucleus, which was consistent with the results by in silico prediction. RT-qPCR analysis of buffalo mammary tissue showed that the mRNA expression levels of PPARG1 and PPARG2 in lactation were higher than those in non-lactation, and the expression levels of transcripts PPARG2d and PPARG1b + PPARG2b in lactating stage were also higher than those in non-lactating stage, but the mRNA abundance of transcripts PPARG1c, PPARG1d and PPARG2c in non-lactating period was higher than that in lactating period. The results of this study suggest that PPARG1 and PPARG2 may play important role in buffalo milk fat synthesis, and the eight alternative splicing variants found here are likely to be related to the post-transcriptional regulation of lactation.
Collapse
Affiliation(s)
- Fangting Zhou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiaohong Teng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Pei Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yongyun Zhang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China; Teaching Demonstration Center of the Basic Experiments of Agricultural Majors, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yongwang Miao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| |
Collapse
|
14
|
Yao D, Yang C, Ma J, Chen L, Luo J, Ma Y, Loor JJ. cAMP Response Element Binding Protein 1 (CREB1) Promotes Monounsaturated Fatty Acid Synthesis and Triacylglycerol Accumulation in Goat Mammary Epithelial Cells. Animals (Basel) 2020; 10:ani10101871. [PMID: 33066354 PMCID: PMC7602241 DOI: 10.3390/ani10101871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In non-ruminant liver and adipose tissue, cAMP response element binding protein 1(CREB1) is essential for lipid synthesis and triacylglycerol accumulation. The present study aimed to ascertain the role of CREB1 in regulating milk fatty acid composition synthesized by goat mammary gland. Our data found that overexpression of CREB1 in vitro alters the abundance of lipogenic genes, triacylglycerol accumulation and concentration of monounsaturated fatty acids in goat mammary epithelial cells. Thus, manipulation of CREB1 in vivo might be one approach to improve the quality of goat milk. Abstract cAMP response element binding protein 1 (CREB1) is a member of the leucine zipper transcription factor family of DNA binding proteins. Although studies in non-ruminants have demonstrated a crucial role of CREB1 in lipid synthesis in liver and adipose tissue, it is unknown if this transcription regulator exerts control of fatty acid synthesis in ruminant mammary cells. To address this question, we first defined the expression dynamics of CREB1 in mammary tissue during lactation. Analysis of CREB1 in mammary tissue revealed higher mRNA abundance in mammary tissue harvested at peak lactation. Overexpression of CREB1 markedly upregulated sterol regulatory element binding transcription factor 1 (SREBP1), fatty acid synthase (FASN), acetyl-coenzyme A carboxylase α (ACACA), elongase of very long chain fatty acids 6 (ELOVL6), lipoprotein lipase (LPL), fatty acid binding protein 3 (FABP3), lipin 1 (LPIN1) and diacylglycerol acyltransferase 1 (DGAT1), but had no effect on glycerol-3-phosphate acyltransferase, mitochondrial (GPAM) or 1-acylglycerol-3-phosphate O-acyltransferase 6 (AGPAT6). In addition, overexpressing CREB1 led to a significant increase in the concentration and desaturation index of C16:1 (palmitoleic acid) and C18:1 (oleic acid), along with increased concentration of triacylglycerol. Taken together, these results highlight an important role of CREB1 in regulating lipid synthesis in goat mammary epithelial cells. Thus, manipulation of CREB1 in vivo might be one approach to improve the quality of goat milk.
Collapse
Affiliation(s)
- Dawei Yao
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (D.Y.); (C.Y.); (J.M.); (L.C.)
| | - Chunlei Yang
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (D.Y.); (C.Y.); (J.M.); (L.C.)
| | - Jing Ma
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (D.Y.); (C.Y.); (J.M.); (L.C.)
| | - Lili Chen
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (D.Y.); (C.Y.); (J.M.); (L.C.)
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China;
| | - Yi Ma
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (D.Y.); (C.Y.); (J.M.); (L.C.)
- Correspondence: (Y.M.); (J.J.L.)
| | - Juan. J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
- Correspondence: (Y.M.); (J.J.L.)
| |
Collapse
|
15
|
Yan Q, Tang S, Zhou C, Han X, Tan Z. Effects of Free Fatty Acids with Different Chain Lengths and Degrees of Saturability on the Milk Fat Synthesis in Primary Cultured Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8485-8492. [PMID: 31304752 DOI: 10.1021/acs.jafc.9b02905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
How short-chain fatty acids (FAs) affect cell membrane morphology and milk fat biosynthesis in mammary epithelial cells (MECs) is yet unclear. This study investigated the primary bovine MEC response to different FAs. We observed that the cell surface ultrastructures were influenced by chain length and degree of saturability of FAs. The CD36, FATP1, and FABP3 gene expression was affected independent of the type of FA. FASN, LPIN1, PPARα, and PPARγ transcripts were more sensitive to the short-chain FAs (acetic and β-hydroxybutyric acids). Furthermore, short-chain FAs inclined to regulate FA degradation-, elongation-, and metabolism-associated pathways, while long-chain FAs (stearic and trans-10,cis-12 conjugated linolenic acids) modulated extracellular matrix-receptor interaction-, transcriptional misregulation-, microRNA-, and ribosome biogenesis-related pathways. However, triacylglycerol accumulation in the cytoplasm was not changed by all of the FAs. Overall, FAs with different chain lengths and degrees of saturability could differentially alter primary bovine MEC cell morphology and influence protein profiles involved in milk fat synthesis pathways.
