1
|
de Ondarza MB, de Souza VC, Kebreab E, Tricarico JM. Understanding potential opportunities and risks associated with feeding supplemental rumen available fats to mitigate enteric methane emissions in lactating dairy cows. J Dairy Sci 2024:S0022-0302(24)00836-1. [PMID: 38825101 DOI: 10.3168/jds.2023-24528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/30/2024] [Indexed: 06/04/2024]
Abstract
Supplemental dietary rumen available fats show promise as enteric methane (eCH4) mitigators for lactating dairy cows. However, concerns include variability in eCH4 response and possible negative effects on dairy cow performance. Successful implementation of this mitigation option requires better prediction of responses specifically to rumen available FA as well as understanding the modulating effects of other dietary and animal characteristics. Using meta-analytic and meta-regression techniques, 35 published studies with diet definition were used to assess changes in eCH4 emissions and lactation performance associated with supplemental fat, specific supplemental rumen available FA types, and other dietary characteristics. Enteric CH4 (g/d) was reduced by 3.77% per percentage unit of supplemental rumen available EE (RAEE). Supplemental rumen available PUFA (C18:2 and C18:3) and UFA (C18:1, C18:2, C18:3) mitigated eCH4 (g/d) emissions in dairy cows by 6.88 and 4.65% per percentage unit increase, respectively. The anti-methanogenic effects of PUFA, MUFA and MCFA increased with correspondingly greater basal dietary levels of each FA type. Higher rumen-degradable starch (RDS; > 18% DM) in the basal diet promoted greater reductions in eCH4 yield (eCH4/DMI, g/kg) with supplemental rumen available PUFA and UFA. Both milk fat percentage and yield (kg/d) were reduced with rumen available fat supplementation with a reduction of 7.8% and 6.0%, respectively, relative to control diets. Our results highlight the importance of determining basal levels of the rumen available FA before providing supplemental rumen available FA as an option for enteric eCH4 mitigation. Dairy nutritionists can use estimates generated from this analysis to predict changes in eCH4 emissions and dairy cow performance associated with dietary supplementation of rumen available EE and specific rumen available FA types for the purpose of eCH4 mitigation.
Collapse
Affiliation(s)
| | - Vinícius Carneiro de Souza
- Department of Animal Science, University of California, Davis, 2111 Meyer Hall, One Shields Avenue, Davis, CA, 95618, USA
| | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, 2111 Meyer Hall, One Shields Avenue, Davis, CA, 95618, USA
| | - Juan M Tricarico
- Dairy Management Inc., 10255 W. Higgins Road, Suite 900, Rosemont, IL 60018, USA.
| |
Collapse
|
2
|
Pena OM, Murphy K, Long N, Lascano GJ, Jenkins TC, Aguerre MJ. Evaluating the Rumen Degradation of Novel Protected Gelatin Capsules Containing Fish Oil Fed to Lactating Dairy Cows. Animals (Basel) 2023; 13:2555. [PMID: 37627346 PMCID: PMC10451696 DOI: 10.3390/ani13162555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The objective of this study was to assess the effects of feeding gelatin capsules containing fish oil, treated with alcoholic solutions of flavoring agents followed by drying, on lactation performance, rumen fatty acids content and milk enrichment of fatty acids. In Trial 1, four multiparous ruminally fistulated Holstein cows were randomly assigned to one of four dietary treatments sequences in a 4 × 4 Latin square design. Treatments consisted of (1) Control with no capsules, (2) Control plus 200 untreated capsules per cow/day, mixed with the TMR, (3) Control plus 200 treated capsules per cow/day placed directly into the rumen, (4) Control plus 200 treated capsules per cow/day, mixed with the TMR. In Trial 2, three fistulated Holstein and three fistulated Jersey multiparous cows were randomly assigned to three dietary treatments sequences in a replicated 3 × 3 Latin square design. Treatments consisted of (1) Control with no capsules fed to the cows, (2) Control plus 180 untreated capsules per cow/day, (3) Control plus 180 treated capsules per cow/day. Compared to control, feeding fish oil capsules significantly (Trial 1) or numerically (Trial 2) reduced milk fat concentration and yield. Furthermore, in both trials, the feeding of untreated or treated capsules had no effect on animal performance or milk composition. In both trials, compared to controls, supplementing the diet with fish oil capsules consistently increased total trans C18:1 isomers and DHA concentration in the rumen and milk fat. However, for both trials, capsule protection treatment had a minimal effect on the concentration of any of the reported rumen and milk fatty acids. When assessed under laboratory control conditions, due to water absorption, the treated capsule weight was increased by 40% while resistance to pressure decreased by 84% after 2 h of incubation in water. The results of this study suggest that due to a reduction in the capsule shell's resistance to abrasion, treated capsules marginally prevented the release of fish oil in the rumen.
Collapse
Affiliation(s)
- Omar Manuel Pena
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA; (O.M.P.); (N.L.); (G.J.L.); (T.C.J.)
| | | | - Nathan Long
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA; (O.M.P.); (N.L.); (G.J.L.); (T.C.J.)
| | - Gustavo J. Lascano
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA; (O.M.P.); (N.L.); (G.J.L.); (T.C.J.)
| | - Thomas C. Jenkins
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA; (O.M.P.); (N.L.); (G.J.L.); (T.C.J.)
| | - Matías J. Aguerre
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA; (O.M.P.); (N.L.); (G.J.L.); (T.C.J.)
| |
Collapse
|
3
|
Liu S, Wei Z, Deng M, Xian Z, Liu D, Liu G, Li Y, Sun B, Guo Y. Effect of a High-Starch or a High-Fat Diet on the Milk Performance, Apparent Nutrient Digestibility, Hindgut Fermentation Parameters and Microbiota of Lactating Cows. Animals (Basel) 2023; 13:2508. [PMID: 37570317 PMCID: PMC10417356 DOI: 10.3390/ani13152508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, changes in milk performance, nutrient digestibility, hindgut fermentation parameters and microflora were observed by inducing milk fat depression (MFD) in dairy cows fed with a high-starch or a high-fat diet. Eight Holstein cows were paired in a completely randomized cross-over design within two 35 d periods (18 d control period and 17d induction period). During the control period, all cows were fed the low-starch and low-fat diet (CON), and at the induction period, four of the cows were fed a high-starch diet with crushed wheat (IS), and the other cows were fed a high-fat diet with sunflower fat (IO). The results showed that, compared to when the cows were fed the CON diet, when cows were fed the IS or IO diet, they had lower milk fat concentrations, energy corrected milk, 3.5% fat-corrected milk yield, feed efficiency and apparent digestibility of NDF and ADF. However, cows fed the IO diet had a lower apparent digestibility of ether extracts. In addition, we observed that when cows were fed the high-starch (IS) or high-fat (IO) diet, they had a higher fecal concentration of propionate and acetate, and a lower NH3-N. Compared to when the cows were fed the CON diet, cows fed the IS diet had a lower pH, and cows fed the IO diet had a lower concentration of valerate in feces. In the hindgut microbiota, the relative abundance of Oscillospiraceae_UCG-005 was increased, while the Verrucomicrobiota and Lachnospiraceae_AC2044_group were decreased when cows were fed the IO diet. The relative abundance of Prevotellaceae_UCG-003 was increased, while the Alistipes and Verrucomicrobiota decreased, and the Treponema, Spirochaetota and Lachnospiraceae_AC2044_group showed a decreasing trend when cows were fed the IS diet. In summary, this study suggested that high-starch or high-fat feeding could induce MFD in dairy cows, and the high-fat diet had the greatest effect on milk fat; the high-starch or high-fat diet affected hindgut fermentation and apparent fiber digestibility. The changes in hindgut flora suggested that hindgut microbiota may be associated with MFD in cows.