Collapse
Affiliation(s)
- Qiongxian Yan
- Chinese Academy of Sciences (CAS) Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture , Chinese Academy of Sciences , Changsha , Hunan 410125 , People's Republic of China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients , Changsha , Hunan 410128 , People's Republic of China
| | - Shaoxun Tang
- Chinese Academy of Sciences (CAS) Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture , Chinese Academy of Sciences , Changsha , Hunan 410125 , People's Republic of China
- Hunan Co-Innovation Center of Animal Production Safety (CICAPS) , Changsha , Hunan 410128 , People's Republic of China
| | - Chuanshe Zhou
- Chinese Academy of Sciences (CAS) Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture , Chinese Academy of Sciences , Changsha , Hunan 410125 , People's Republic of China
- Hunan Co-Innovation Center of Animal Production Safety (CICAPS) , Changsha , Hunan 410128 , People's Republic of China
| | - Xuefeng Han
- Chinese Academy of Sciences (CAS) Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture , Chinese Academy of Sciences , Changsha , Hunan 410125 , People's Republic of China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients , Changsha , Hunan 410128 , People's Republic of China
| | - Zhiliang Tan
- Chinese Academy of Sciences (CAS) Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture , Chinese Academy of Sciences , Changsha , Hunan 410125 , People's Republic of China
- Hunan Co-Innovation Center of Animal Production Safety (CICAPS) , Changsha , Hunan 410128 , People's Republic of China
| |
Collapse
|
16
|
Vargas-Bello-Pérez E, Zhao W, Bionaz M, Luo J, Loor JJ. Nutrigenomic Effect of Saturated and Unsaturated Long Chain Fatty Acids on Lipid-Related Genes in Goat Mammary Epithelial Cells: What Is the Role of PPARγ? Vet Sci 2019; 6:vetsci6020054. [PMID: 31212682 PMCID: PMC6632130 DOI: 10.3390/vetsci6020054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/17/2019] [Accepted: 06/05/2019] [Indexed: 02/02/2023] Open
Abstract
A prior study in bovine mammary (MACT) cells indicated that long-chain fatty acids (LCFA) C16:0 and C18:0, but not unsaturated LCFA, control transcription of milk fat-related genes partly via the activation of peroxisome proliferator-activated receptor gamma (PPARγ). However, in that study, the activation of PPARγ by LCFA was not demonstrated but only inferred. Prior data support a lower response of PPARγ to agonists in goat mammary cells compared to bovine mammary cells. The present study aimed to examine the hypothesis that LCFA alter the mRNA abundance of lipogenic genes in goat mammary epithelial cells (GMEC) at least in part via PPARγ. Triplicate cultures of GMEC were treated with a PPARγ agonist (rosiglitazone), a PPARγ inhibitor (GW9662), several LCFA (C16:0, C18:0, t10,c12-CLA, DHA, and EPA), or a combination of GW9662 with each LCFA. Transcription of 28 genes involved in milk fat synthesis was measured using RT-qPCR. The data indicated that a few measured genes were targets of PPARγ in GMEC (SCD1, FASN, and NR1H3) while more genes required a basal activation of PPARγ to be transcribed (e.g., LPIN1, FABP3, LPL, and PPARG). Among the tested LCFA, C16:0 had the strongest effect on upregulating transcription of measured genes followed by C18:0; however, for the latter most of the effect was via the activation of PPARγ. Unsaturated LCFA downregulated transcription of measured genes, with a lesser effect by t10,c12-CLA and a stronger effect by DHA and EPA; however, a basal activation of PPARγ was essential for the effect of t10,c12-CLA while the activation of PPARγ blocked the effect of DHA. The transcriptomic effect of EPA was independent from the activation of PPARγ. Data from the present study suggest that saturated LCFA, especially C18:0, can modulate milk fat synthesis partly via PPARγ in goats. The nutrigenomic effect of C16:0 is not via PPARγ but likely via unknown transcription factor(s) while PPARγ plays an indirect role on the nutrigenomic effect of polyunsaturated LCFA (PUFA) on milk fat related genes, particularly for CLA (permitting effect) and DHA (blocking effect).
Collapse
Affiliation(s)
- Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark.
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Jun Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
17
|
Xu HF, Luo J, Zhang XY, Li J, Bionaz M. Activation of liver X receptor promotes fatty acid synthesis in goat mammary epithelial cells via modulation of SREBP1 expression. J Dairy Sci 2019; 102:3544-3555. [PMID: 30738675 DOI: 10.3168/jds.2018-15538] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/12/2018] [Indexed: 01/04/2023]
Abstract
In bovine mammary tissue and cells, liver X receptor (LXR) regulates lipid synthesis mainly via transactivation of the transcription factor sterol regulatory element binding protein 1 (SREBP1). In the present work, we investigated the role of LXR in controlling lipid synthesis via transactivation of SREBP1 in goat primary mammary cells (GMEC). The GMEC were treated with a synthetic agonist of LXR, T0901317, and transactivation and transcription of SREBP1, expression of lipogenic genes, and fatty acid profiling and triacylglycerol (TAG) content of the cells were measured. A mild increase in the mRNA expression level of LXRα (NR1H3) was observed following treatment with different concentrations of T0901317, and a dose-dependent increase in mRNA and transactivation of SREBP1 was detected. Activation of LXR resulted in a significant increase in the mRNA expression of most of the measured genes related to de novo synthesis, desaturation, and transport of fatty acids; TAG synthesis; and transcription regulators. Compared with the control, total content of cellular TAG increased by more than 20% with T0901317 treatment. Furthermore, addition of T0901317 increased the proportion of unsaturated fatty acids (e.g., C16:1, C18:1, C20:1, and C22:1), and decreased the proportion of saturated fatty acids (e.g., C16:0, C18:0, C20:0, and C22:0). These results provide evidence that LXR regulates the expression and activity of SREBP1. Our results indicated that LXR participate in regulating the transcription of genes involved in milk fat synthesis in GMEC in an SREBP1-dependent fashion.
Collapse
Affiliation(s)
- H F Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, P. R. China
| | - J Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| | - X Y Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - J Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450046, P. R. China
| | - M Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97331.
| |
Collapse
|
18
|
Harvatine KJ, Boisclair YR, Bauman DE. Time-dependent effect of trans-10,cis-12 conjugated linoleic acid on gene expression of lipogenic enzymes and regulators in mammary tissue of dairy cows. J Dairy Sci 2018; 101:7585-7592. [PMID: 29803423 DOI: 10.3168/jds.2017-13935] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/20/2018] [Indexed: 12/26/2022]
Abstract
Trans-10,cis-12 conjugated linoleic acid (CLA) has been identified as an intermediate of rumen fatty acid biohydrogenation that caused milk fat depression (MFD) in the dairy cow. Previous studies in cows experiencing CLA- and diet-induced MFD have identified reduced mammary expression of the master lipogenic regulator sterol response element transcription factor 1 (SREBF1) and many of its dependent genes. To distinguish between primary mechanisms regulating milk fat synthesis and secondary adaptations to the reduction in milk fat, we conducted a time-course experiment. Eleven dairy cows received by abomasal infusion an initial priming dose of 6.25 g of CLA followed by 12.5 g/d delivered in multiple pulses per day for 5 d. Cows were milked 3×/d and mammary biopsies were obtained under basal condition (prebolus control) and 12, 30, and 120 h relative to initiation of CLA infusion. Milk fat concentration and yield decreased progressively reaching a nadir at 69 h (1.82% and 38.2 g/h) and averaged 2.03 ± 0.19% and 42.1 ± 4.10 g/h on the last day of treatment (±standard deviation). Expression of fatty acid synthase (FASN) and lipoprotein lipase (LPL) were decreased at 30 and 120 h compared with control. Expression of SREBF1 and THRSP were also decreased at 30 and 120 h compared with control. Additionally, we failed to observe changes in other factors, including peroxisome proliferator-activated receptor γ and liver × receptor β and milk fat globular membrane proteins, during CLA treatment. However, expression of milk fat globular membrane proteins were decreased after 14 d of diet-induced MFD in samples from a previous experiment, indicating a possible long-term response. The rapid decrease in lipogenic enzymes, SREBF1, and THRSP provide strong support for their transcriptional regulation as a primary mechanism of milk fat depression.
Collapse
Affiliation(s)
- Kevin J Harvatine
- Department of Animal Science, Penn State University, University Park 16802.
| | - Y R Boisclair
- Department of Animal Science, Cornell University, Ithaca, NY, 14853
| | - Dale E Bauman
- Department of Animal Science, Cornell University, Ithaca, NY, 14853
| |
Collapse
|
19
|
Wu XF, Liu Y, Gao CF, Chen XZ, Zhang XP, Li WY. Novel alternative splicing variants of <i>ACOX1</i> and their differential expression patterns in goats. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-59-2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract. As the first and rate-limiting enzyme of the peroxisomal β-oxidation
pathway, acyl-coenzyme A oxidase 1 (ACOX1), which is regulated by peroxisome
proliferator-activated alfa (PPARα), is vital for fatty acid
oxidation and deposition, especially in the lipid metabolism of very
long-chain fatty acids. Alternative splicing events of ACOX1 have been
detected in rodents, Nile tilapia, zebra fish and humans but not in goats.