Collapse
Affiliation(s)
- Suran Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.L.); (Z.W.); (M.D.); (Z.X.); (D.L.); (G.L.); (Y.L.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ziwei Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.L.); (Z.W.); (M.D.); (Z.X.); (D.L.); (G.L.); (Y.L.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Fuyang Bright Ecological Wisdom Ranch, Bright Dairy & Food Co., Ltd., Fuyang 236328, China
| | - Ming Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.L.); (Z.W.); (M.D.); (Z.X.); (D.L.); (G.L.); (Y.L.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenyu Xian
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.L.); (Z.W.); (M.D.); (Z.X.); (D.L.); (G.L.); (Y.L.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.L.); (Z.W.); (M.D.); (Z.X.); (D.L.); (G.L.); (Y.L.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.L.); (Z.W.); (M.D.); (Z.X.); (D.L.); (G.L.); (Y.L.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.L.); (Z.W.); (M.D.); (Z.X.); (D.L.); (G.L.); (Y.L.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.L.); (Z.W.); (M.D.); (Z.X.); (D.L.); (G.L.); (Y.L.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.L.); (Z.W.); (M.D.); (Z.X.); (D.L.); (G.L.); (Y.L.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Erez İ, Serbester U. Fish oil supplementation as an omega-3 fatty acid source during gestation: effects on the performance of weaned male goat kids. Trop Anim Health Prod 2023; 55:268. [PMID: 37442852 DOI: 10.1007/s11250-023-03681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
The aim of this study was to evaluate the effects of fish oil supplementation, as an omega-3 fatty acids source, to ration of does in the different periods of pregnancy on the fattening performance of kids after weaning. Eighty German Fawn × Hair crossbred does were randomly divided into two groups; half were given fish oil in the first half of pregnancy (FO group), while the other half were given saturated fat (PF (control) group). Then, the goats in the FO and PF groups were randomly divided into two subgroups, and half of the goats were fed fish oil during the second half of pregnancy (FO-FO and FO-PF groups), while the other half was fed saturated fat (PF-FO and PF-PF groups). Thus, study groups of kids were formed according to the nutrition program of the does described above. Forty-seven male kids (84.6 ± 2.44 days old; 14.5 ± 3.09 kg live weight, mean ± standard deviation) were fed for 56 days after weaning, and their weight, feed consumption, serum biochemical parameters, carcass performance, and meat quality characteristics were evaluated. Maternal nutrition significantly affected live weight gain and serum AST, glucose, total protein, and globulin concentrations (P ≤ 0.050). The live weight gain of kids in the PF-PF and PF-FO groups was higher than that in the FO-FO and FO-PF groups. Maternal nutrition tended to affect the hot and cold carcass weights of male kids (P = 0.078 and P = 0.084, respectively). In conclusion, fish oil supplementation during gestation could negatively affect the fattening performance of kids after weaning, especially the daily live weight gain, although it tended to positively affect hot and cold carcass weights.
Collapse
Affiliation(s)
- İbrahim Erez
- Department of Animal Science, Faculty of Agriculture, Cukurova University, Adana, Turkey.
| | - Ugur Serbester
- Department of Animal Science, Faculty of Agriculture, Cukurova University, Adana, Turkey
| |
Collapse
|
5
|
Colombini S, Graziosi AR, Galassi G, Gislon G, Crovetto GM, Enriquez-Hidalgo D, Rapetti L. Evaluation of Intergovernmental Panel on Climate Change (IPCC) equations to predict enteric methane emission from lactating cows fed Mediterranean diets. JDS COMMUNICATIONS 2023; 4:181-185. [PMID: 37360129 PMCID: PMC10285231 DOI: 10.3168/jdsc.2022-0240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/17/2022] [Indexed: 06/28/2023]
Abstract
The study aimed to evaluate Intergovernmental Panel on Climate Change (IPCC) Tier 2 (2006 and 2019) to predict enteric CH4 emissions from lactating cows fed Mediterranean diets. The effects of the CH4 conversion factor (Ym; CH4 energy loss as a percentage of gross energy intake) and digestible energy (DE) of the diet were evaluated as model predictors. A data set was created using individual observations derived from 3 in vivo studies on lactating dairy cows housed in respiration chambers and fed diets typical of the Mediterranean region based on silages and hays. Five models using different Ym and DE were evaluated following a Tier 2 approach: (1) average values of Ym (6.5%) and DE (70%) from IPCC (2006); (2) average value of Ym (5.7%) and DE (70.0%) from IPCC (2019; 1YM); (3) Ym = 5.7% and DE measured in vivo (1YMIV); (4) Ym = 5.7 or 6.0%, depending on dietary NDF, and DE = 70% (2YM); and (5) Ym = 5.7 or 6.0%, depending on dietary NDF, and DE measured in vivo (2YMIV). Finally, a Tier 2 model for Mediterranean diets (MED) was derived from the Italian data set (Ym = 5.58%; DE = 69.9% for silage-based diets and 64.8% for hay-based diets) and validated on an independent data set of cows fed Mediterranean diets. The most accurate models tested were 2YMIV, 2YM, and 1YMIV with predictions of 384, 377, and 377 (g of CH4/d), respectively, versus the in vivo value of 381. The most precise model was 1YM (slope bias = 1.88%; r = 0.63). Overall, 1YM showed the highest concordance correlation coefficient value (0.579), followed by 1YMIV (0.569). Cross-validation on an independent data set of cows fed Mediterranean diets (corn silage and alfalfa hay) resulted in concordance correlation coefficient of 0.492 and 0.485 for 1YM and MED, respectively. The prediction of MED (397) was more accurate than 1YM (405) in comparison with the corresponding in vivo value of 396 g of CH4/d. The results of this study showed that the average values proposed by IPCC (2019) can adequately predict CH4 emissions from cows fed typical Mediterranean diets. However, the use of specific factors for the Mediterranean area, such as DE, improved the accuracy of the models.