Herein, we identified a novel splice variant of the ACOX1 gene,
which was designated as ACOX1-SV1, in addition to the complete transcript,
ACOX1, in goats. The length of the ACOX1-SV1 coding sequence was 1983 bp,
which presented a novel exon 2 variation owing to alternative 5′-splice
site selection in exon 2 and partial intron 1, compared to that in ACOX1. The
protein sequence analysis indicated that ACOX1-SV1 was conserved across
different species. Reverse-transcription quantitative real-time polymerase
chain reaction (RT-qPCR) analysis showed that these two isoforms were
expressed spatially and differently in different tissue types. ACOX1 and
ACOX1-SV1 were expressed at high levels in liver, spleen, brain and adipose
tissue in kid goats, and they were abundantly expressed in the fat, liver and
spleen of adults. Interestingly, whether in kids or in adults, in fat, the
mRNA level of ACOX1 was considerably higher than that of ACOX1-SV1. In
contrast, in the liver, the expression of ACOX1-SV1 was considerably higher
than that of ACOX1. This differential expression patterns showed the
existence of a tissue-dependent splice regulation. These novel findings for
ACOX1 should provide new insights for further studies on the function of
ACOX1 and its variants that should aid in the breeding of goats with improved
meat quality.
Collapse
|
20
|
Shi HB, Zhang CH, Xu ZA, Lou GG, Liu JX, Luo J, Loor JJ. Peroxisome proliferator-activated receptor delta regulates lipid droplet formation and transport in goat mammary epithelial cells. J Dairy Sci 2018; 101:2641-2649. [PMID: 29331469 DOI: 10.3168/jds.2017-13543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022]
Abstract
Even though recent evidence in goat mammary epithelial cells (GMEC) suggest a role of peroxisome proliferator-activated receptor delta (PPARD) in regulating lipid homeostasis, its role is not fully understood. Our hypothesis was that PPARD regulates lipid transport processes in GMEC and, thus, plays a crucial role in regulating fat formation. The PPARD was overexpressed using an adenovirus system (Ad-PPARD) with recombinant green fluorescent protein (Ad-GFP) as the control. Results revealed that overexpression of PPARD markedly upregulated the mRNA abundance of PPARD. Compared with the control (Ad-GFP+dimethyl sulfoxide), overexpression of PPARD alone had no effect on mRNA expression of CD36, SCD1, FABP4, ACSL1, and ADRP. The cultures overexpressing PPARD with the PPARD ligand GW0742 (GW) upregulated the expression of CD36, FABP3, FABP4, ACSL1, and ADRP. Overexpression of PPARD in GMEC plus GW increased the concentration of 16:1 and 18:1-trans and was associated with upregulation of SCD1. Compared with the control (Ad-GFP+dimethyl sulfoxide), the decrease of triacylglycerol concentration coupled with upregulation of genes related to lipid droplet secretion (e.g., ADRP and ACSL1) induced by PPARD overexpression suggests a role in lipid droplet (LD) secretion. Luciferase assay revealed that GW increased the ADRP promoter activity in a dose-dependent manner. Knockdown of PPARD impaired the increase of ADRP promoter activity induced by GW, whereas GW enhanced the activity of ADRP promoter in GMEC overexpressing PPARD. Data with the ADRP 5'-flanking truncated luciferase reporter suggest a core region (-1,444 to -990 bp) response element for the induction of GW. This core region contains a known PPARG response element (PPRE) at -1,003 to -990 bp. When the PPRE was mutated, the overexpression of PPARD had no effect on ADRP promoter activity. Collectively, these results reveal a novel role for PPARD in lipid homeostasis via promoting fatty acid transport and LD formation through a mechanism of direct binding to the promoter of key genes. Hence, PPARD activity may contribute to fatty acid transport and LD formation during lactation.
Collapse
Affiliation(s)
- H B Shi
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - C H Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Z A Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - G G Lou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - J X Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - J Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
21
|
Wei X, Li H, Zhao G, Yang J, Li L, Huang Y, Lan X, Ma Y, Hu L, Zheng H, Chen H. ΔFosB regulates rosiglitazone-induced milk fat synthesis and cell survival. J Cell Physiol 2017; 233:9284-9298. [PMID: 29154466 DOI: 10.1002/jcp.26218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023]
Abstract
Rosiglitazone induces adipogenesis in adipocyte and regulates cell survival and differentiation in number of cell types. However, whether PPARγ regulates the synthesis of milk fat and cell survival in goat mammary gland remains unknown. Rosiglitazone strongly enhanced cellular triacylglycerol content and accumulation of lipid droplet in goat mammary epithelial cells (GMEC). Furthermore, ΔFosB decreased the expression of PPARγ at both mRNA and protein levels, and rosiglitazone-induced milk fat synthesis was abolished by ΔFosB overexpression. ΔFosB reduced milk fat synthesis and enhanced saturated fatty acid concentration. Rosiglitazone increased the number of GMEC in G0/G1 phase and inhibited cell proliferation, and these effects were improved by overexpression of ΔFosB. ΔFosB was found to promote the expression of Bcl-2 and suppress the expression of Bax, and protected GMEC from apoptosis induced by rosiglitazone. Intracellular calcium trafficking assay revealed that rosiglitazone markedly increased intracellular calcium concentration. ΔFosB protected GMEC from apoptosis induced by intracellular Ca2+ overload. ΔFosB increased MMP-9 gelatinolytic activity. SB-3CT, an MMP-9 inhibitor, suppressed the expression of Bcl-2, and increased intracellular calcium levels, and this effect was abolished by ΔFosB overexpression. SB-3CT induced GMEC apoptosis and this effect was inhibited by ΔFosB overexpression. These findings suggest that ΔFosB regulates rosiglitazone-induced milk fat synthesis and cell survival. Therefore, ΔFosB may be an important checkpoint to control milk fat synthesis and cell apoptosis.