Collapse
Affiliation(s)
- S Colombini
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano 20133, Italy
| | - A Rota Graziosi
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano 20133, Italy
| | - G Galassi
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano 20133, Italy
| | - G Gislon
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano 20133, Italy
| | - G M Crovetto
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano 20133, Italy
| | - D Enriquez-Hidalgo
- Sustainable Agriculture Sciences Department, University of Bristol, Bristol BS8 1TH, United Kingdom
- Rothamsted Research, Sustainable Agriculture Sciences, North Wyke, Okehampton, Devon EX20 2SB, United Kingdom
| | - L Rapetti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano 20133, Italy
| |
Collapse
|
6
|
Malekkhahi M, Razzaghi A, Vyas D. Replacement of corn silage with shredded beet pulp and dietary starch concentration: Effects on performance, milk fat output, and body reserves of mid-lactation dairy cows. J Dairy Sci 2023; 106:1734-1745. [PMID: 36631317 DOI: 10.3168/jds.2022-22415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/25/2022] [Indexed: 01/11/2023]
Abstract
We aimed to evaluate the interaction between dietary starch concentration, varied by replacing wheat bran with dry ground corn, and replacement of corn silage (CS) with shredded beet pulp (BP) on production, milk fat output, milk fatty acid profile, and body reserves in dairy cows. Sixty-four Holstein dairy cows (140 ± 26 d in milk) were randomly assigned to 8 pens (8 animals per pen). Treatments were arranged in a 2 × 2 factorial arrangement with 2 concentrations of starch and 2 sources of fiber and were allotted to 8 pens (2 pens per treatment). Treatments were (1) 15% dry ground corn and 24% CS, (2) 15% dry ground corn and 24% BP replacing CS, (3) 30% dry ground corn and 24% CS, and (4) 30% dry ground corn and 24% BP replacing CS. The trial lasted for 47 d and final 7 d of experimental period was used for data and sample collection. Cows fed the BP-based diets had greater dry matter intake than those offered the CS-based diets, whereas no effects were observed with starch concentration. Milk yield increased by 1.8 kg/d with BP-based diets compared with CS-based diets and by 2.5 kg/d when cows received the high-starch compared with low-starch diets. Interactions between dietary starch concentration and forage substitution were detected for milk fat concentration and yield as BP inclusion lowered milk fat output with high-starch diet. Milk trans-18:1 concentration was lower with 15% dry ground corn and 24% CS compared with other diets. In conclusion, the effects of dietary starch concentration (22 and 32% dry matter) and forage substitution on production responses were independent except for milk fat output and milk trans 18:1 isomers. Substituting CS with BP is effective at increasing milk yield regardless of starch concentration; however, milk fat yield is lower when BP is used with high-starch concentration.
Collapse
Affiliation(s)
- M Malekkhahi
- Department of Animal Sciences, University of Florida, 2250 Shealy Drive, Gainesville 32601
| | - A Razzaghi
- Innovation Center, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
| | - D Vyas
- Department of Animal Sciences, University of Florida, 2250 Shealy Drive, Gainesville 32601.
| |
Collapse
|
7
|
Zhang X, Liu Y, Kong F, Wang W, Li S. Comparison of Nutritional Components, Ruminal Degradation Characteristics and Feed Value from Different Cultivars of Alfalfa Hay. Animals (Basel) 2023; 13:ani13040734. [PMID: 36830521 PMCID: PMC9951848 DOI: 10.3390/ani13040734] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The objective of this study was to evaluate the effects of different cultivars of alfalfa hay, including American Anderson (AA), American Golden Empress (GE), China Zhongmu No. 1 (ZM1) and China Gongnong No. 1 (GN1), on conventional nutrient composition, rumen degradation characteristics and feed value. Four healthy Holstein cows (137 ± 14 days in milk, 2.40 ± 0.50 parity) equipped with permanent ruminal cannulas were examined for the nylon-bag technique. The alfalfa hay samples were incubated in the rumen for 0, 4, 8, 12, 24, 36, 48 and 72 h according to the "gradual in/all out" schedule to detect the ruminal nutrients' degradability. Our results showed that various cultivars of alfalfa hay from different planting regions had significant differences on nutrient contents, rumen degradability and feed value. For nutritional components of alfalfa hay, the highest dry matter (DM) content was found in GE and the lowest in GN1 (p < 0.001); however, GN1 had the greatest concentration of ether extract (EE, p = 0.01), Ca (p < 0.001) and the lowest Ash (p < 0.001). Additionally, the lowest neutral detergent fiber (NDF), acid detergent fiber (ADF) and highest starch contents were observed in AA and GE (p < 0.001). Meanwhile, the cultivar of ZM1 represented the highest NDF, ADF and Ash contents, in conjunction with minimal CP and P concentrations (p < 0.001). In terms of rumen degradation characteristics, the effective degradation rate (ED) of DM in GE and ZM1 was significantly higher than that in AA and GN1 (p = 0.013). The NDF effective degradation was lower in ZM1 than the other three cultivars (p = 0.002), and in addition ZM1 also showed lower CP and ADF effective degradation than GE (p < 0.001). As far as feed value was concerned, the cultivar of alfalfa hay imported from the US, including AA and GE, exhibited higher relative feed value (RFV) and relative forage quality (RFQ) than Chinese alfalfa based on ZM1 and GN1 (p < 0.001). In conclusion, the results suggested that the cultivar of GE exhibited greater rumen degradable characteristics and feed value, while ZM1 showed the opposite status.
Collapse
Affiliation(s)
- Xinyue Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanfang Liu
- Beijing Sino Agricultural Aiko Testing Technology Co., Ltd., Beijing 100193, China
| | - Fanlin Kong
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (W.W.); (S.L.); Tel.: +86-10-62731254 (S.L.)
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (W.W.); (S.L.); Tel.: +86-10-62731254 (S.L.)
| |
Collapse
|
8
|
Mulakala BK, Smith KM, Snider MA, Ayers A, Honan MC, Greenwood SL. Influence of dietary carbohydrate profile on the dairy cow rumen meta-proteome. J Dairy Sci 2022; 105:8485-8496. [PMID: 36028341 DOI: 10.3168/jds.2022-21812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022]
Abstract
Diet starch and fiber contents influence the rumen microbial profile and its fermentation products, yet no information exists about the effects of these dietary carbohydrate fractions on the metabolic activity of these microbes. The objective of this experiment was to evaluate the effects of dietary carbohydrate profile changes on the rumen meta-proteome profile. Eight cannulated Holstein cows were assigned to the study as part of a 4 × 4 Latin square design with a 2 × 2 factorial treatment arrangement including four 28-d periods. Cows received 1 of 4 dietary treatments on a dry matter (DM) basis. Diets included different concentrations of rumen fermentable starch (RFS) and physically effective undigested NDF (peuNDF240) content in the diet: (1) low peuNDF240, low RFS (LNLS); (2) high peuNDF240, low RFS (HNLS); (3) low peuNDF240, high RFS (LNHS); and (4) high peuNDF240, high RFS (HNHS). Rumen fluid samples were collected from each cow on the last 2 d of each period at 3 time points (0600, 1000, and 1400 h). The microbial protein fraction was isolated, isobarically labeled, and analyzed using liquid chromatography combined with tandem mass spectrometry techniques. Product ion spectra were searched using the SEQUEST search on Proteome Discoverer 2.4 (Thermo Scientific) against 71 curated microbe-specific databases. Data were analyzed using PROC MIXED procedure in SAS 9.4 (SAS Institute Inc.). A total of 138 proteins were characterized across 26 of the searched microbial species. In total, 46 proteins were affected by treatments across 17 of the searched microbial species. Of these 46 proteins, 28 were affected by RFS content across 13 microbial species, with 20 proteins having higher abundance with higher dietary RFS and 8 proteins having higher abundance with lower dietary RFS. The majority of these proteins have roles in energetics, carbon metabolism, and protein synthesis. Examples include pyruvate, phosphate dikinase (Ruminococcus albus SY3), 30S ribosomal protein S11 (Clostridium aminophilum), and methyl-coenzyme M reductase subunit α (Methanobrevibacter ruminantium strain 35063), which had higher abundances with higher dietary RFS. Conversely, glutamate dehydrogenase (Butyrivibrio fibrisolvens) and 50S ribosomal protein L5 (Pseudobutyrivibrio ruminis) and L15 (Ruminococcus bromii) had lower abundances with higher dietary RFS content. Among the remaining 18 proteins unaffected by RFS content alone, 5 proteins were affected by peuNDF240 content, and 13 were affected by peuNDF240 × RFS interactions. Our results suggest that the RFS content of the diet may have a greater influence on rumen microbial protein abundances than dietary peuNDF240 content or peuNDF240 × RFS interactions. This research highlights that dietary carbohydrate profile changes can influence rumen microbial protein abundances. Further research is needed to fully characterize the effects of diet on the rumen meta-proteome and manipulate the various roles of rumen microbes. This will aid in designing the strategies to maximize the efficiency of nutrient use in the rumen.
Collapse
Affiliation(s)
- B K Mulakala
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington 05405
| | - K M Smith
- William H. Miner Agricultural Research Institute, Chazy, NY 12921
| | - M A Snider
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington 05405
| | - A Ayers
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington 05405
| | - M C Honan
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington 05405; Department of Animal Science, University of California, Davis 95616
| | - S L Greenwood
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington 05405.
| |
Collapse
|
9
|
Gallo A, Valsecchi C, Masseroni M, Cannas A, Ghilardelli F, Masoero F, Atzori AS. An observational study to verify the influence of different nutritional corn silage-based strategies on efficient use of dietary nutrients, faecal fermentation profile, and profitability in a cohort of intensive dairy farms. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2025932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- A. Gallo
- Dipartimento di Scienze animali, della nutrizione e degli alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - C. Valsecchi
- Dipartimento di Scienze animali, della nutrizione e degli alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - M. Masseroni
- Dipartimento di Scienze animali, della nutrizione e degli alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - A. Cannas
- Dipartimento di Agraria, Università Degli Studi di Sassari, Sassari, Italy
| | - F. Ghilardelli
- Dipartimento di Scienze animali, della nutrizione e degli alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - F. Masoero
- Dipartimento di Scienze animali, della nutrizione e degli alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - A. S. Atzori
- Dipartimento di Agraria, Università Degli Studi di Sassari, Sassari, Italy
| |
Collapse
|
10
|
Yi S, Zhang X, Zhang J, Ma Z, Wang R, Wu D, Wei Z, Tan Z, Zhang B, Wang M. Brittle Culm 15 mutation alters carbohydrate composition, degradation and methanogenesis of rice straw during in vitro ruminal fermentation. FRONTIERS IN PLANT SCIENCE 2022; 13:975456. [PMID: 35991441 PMCID: PMC9389288 DOI: 10.3389/fpls.2022.975456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 05/02/2023]
Abstract
Brittle Culm 15 (BC15) gene encodes a membrane-associated chitinase-like protein that participates in cellulose synthesis, and BC15 gene mutation affects cell wall composition in plant, such as cellulose or hemicellulose. The present study was designed to investigate the changes of carbohydrates composition in bc15 mutant straw, and the resulting consequence on rumen fermentation, methanogenesis, and microbial populations (qPCR) during in vitro ruminal fermentation process. Two substrates, bc15 mutant and wild-type (WT) rice straws, were selected for in vitro rumen batch culture. The first experiment was designed to investigate the kinetics of total gas and CH4 production through 48-h in vitro ruminal fermentation, while the second experiment selected incubation time of 12 and 48 h to represent the early and late stage of in vitro ruminal incubation, respectively, and then investigated changes in biodegradation, fermentation end products, and selected representative microbial populations. The bc15 mutant straw had lower contents of cellulose, neutral detergent fiber (NDF) and acid detergent fiber (ADF), and higher contents of water-soluble carbohydrates, neutral detergent solubles (NDS) and monosaccharides. The bc15 mutant straw exhibited a distinct kinetics of 48-h total gas and CH4 production with faster increases in early incubation when compared with WT straw. The bc15 mutant straw had higher DM degradation, NDF degradation and total volatile fatty acid concentration at 12 h of incubation, and lower NDF degradation and CH4 production at 48 h of incubation, together with lower acetate to propionate ratio and ADF degradation and higher butyrate molar percentage and NDS degradation at both incubation times. Furthermore, the bc15 mutant straw resulted in greater 16S gene copies of F. succinogenes, with lower 18S gene copies of fungi at both incubation times. These results indicated that the BC15 gene mutation decreased fibrosis of cell wall of rice straw, enhanced degradation at the early stage of rumen fermentation, and shifts fermentation pattern from acetate to propionate and butyrate production, leading to the decreased volume and fractional rate of CH4 production. However, BC15 gene mutation may enhance hardenability of cell wall structure of rice straw, which is more resistant for microbial colonization with decreased fiber degradation. Thus, this study modified rice straw by manipulating a cell wall biosynthesis gene and provides a potential strategy to alter degradation and CH4 production during in vitro ruminal fermentation process.