Collapse
Affiliation(s)
- Xuefeng Wei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Hui Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Guangwei Zhao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiameng Yang
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Lihui Li
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Yongzhen Huang
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Xianyong Lan
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Yun Ma
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Huiling Zheng
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| |
Collapse
|
22
|
Tian P, Luo Y, Li X, Tian J, Tao S, Hua C, Geng Y, Ni Y, Zhao R. Negative effects of long-term feeding of high-grain diets to lactating goats on milk fat production and composition by regulating gene expression and DNA methylation in the mammary gland. J Anim Sci Biotechnol 2017; 8:74. [PMID: 29026537 PMCID: PMC5623059 DOI: 10.1186/s40104-017-0204-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/14/2017] [Indexed: 11/21/2022] Open
Abstract
Background It is well known that feeding a high concentrate (HC) diet to lactating ruminants likely induces subacute ruminal acidosis (SARA) and leads to a decrease in milk fat production. However, the effects of feeding a HC diet for long periods on milk fatty acids composition and the mechanism behind the decline of milk fat still remains poorly understood. The aim of this study was to investigate the impact of feeding a HC diet to lactating dairy goats on milk fat yield and fatty acids composition with an emphasis on the mechanisms underlying the milk fat depression. Seventeen mid-lactating dairy goats were randomly allocated to three groups. The control treatment was fed a low-concentrate diet (35% concentrate, n = 5, LC) and there were two high-concentrate treatments (65% concentrate, HC), one fed a high concentrate diet for a long period (19 wks, n = 7, HL); one fed a high concentrate diet for a short period of time (4 wk, n = 5, HS). Milk fat production and fatty acids profiles were measured. In order to investigate the mechanisms underlying the changes in milk fat production and composition, the gene expression involved in lipid metabolism and DNA methylation in the mammary gland were also analyzed. Results Milk production was increased by feeding the HC diet in the HS and HL groups compared with the LC diet (P < 0.01), while the percentage of milk fat was lower in the HL (P < 0.05) but not in the HS group. The total amount of saturated fatty acids (SFA) in the milk was not changed by feeding the HC diet, whereas the levels of unsaturated fatty acids (UFA) and monounsaturated fatty acids (MUFA) were markedly decreased in the HL group compared with the LC group (P < 0.05). Among these fatty acids, the concentrations of C15:0 (P < 0.01), C17:0 (P < 0.01), C17:1 (P < 0.01), C18:1n-9c (P < 0.05), C18:3n-3r (P < 0.01) and C20:0 (P < 0.01) were markedly lower in the HL group, and the concentrations of C20:0 (P < 0.05) and C18:3n-3r (P < 0.01) were lower in the HS group compared with the LC group. However, the concentrations of C18:2n-6c (P < 0.05) and C20:4n-6 (P < 0.05) in the milk fat were higher in the HS group. Real-time PCR results showed that the mRNA expression of the genes involved in milk fat production in the mammary gland was generally decreased in the HL and HS groups compared with the LC group. Among these genes, ACSL1, ACSS1 & 2, ACACA, FAS, SCD, FADS2, and SREBP1 were down-regulated in the mammary gland of the HL group (P < 0.05), and the expressions of ACSS2, ACACA, and FADS2 mRNA were markedly decreased in the HS goats compared with the LC group (P < 0.05). In contrast to the gene expression, the level of DNA methylation in the promoter regions of the ACACA and SCD genes was increased in the HL group compared with the LC group (P < 0.05). The levels of ACSL1 protein expression and FAS enzyme activity were also decreased in the mammary gland of the HL compared with the LC group (P < 0.05). Conclusions Long-term feeding of a HC diet to lactating goats induced milk fat depression and FAs profile shift with lower MUFAs but higher SFAs. A general down-regulation of the gene expression involved in the milk fat production and a higher DNA methylation in the mammary gland may contribute to the decrease in milk fat production in goats fed a HC diet for long time periods. Electronic supplementary material The online version of this article (doi:10.1186/s40104-017-0204-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping Tian
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Yanwen Luo
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Xian Li
- College of Veterinary Medicine, Northwest A and F University, Yangling, Shannxi China
| | - Jing Tian
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Shiyu Tao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Canfeng Hua
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Yali Geng
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| |
Collapse
|
23
|
Osorio JS, Vailati-Riboni M, Palladino A, Luo J, Loor JJ. Application of nutrigenomics in small ruminants: Lactation, growth, and beyond. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Shi H, Zhang C, Xu Z, Xu X, Lv Z, Luo J, Loor J. Nuclear receptor subfamily 1 group H member 2 (LXRB) is the predominant liver X receptor subtype regulating transcription of 2 major lipogenic genes in goat primary mammary epithelial cells. J Dairy Sci 2017. [DOI: 10.3168/jds.2016-12510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Toral PG, Hervás G, Belenguer A, Carreño D, Frutos P. mRNA abundance of genes involved in mammary lipogenesis during fish oil- or trans-10,cis-12 CLA-induced milk fat depression in dairy ewes. J Dairy Sci 2017; 100:3182-3192. [PMID: 28131578 DOI: 10.3168/jds.2016-11814] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/26/2016] [Indexed: 01/19/2023]