Collapse
Affiliation(s)
- Siyu Yi
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xiumin Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jianjun Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Zhiyuan Ma
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Rong Wang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Duanqin Wu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zhongshan Wei
- Institute of Hunan Animal and Veterinary Science, Changsha, Hunan, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- *Correspondence: Min Wang,
| |
Collapse
|
11
|
Akhlaghi B, Ghasemi E, Alikhani M, Ghaffari M, Razzaghi A. Effects of supplementing pomegranate peel with fatty acid sources on oxidative stress, blood metabolites, and milk production of dairy cows fed high-concentrate diets. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
12
|
Wang R, Wang M, Lin B, Ungerfeld EM, Ma ZY, Wu TT, Wen JN, Zhang XM, Deng JP, Tan ZL. Associations of ruminal hydrogen and pH with fiber digestibility and microbiota composition induced by increasing starch intake in beef cattle. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Darabighane B, Tapio I, Ventto L, Kairenius P, Stefański T, Leskinen H, Shingfield KJ, Vilkki J, Bayat AR. Effects of Starch Level and a Mixture of Sunflower and Fish Oils on Nutrient Intake and Digestibility, Rumen Fermentation, and Ruminal Methane Emissions in Dairy Cows. Animals (Basel) 2021; 11:1310. [PMID: 34063184 PMCID: PMC8147431 DOI: 10.3390/ani11051310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/01/2023] Open
Abstract
Four multiparous dairy cows were used in a 4 × 4 Latin square to examine how starch level and oil mixture impact dry matter (DM) intake and digestibility, milk yield and composition, rumen fermentation, ruminal methane (CH4) emissions, and microbial diversity. Experimental treatments comprised high (HS) or low (LS) levels of starch containing 0 or 30 g of a mixture of sunflower and fish oils (2:1 w/w) per kg diet DM (LSO and HSO, respectively). Intake of DM did not differ between cows fed LS and HS diets while oil supplementation reduced DM intake. Dietary treatments did not affect milk and energy corrected milk yields. There was a tendency to have a lower milk fat concentration due to HSO compared with other treatments. Both high starch level and oil supplementation increased digestibility of gross energy. Cows receiving HS diets had higher levels of total rumen VFA while acetate was lower than LS without any differences in rumen pH, or ruminal CH4 emissions. Although dietary oil supplementation had no impact on rumen fermentation, decreased CH4 emissions (g/day and g/kg milk) were observed with a concomitant increase in Anoplodinium-Diplodinium sp. and Epidinium sp. but a decrease in Christensenellaceae, Ruminococcus sp., Methanobrevibacter ruminantium and Mbb. gottschalkii clades.
Collapse
Affiliation(s)
- Babak Darabighane
- Animal Nutrition, Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland; (B.D.); (L.V.); (P.K.); (T.S.); (H.L.); (K.J.S.)
| | - Ilma Tapio
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland;
| | - Laura Ventto
- Animal Nutrition, Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland; (B.D.); (L.V.); (P.K.); (T.S.); (H.L.); (K.J.S.)
| | - Piia Kairenius
- Animal Nutrition, Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland; (B.D.); (L.V.); (P.K.); (T.S.); (H.L.); (K.J.S.)
| | - Tomasz Stefański
- Animal Nutrition, Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland; (B.D.); (L.V.); (P.K.); (T.S.); (H.L.); (K.J.S.)
| | - Heidi Leskinen
- Animal Nutrition, Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland; (B.D.); (L.V.); (P.K.); (T.S.); (H.L.); (K.J.S.)
| | - Kevin J. Shingfield
- Animal Nutrition, Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland; (B.D.); (L.V.); (P.K.); (T.S.); (H.L.); (K.J.S.)
| | - Johanna Vilkki
- Research and Customer Relationships, Service Groups, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland;
| | - Ali-Reza Bayat
- Animal Nutrition, Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland; (B.D.); (L.V.); (P.K.); (T.S.); (H.L.); (K.J.S.)
| |
Collapse
|
14
|
Sainz-Ramírez A, Velarde-Guillén J, Estrada-Flores JG, Arriaga-Jordán CM. Productive, economic, and environmental effects of sunflower (Helianthus annuus) silage for dairy cows in small-scale systems in central Mexico. Trop Anim Health Prod 2021; 53:256. [PMID: 33839954 DOI: 10.1007/s11250-021-02708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/03/2021] [Indexed: 11/29/2022]
Abstract
Small-scale dairy systems (SSDS) are important source of livelihood and socio-economic wellbeing for the rearers in general. The reduction of methane emissions with the inclusion of sunflower seed or seed-meal in rations for dairy cows has been reported in several studies. However, studies pertaining to the use of sunflower silage in dairy cattle feeding are lacking. The present study was conducted to assess the productive, economic, and environmental effects of the inclusion of graded levels of sunflower silage at 0%, 20%, 40%, and 60% (SFSL) along with maize silage (MZSL) on a dry matter basis. The silage was provided to eight Holstein cows in two 4×4 Latin-squares with 14-day periods. The study encompassed the productive performance of the cows, composition of feeds, besides the feeding costs, and enteric methane emissions estimated. The study indicated that inclusion of SFSL in the diet enhanced (P<0.001) the FCM by 3.5% and milk-fat content. SFSL increased feeding costs, but income/feeding costs ratios did not differ across the treatments. The higher inclusion of SFSL reduced methane emissions/kg of DM intake, / kg of milk, and in energy lost as methane. The inclusion of sunflower silage in feeding strategies for cows may be a viable alternative by increasing their milk yields and milk fat content and reducing methane emissions without affecting the income/feeding costs ratios.
Collapse
Affiliation(s)
- Aurora Sainz-Ramírez
- Instituto de Ciencias Agropecuarias y Rurales (ICAR), Universidad Autónoma del Estado de México, Campus UAEM El Cerrillo, El Cerrillo Piedras Blancas, 50090, Toluca, Estado de México, México
| | - José Velarde-Guillén
- Instituto de Ciencias Agropecuarias y Rurales (ICAR), Universidad Autónoma del Estado de México, Campus UAEM El Cerrillo, El Cerrillo Piedras Blancas, 50090, Toluca, Estado de México, México
| | - Julieta Gertrudis Estrada-Flores
- Instituto de Ciencias Agropecuarias y Rurales (ICAR), Universidad Autónoma del Estado de México, Campus UAEM El Cerrillo, El Cerrillo Piedras Blancas, 50090, Toluca, Estado de México, México
| | - Carlos Manuel Arriaga-Jordán
- Instituto de Ciencias Agropecuarias y Rurales (ICAR), Universidad Autónoma del Estado de México, Campus UAEM El Cerrillo, El Cerrillo Piedras Blancas, 50090, Toluca, Estado de México, México.
| |
Collapse
|
15
|
Huang G, Zhang Y, Xu Q, Zheng N, Zhao S, Liu K, Qu X, Yu J, Wang J. DHA content in milk and biohydrogenation pathway in rumen: a review. PeerJ 2020; 8:e10230. [PMID: 33391862 PMCID: PMC7761261 DOI: 10.7717/peerj.10230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022] Open
Abstract
Docosahexaenoic acid (DHA) is an essential human nutrient that may promote neural health and development. DHA occurs naturally in milk in concentrations that are influenced by many factors, including the dietary intake of the cow and the rumen microbiome. We reviewed the literature of milk DHA content and the biohydrogenation pathway in rumen of dairy cows aim to enhance the DHA content. DHA in milk is mainly derived from two sources: α-linolenic acid (ALA) occurring in the liver and consumed as part of the diet, and overall dietary intake. Rumen biohydrogenation, the lymphatic system, and blood circulation influence the movement of dietary intake of DHA into the milk supply. Rumen biohydrogenation reduces DHA in ruminal environmental and limits DHA incorporation into milk. The fat-1 gene may increase DHA uptake into the body but this lacks experimental confirmation. Additional studies are needed to define the mechanisms by which different dietary sources of DHA are associated with variations of DHA in milk, the pathway of DHA biohydrogenation in the rumen, and the function of the fat-1 gene on DHA supply in dairy cows.
Collapse
Affiliation(s)
- Guoxin Huang
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, China
- Northeast Agricultural University, College of Animal Sciences and Technology, Harbin, China
| | - Yangdong Zhang
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, China
| | - Qingbiao Xu
- Huazhong Agricultural University, College of Animal Sciences and Technology, Wuhan, China
| | - Nan Zheng
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, China
| | - Shengguo Zhao
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, China
| | - Kaizhen Liu
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, China
| | - Xueyin Qu
- Tianjin Mengde Groups Co., Ltd, Tianjin, China
| | - Jing Yu
- Tianjin Mengde Groups Co., Ltd, Tianjin, China
| | - Jiaqi Wang
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, China
| |
Collapse
|
16
|
Huang X, Yoder PS, Campos L, Huang E, Hanigan MD. A method of assessing essential amino acid availability from microbial and ruminally undegraded protein in lactating dairy cows. J Dairy Sci 2020; 104:1777-1793. [PMID: 33309365 DOI: 10.3168/jds.2020-18248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/10/2020] [Indexed: 11/19/2022]
Abstract
The objective of this study was to extend a stable isotope-based assessment of AA absorption from rumen-degradable protein (RDP) sources to include determination of essential AA (EAA) availability from microbial protein (MCP). To demonstrate the technique, a study using a 2 × 2 factorial arrangement of treatments applied in a repeated 4 × 4 Latin square design was undertaken. Factors were high and low rumen-degradable protein and high and low starch. Twelve lactating cows were blocked into 3 groups according to days in milk and randomly assigned to the 4 treatment sequences. Each period was 14 d in length with 10 d of adaption followed by 4 d of ruminal infusions of 15N-labeled ammonium sulfate. On the last day of each period, a 13C-labeled AA mixture was infused into the jugular vein over a 6-h period to assess total AA entry. Rumen, blood, urine, and milk samples were collected during the infusions. Ruminal bacteria and blood samples were assessed for AA enrichment. Total plasma AA absorption rates were derived for 6 EAA from plasma 13C AA enrichment. Absorption of 6 EAA from MCP was calculated from total AA absorption based on 15N enrichment in blood and rumen bacteria. Essential AA absorption rates from total protein, MCP, and rumen-undegradable protein were derived with standard errors of the mean of 6, 14, and 14%, respectively. An average of 45% of absorbed EAA were from MCP, which varied among 6 EAA and was interactively affected by starch and RDP in diets. Microbial AA availability measured by isotope dilution method increased with the high RDP diets and was unaffected by starch level, except for Met, which decreased with high starch. Microbial protein outflow, estimated from urinary purine derivatives, increased with RDP and was not significantly affected by starch. This was consistent with measurements from the isotope dilution method. Total AA absorption rates measured from isotope dilution were similar to estimates from CNCPS (v. 6.55), but a lower proportion of absorbed AA was derived from MCP for the former method. Compared with the isotope and CNCPS estimates, the Fleming model underestimated microbial EAA and total EAA availability. An average of 58% of the absorbed EAA was converted into milk, which varied among individual AA and was interactively affected by starch and RDP in diets. The isotope dilution approach is advantageous because it provides estimates of EAA availability for individual EAA from rumen-undegradable protein and MCP directly with fewer errors of measurement than can be achieved with intestinal disappearance methods.
Collapse
Affiliation(s)
- X Huang
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - P S Yoder
- Department of Dairy Science, Virginia Tech, Blacksburg 24061; Perdue AgriBusiness LLC, Salisbury, MD 21804
| | - L Campos
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - E Huang
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - M D Hanigan
- Department of Dairy Science, Virginia Tech, Blacksburg 24061.
| |
Collapse
|
17
|
Bodkowski R, Czyż K, Sokoła-Wysoczańska E, Janczak M, Cholewińska P, Wyrostek A. The Effect of Low-Temperature Crystallization of Fish Oil on the Chemical Composition, Fatty Acid Profile, and Functional Properties of Cow's Milk. Animals (Basel) 2020; 10:E1834. [PMID: 33050152 PMCID: PMC7599823 DOI: 10.3390/ani10101834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/03/2023] Open
Abstract
The study aimed to investigate the effect of supplementation of fish oil after the process of low-temperature crystallization (LTC-FO) enriched with long-chain polyunsaturated fatty acids (LC-PUFAs) on cow milk parameters. The experiment was carried out on 24 Polish Holstein Friesian cows. For 4 weeks, experimental (EXP) group animals (n = 12) were fed LTC-FO (1% of dry matter). Milk was collected two times: on days 14 and 30. LTC-FO supplementation decreased milk fat yield and concentration (p < 0.01). Higher levels of polyunsaturated fatty acids (PUFAs), including these with beneficial biological properties, i.e., eicosapentaenoic (EPA), docosahexaenoic (DHA), docosapentaenoic (DPA), CLA, alpha-linolenic acid (ALA), and TVA (p < 0.01), and lower levels of SFAs, especially short- (p < 0.01) and medium-chain ones (p < 0.05, p < 0.01), were found in the EXP group. The addition of LTC-FO reduced the value of atherogenic and thrombogenic indices as well as SFA/UFA and n-6/n-3 ratios and increased the content of n-3 PUFA and functional fatty acids (p < 0.01). The addition of LTC-FO also increased the delta-9 desaturase index for CLA/TVA and decreased it for pairs C14:1/C14:0 and C16:1/C16:0 (p < 0.05, p < 0.01).