Abstract
Milk fat depression (MFD) caused by trans-10,cis-12 18:2 is known to be mediated in cows and ewes by downregulation of mammary lipogenic genes. However, transcriptional mechanisms underlying marine lipid-induced MFD have not been well defined yet and the few available studies in ovine are not consistent. This trial was conducted to directly compare changes in animal performance, milk fatty acid composition, and particularly mammary mRNA abundance of candidate lipogenic genes and transcription factors in response to the inclusion of fish oil or trans-10,cis-12 18:2 in the dairy sheep diet. To meet this objective, 12 lactating Assaf ewes (on average, 64 days in milk, producing 1.72 kg of milk/d with 5.17% of fat) were divided into 3 groups and offered a total mixed ration without supplementation (control) or supplemented with 2.4% dry matter of fish oil (FO treatment) or 1% dry matter of a commercial product rich in trans-10,cis-12 18:2 (CLA treatment) for 39 d. Measurements and samplings were conducted before starting the treatments and at the end of the trial. Milk samples were used for RNA extraction from somatic cells. Feed intake was not affected by lipid supplements, and as designed, reductions in milk fat concentration (-31%) were similar in the 2 treatments, although the unpredicted increase in milk production with FO counteracted the anticipated reduction in milk fat yield. Nevertheless, this did not preclude the detection of FO-induced decreases in the mRNA abundance of candidate lipogenic genes [e.g., acyl-CoA synthetase short-chain family member 2 (ACSS2), fatty acid synthase (FASN), and lipin 1 (LPIN1)], thus supporting the hypothesis that transcriptional regulation would be a relevant component of this type of MFD in sheep. Expected CLA-induced downregulation of some genes, such as FASN or sterol regulatory element binding transcription factor 1 (SREBF1), could not be detected in our samples, which might be related, at least in part, to high inter-individual variation and relatively advanced lactation stage (on average 102-103 d in milk on d 38 and 39). Overall, direct comparison of the effects of dietary FO and CLA on transcript abundance of candidate lipogenic genes and transcription factors suggest that there might be relevant differences in the transcriptional control mechanisms underlying the MFD induced by each kind of supplement (i.e., fish oil or CLA).
Collapse
Affiliation(s)
- P G Toral
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - G Hervás
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| | - A Belenguer
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - D Carreño
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - P Frutos
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| |
Collapse
|
26
|
Transcriptome-Wide Analysis Reveals the Role of PPAR γ Controlling the Lipid Metabolism in Goat Mammary Epithelial Cells. PPAR Res 2016; 2016:9195680. [PMID: 27818678 PMCID: PMC5081438 DOI: 10.1155/2016/9195680] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 11/17/2022] Open
Abstract
To explore the large-scale effect of peroxisome proliferator-activated receptor γ (PPARG) in goat mammary epithelial cells (GMEC), an oligonucleotide microarray platform was used for transcriptome profiling in cells overexpressing PPARG and incubated with or without rosiglitazone (ROSI, a PPARγ agonist). A total of 1143 differentially expressed genes (DEG) due to treatment were detected. The Dynamic Impact Approach (DIA) analysis uncovered the most impacted and induced pathways “fatty acid elongation in mitochondria,” “glycosaminoglycan biosynthesis-keratan sulfate,” and “pentose phosphate pathway.” The data highlights the central role of PPARG in milk fatty acid metabolism via controlling fatty acid elongation, biosynthesis of unsaturated fatty acid, lipid formation, and lipid secretion; furthermore, its role related to carbohydrate metabolism promotes the production of intermediates required for milk fat synthesis. Analysis of upstream regulators indicated that PPARG participates in multiple physiological processes via controlling or cross talking with other key transcription factors such as PPARD and NR1H3 (also known as liver-X-receptor-α). This transcriptome-wide analysis represents the first attempt to better understand the biological relevance of PPARG expression in ruminant mammary cells. Overall, the data underscored the importance of PPARG in mammary lipid metabolism and transcription factor control.
Collapse
|
27
|
Li H, Zheng H, Li L, Shen X, Zang W, Sun Y. The Effects of Matrix Metalloproteinase-9 on Dairy Goat Mastitis and Cell Survival of Goat Mammary Epithelial Cells. PLoS One 2016; 11:e0160989. [PMID: 27518717 PMCID: PMC4982621 DOI: 10.1371/journal.pone.0160989] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 07/28/2016] [Indexed: 01/16/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is a zinc-dependent enzyme, and plays a crucial role in extracellular matrix degeneration, inflammation and tissue remodeling. However, the relationship between MMP-9 and somatic cell count (SCC) in goat milk and the role of MMP-9 in the regulation of mastitis are still unknown. In this study, we found MMP-9 was predominantly expressed in the spleen, intestine and mammary gland. The SCC in goat milk was positively correlated with MMP-9 expression, and staphylococcus aureus could markedly increase MMP-9 expression in goat mammary epithelial cells (GMEC) in dosage and time dependent manner. We also demonstrated that SB-3CT, an inhibitor of MMP-9, promoted apoptosis and inhibited proliferation in GMEC. Thus, MMP-9 may emerge as an easily measurable and sensitive parameter that reflects the number of somatic cells present in milk and a regulatory factor of apoptosis in GMEC.