Collapse
Affiliation(s)
- Robert Bodkowski
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland; (K.C.); (M.J.); (P.C.); (A.W.)
| | - Katarzyna Czyż
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland; (K.C.); (M.J.); (P.C.); (A.W.)
| | | | - Marzena Janczak
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland; (K.C.); (M.J.); (P.C.); (A.W.)
| | - Paulina Cholewińska
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland; (K.C.); (M.J.); (P.C.); (A.W.)
| | - Anna Wyrostek
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland; (K.C.); (M.J.); (P.C.); (A.W.)
| |
Collapse
|
18
|
Lopreiato V, Mezzetti M, Cattaneo L, Ferronato G, Minuti A, Trevisi E. Role of nutraceuticals during the transition period of dairy cows: a review. J Anim Sci Biotechnol 2020; 11:96. [PMID: 32864127 PMCID: PMC7450574 DOI: 10.1186/s40104-020-00501-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
The transition period of dairy cattle is characterized by a number of metabolic, endocrine, physiologic, and immune adaptations, including the occurrence of negative energy balance, hypocalcemia, liver dysfunction, overt systemic inflammatory response, and oxidative stress status. The degree and length of time during which these systems remain out of balance could render cows more susceptible to disease, poor reproductive outcomes, and less efficient for milk production and quality. Studies on both monogastrics and ruminants have reported the health benefits of nutraceuticals (e.g. probiotics, prebiotics, dietary lipids, functional peptides, phytoextracts) beyond nutritional value, interacting at different levels of the animal’s physiology. From a physiological standpoint, it seems unrealistic to disregard any systemic inflammatory processes. However, an alternate approach is to modulate the inflammatory process per se and to resolve the systemic response as quickly as possible. To this aim, a growing body of literature underscores the efficacy of nutraceuticals (active compounds) during the critical phase of the transition period. Supplementation of essential fatty acids throughout a 2-month period (i.e. a month before and a month after calving) successfully attenuates the inflammatory status with a quicker resolution of phenomenon. In this context, the inflammatory and immune response scenario has been recognized to be targeted by the beneficial effect of methyl donors, such as methionine and choline, directly and indirectly modulating such response with the increase of antioxidants GSH and taurine. Indirectly by the establishment of a healthy gastrointestinal tract, yeast and yeast-based products showed to modulate the immune response, mitigating negative effects associated with parturition stress and consequent disorders. The use of phytoproducts has garnered high interest because of their wide range of actions on multiple tissue targets encompassing a series of antimicrobial, antiviral, antioxidant, immune-stimulating, rumen fermentation, and microbial modulation effects. In this review, we provide perspectives on investigations of regulating the immune responses and metabolism using several nutraceuticals in the periparturient cow.
Collapse
Affiliation(s)
- Vincenzo Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Luca Cattaneo
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Giulia Ferronato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.,PRONUTRIGEN-Centro di Ricerca Nutrigenomica e Proteomica, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.,PRONUTRIGEN-Centro di Ricerca Nutrigenomica e Proteomica, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
19
|
Pulina G, Tondo A, Danieli PP, Primi R, Matteo Crovetto G, Fantini A, Macciotta NPP, Atzori AS. How to manage cows yielding 20,000 kg of milk: technical challenges and environmental implications. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1805370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Giuseppe Pulina
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | | | - Pier Paolo Danieli
- Dipartimento di Scienze Agrarie e Forestali, University of Tuscia, Viterbo, Italy
| | - Riccardo Primi
- Dipartimento di Scienze Agrarie e Forestali, University of Tuscia, Viterbo, Italy
| | | | | | | | | |
Collapse
|
20
|
Gislon G, Colombini S, Borreani G, Crovetto GM, Sandrucci A, Galassi G, Tabacco E, Rapetti L. Milk production, methane emissions, nitrogen, and energy balance of cows fed diets based on different forage systems. J Dairy Sci 2020; 103:8048-8061. [PMID: 32622607 DOI: 10.3168/jds.2019-18134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/20/2020] [Indexed: 01/08/2023]
Abstract
Eight lactating Italian Friesian cows were housed in individual respiration chambers in a repeated Latin square design to determine their dry matter intake (DMI) and their milk and methane production, as well as to collect the total feces and urine to determine the N and energy balances. Four diets, based on the following forages (% of dry matter, DM), were tested: corn silage (CS, 49.3), alfalfa silage (AS, 26.8), wheat silage (WS, 20.0), and a typical hay-based Parmigiano Reggiano cheese production diet (PR, 25.3 of both alfalfa and Italian ryegrass hay). The greatest DMI was observed for cows fed PR (23.4 vs. 20.7 kg/d, the average of the other 3 diets). The DM digestibility was lower for PR (64.5 vs. 71.7%, the average of the other diets). The highest ash-free neutral detergent fiber digestibility values were obtained for CS (50.7%) and AS (47.4%). In the present study, no differences in milk production were observed between diets, although PR showed a higher milk yield trend. The highest milk urea N concentration (mg/dL) was found for the cows fed the WS diet (13.8), and the lowest was observed for the cows fed AS (9.24). The highest milk urea N concentration for the cows fed WS was also correlated with the highest urinary N excretion (g/d), which was found for the cows fed that same diet (189 vs. 147 on average for the other diets). The protein digestibility was higher for the cows fed the CS and WS diets (on average 68.5%) than for the cows fed AS and PR (on average 57.0%); dietary soybean inclusion was higher for CS and WS than for AS and PR. The rumen fermentation pattern was affected by the diet; the cows fed the PR diet showed a higher rumen pH and decreased propionate production than those fed CS, due to the lower nonfiber carbohydrate content and higher ash-free neutral detergent fiber content of the PR diet than the CS diet. Feeding cows with PR diet increased the acetate:propionate ratio in comparison with the CS diet (3.30 vs. 2.44 for PR and CS, respectively). Cows fed the PR diet produced a greater daily amount of methane and had a greater methane energy loss (% of digestible energy intake) than those fed the CS diet (413 vs. 378 g/d and 8.67 vs. 7.70%), but no differences were observed when methane was expressed as grams per kilogram of DMI or grams per kilogram of milk. The PR diet resulted in a smaller net energy for lactation content than the CS diet (1.36 vs. 1.70 Mcal/kg of DM for the PR and CS diets, respectively). Overall, our research suggests that a satisfactory milk production can be attained by including different high-quality forages in balanced diets without any negative effect on milk production or on the methane emissions per kilogram of milk.