Collapse
Affiliation(s)
- Hui Li
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Huiling Zheng
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Lihui Li
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Xingai Shen
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Wenjuan Zang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Yongsen Sun
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
28
|
Lv Y, Guan W, Qiao H, Wang C, Chen F, Zhang Y, Liao Z. Veterinary Medicine and Omics (Veterinomics): Metabolic Transition of Milk Triacylglycerol Synthesis in Sows from Late Pregnancy to Lactation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 19:602-16. [PMID: 26484979 DOI: 10.1089/omi.2015.0102] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mammalian milk is a key source of lipids, providing not only important calories but also essential fatty acids. Veterinary medicine and omics systems sciences intersection, termed as "veterinomics" here, has received little attention to date but stands to offer much promise for building bridges between human and animal health. We determined the changes in porcine mammary genes and proteomics expression associated with milk triacylglycerol (TAG) synthesis and secretion from late pregnancy to lactation. TAG content and fatty acid (FA) composition were determined in porcine colostrum (the 1st day of lactation) and milk (the 17th day of lactation). The mammary transcriptome for 70 genes and 13 proteins involved in TAG synthesis and secretion from six sows, each at d -17(late pregnancy), d 1(early lactation), and d 17 (peak lactation) relative to parturition were analyzed using quantitative real-time PCR and Western blot analyses. The TAG content and the concentrations of de novo synthesized FAs, saturated FAs, and monounsaturated FAs were higher in milk than in colostrum (p<0.05). Robust upregulation with high relative mRNA abundance was evident during lactation for genes associated with FA uptake (VLDLR, LPL, CD36), FA activation (ACSS2, ACSL3), and intracellar transport (FABP3), de novo FA synthesis (ACACA, FASN), FA elongation (ELOVL1), FA desaturation (SCD, FADS1), TAG synthesis (GPAM, AGPAT1, LPIN1, DGAT1), lipid droplet formation (BTN2A1, XDH, PLIN2), and transcription factors and nuclear receptors (SREBP1, SCAP, INSIG1/2). In conclusion, a wide variety of lipogenic genes and proteins regulate the channeling of FAs towards milk TAG synthesis and secretion in porcine mammary gland tissue. These findings inform future omics strategies to increase milk fat production and lipid profile and attest to the rise of both veterinomics and lipidomics in postgenomics life sciences.
Collapse
Affiliation(s)
- Yantao Lv
- 1 College of Animal Science, South China Agricultural University , Guangzhou, People's Republic of China
| | - Wutai Guan
- 1 College of Animal Science, South China Agricultural University , Guangzhou, People's Republic of China .,2 National Engineering Research Center for Breeding Swine Industry , Guangzhou, People's Republic of China
| | - Hanzhen Qiao
- 1 College of Animal Science, South China Agricultural University , Guangzhou, People's Republic of China
| | - Chaoxian Wang
- 1 College of Animal Science, South China Agricultural University , Guangzhou, People's Republic of China
| | - Fang Chen
- 1 College of Animal Science, South China Agricultural University , Guangzhou, People's Republic of China
| | - Yinzhi Zhang
- 1 College of Animal Science, South China Agricultural University , Guangzhou, People's Republic of China
| | - Zhichao Liao
- 1 College of Animal Science, South China Agricultural University , Guangzhou, People's Republic of China
| |
Collapse
|
29
|
Zhu JJ, Luo J, Xu HF, Wang H, Loor JJ. Short communication: Altered expression of specificity protein 1 impairs milk fat synthesis in goat mammary epithelial cells. J Dairy Sci 2016; 99:4893-4898. [PMID: 26995134 DOI: 10.3168/jds.2015-10733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/05/2016] [Indexed: 11/19/2022]
Abstract
Specificity protein 1 (encoded by SP1) is a novel transcription factor important for the regulation of lipid metabolism and the normal function of various hormones in model organisms. Its potential role, if any, on ruminant milk fat is unknown. Despite the lower expression of the lipolysis-related gene ATGL (by 44 and 37% respectively), both the adenoviral overexpression and the silencing of SP1 [via short interfering (si)RNA] markedly reduced cellular triacylglycerol (TAG) content (by 28 and 25%, respectively), at least in part by decreasing the expression of DGAT1 (-36% in adenovirus treatment) and DGAT2 (-81 and -87%, respectively) that are involved in TAG synthesis. Consistent with the markedly lower expression of genes related to lipid droplet formation and secretion (TIP47 by 19 and 32%, and ADFP by 25 and 25%, respectively), cellular lipid droplet content was also decreased sharply, by 9 and 8.5%, respectively, after adenoviral overexpression of SP1 or its silencing via siRNA. Overall, the results underscored a potentially important role of SP1 in maintaining milk-fat droplet synthesis in goat mammary epithelial cells.
Collapse
Affiliation(s)
- J J Zhu
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation, Southwest University for Nationalities, Chengdu, Sichuan, 610041, P. R. China; Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - J Luo
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation, Southwest University for Nationalities, Chengdu, Sichuan, 610041, P. R. China.
| | - H F Xu
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation, Southwest University for Nationalities, Chengdu, Sichuan, 610041, P. R. China
| | - H Wang
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation, Southwest University for Nationalities, Chengdu, Sichuan, 610041, P. R. China
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
30
|
Xu H, Luo J, Zhao W, Yang Y, Tian H, Shi H, Bionaz M. Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells. J Dairy Sci 2016; 99:783-95. [DOI: 10.3168/jds.2015-9736] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/22/2015] [Indexed: 01/13/2023]
|
31
|
Shi HB, Yu K, Luo J, Li J, Tian HB, Zhu JJ, Sun YT, Yao DW, Xu HF, Shi HP, Loor JJ. Adipocyte differentiation-related protein promotes lipid accumulation in goat mammary epithelial cells. J Dairy Sci 2015; 98:6954-64. [PMID: 26298750 DOI: 10.3168/jds.2015-9452] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/21/2015] [Indexed: 12/16/2022]
Abstract
Milk fat originates from the secretion of cytosolic lipid droplets (CLD) synthesized within mammary epithelial cells. Adipocyte differentiation-related protein (ADRP; gene symbol PLIN2) is a CLD-binding protein that is crucial for synthesis of mature CLD. Our hypothesis was that ADRP regulates CLD production and metabolism in goat mammary epithelial cells (GMEC) and thus plays a role in determining milk fat content. To understand the role of ADRP in ruminant milk fat metabolism, ADRP (PLIN2) was overexpressed or knocked down in GMEC using an adenovirus system. Immunocytochemical staining revealed that ADRP localized to the surface of CLD. Supplementation with oleic acid (OA) enhanced its colocalization with CLD surface and enhanced lipid accumulation. Overexpression of ADRP increased lipid accumulation and the concentration of triacylglycerol in GMEC. In contrast, morphological examination revealed that knockdown of ADRP decreased lipid accumulation even when OA was supplemented. This response was confirmed by the reduction in mass of cellular TG when ADRP was knocked down. The fact that knockdown of ADRP did not completely eliminate lipid accumulation at a morphological level in GMEC without OA suggests that some other compensatory factors may also aid in the process of CLD formation. The ADRP reversed the decrease of CLD accumulation induced by adipose triglyceride lipase. This is highly suggestive of ADRP promoting triacylglycerol stability within CLD by preventing access to adipose triglyceride lipase. Collectively, these data provide direct in vitro evidence that ADRP plays a key role in CLD formation and stability in GMEC.
Collapse
Affiliation(s)
- H B Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China 712100; College of Life Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, P. R. China 310018
| | - K Yu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China 712100
| | - J Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China 712100.
| | - J Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China 712100
| | - H B Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China 712100
| | - J J Zhu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China 712100
| | - Y T Sun
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China 712100
| | - D W Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China 712100
| | - H F Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China 712100
| | - H P Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China 712100
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
32
|
The effect of long term under- and over-feeding on the expression of genes related to lipid metabolism in the mammary tissue of goats. Livest Sci 2015. [DOI: 10.1016/j.livsci.2014.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
The effect of long term under- and over-feeding on the expression of genes related to lipid metabolism in mammary tissue of sheep. J DAIRY RES 2014; 82:107-12. [PMID: 25434377 DOI: 10.1017/s0022029914000661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Milk fatty acid (FA) synthesis by the mammary gland involves expression of a large number of genes whose nutritional regulation remains poorly defined. In this study, we examined the effect of long-term under- and over-feeding on the expression of genes (acetyl Co A carboxylase, ACC; fatty acid synthetase, FAS; lipoprotein lipase, LPL; stearoyl Co A desaturase, SCD; peroxisome proliferator activated receptor γ2, PPARγ2; sterol regulatory element binding protein-1, SREBP-1c; and hormone sensitive lipase, HSL) related to FA metabolism in sheep mammary tissue (MT). Twenty-four lactating sheep were divided into three homogenous sub-groups and fed the same ration in quantities covering 70% (underfeeding), 100% (control) and 130% (overfeeding) of their energy and crude protein requirements. The results showed a significant reduction of mRNA of ACC, FAS, LPL and SCD in the MT of underfed sheep, and a significant increase on the mRNA of LPL and SREBP-1c in the MT of overfed compared with the control respectively. In conclusion, the negative, compared to positive, energy balance in sheep down-regulates ACC, FAS, LPL, SCD, SREBP-1c and PPARγ2 expression in their MT which indicates that the decrease in nutrient availability may lead to lower rates of lipid synthesis.
Collapse
|