Collapse
Affiliation(s)
- G Gislon
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - S Colombini
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| | - G Borreani
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo P. Braccini 2, 10095, Grugliasco (Turin), Italy
| | - G M Crovetto
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - A Sandrucci
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - G Galassi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - E Tabacco
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo P. Braccini 2, 10095, Grugliasco (Turin), Italy
| | - L Rapetti
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
21
|
Dewanckele L, Toral PG, Vlaeminck B, Fievez V. Invited review: Role of rumen biohydrogenation intermediates and rumen microbes in diet-induced milk fat depression: An update. J Dairy Sci 2020; 103:7655-7681. [PMID: 32600765 DOI: 10.3168/jds.2019-17662] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/18/2020] [Indexed: 12/22/2022]
Abstract
To meet the energy requirements of high-yielding dairy cows, grains and fats have increasingly been incorporated in ruminant diets. Moreover, lipid supplements have been included in ruminant diets under experimental or practical conditions to increase the concentrations of bioactive n-3 fatty acids and conjugated linoleic acids in milk and meat. Nevertheless, those feeding practices have dramatically increased the incidence of milk fat depression in dairy cattle. Although induction of milk fat depression may be a management tool, most often, diet-induced milk fat depression is unintended and associated with a direct economic loss. In this review, we give an update on the role of fatty acids, particularly originating from rumen biohydrogenation, as well as of rumen microbes in diet-induced milk fat depression. Although this syndrome seems to be multi-etiological, the best-known causal factor remains the shift in rumen biohydrogenation pathway from the formation of mainly trans-11 intermediates toward greater accumulation of trans-10 intermediates, referred to as the trans-11 to trans-10 shift. The microbial etiology of this trans-11 to trans-10 shift is not well understood yet and it seems that unraveling the microbial mechanisms of diet-induced milk fat depression is challenging. Potential strategies to avoid diet-induced milk fat depression are supplementation with rumen stabilizers, selection toward more tolerant animals, tailored management of cows at risk, selection toward more efficient fiber-digesting cows, or feeding less concentrates and grains.
Collapse
Affiliation(s)
- L Dewanckele
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium
| | - P G Toral
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - B Vlaeminck
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium
| | - V Fievez
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium.
| |
Collapse
|
22
|
Gislon G, Bava L, Colombini S, Zucali M, Crovetto GM, Sandrucci A. Looking for high-production and sustainable diets for lactating cows: A survey in Italy. J Dairy Sci 2020; 103:4863-4873. [PMID: 32113778 DOI: 10.3168/jds.2019-17177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
The aim of the present study was to evaluate, through a survey conducted on commercial farms, the global warming potential (GWP) of different lactating cow total mixed rations (TMR) and to identify the best dietary strategies to increase feed efficiency (FE) and reduce enteric CH4 emission. A total of 171 dairy herds were selected: data about dry matter intake (DMI), lactating cow TMR composition, and milk production and composition were provided by farmers. Diet GWP (kg of CO2 equivalents; CO2eq) was calculated as sum of GWP (kg of CO2eq) of each included ingredient, considering inputs needed at field level, feed processing, and transport. For soybean solvent meal, land use change was included in the assessment. Enteric methane production (g/d) was estimated [using the equation CH4 (g/d) = 2.54 + 19.14 × DMI] to calculate CH4 emission for kilograms of fat- and protein-corrected milk (FPCM). The data set was analyzed by generalized linear model and logistic analysis using SAS 9.4 (SAS Institute Inc., Cary, NC). The frequency distribution showed wide variation among farms for GWP (kg of CO2eq) of TMR: approximately 25% of the surveyed farms showed a diet GWP of 15 kg of CO2eq, 20% showed a GWP of 13 kg of CO2eq, and 16.7% showed a GWP of 17 kg of CO2eq. The variation among farms was due to the feedstuffs used. Among feedstuffs, soybean meal (SBM) had the highest correlation with the GWP of the TMR as shown by the following equation: TMR GWP (kg of CO2eq) = 2.49 × kg of SBM + 6.9 (R2 = 0.547). Moreover, diets with inclusion of SBM >15% of dry matter (DM) did not result in higher milk production than diets with a lower inclusion of SBM (≤15%). Average daily milk production of cows was 29.8 [standard deviation (SD) 4.83] kg with fat and protein contents of 3.86% (SD 0.22) and 3.40% (SD 0.14), respectively. The average DMI (kg/d) of lactating cows was 22.3 (SD 2.23). Logistic analysis demonstrated that corn silage ≤30% of diet DM was associated with higher FE. Almost 50% of farms had an average value of 15.0 g of CH4/kg of FPCM and about 30% of farms had an average of 12.5 g of CH4/kg of FPCM. The results demonstrated that lower enteric CH4 production was related to inclusion (% of diet DM) of ≤12% alfalfa hay and >30% corn silage. Diets with >34% neutral detergent fiber had higher CH4 production (>14.0 g/kg of FPCM) than those with lower neutral detergent fiber content. In contrast, lower enteric CH4 production (≤14.0 g/kg of FPCM) was related to diets characterized by net energy of lactation (NEL) >1.61 Mcal/kg and >4% ether extract. The variability in TMR GWP shows significant potential for reducing the GWP of a diet through choice and inclusion levels of ingredients (mainly SBM) and the possibility of decreasing methane enteric emission associated with milk production on a commercial scale.
Collapse
Affiliation(s)
- G Gislon
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2 20133 Milan, Italy
| | - L Bava
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2 20133 Milan, Italy
| | - S Colombini
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2 20133 Milan, Italy.
| | - M Zucali
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2 20133 Milan, Italy
| | - G M Crovetto
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2 20133 Milan, Italy
| | - A Sandrucci
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2 20133 Milan, Italy
| |
Collapse
|
23
|
Toral P, Gervais R, Hervás G, Létourneau-Montminy MP, Frutos P. Relationships between trans-10 shift indicators and milk fat traits in dairy ewes: Insights into milk fat depression. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
24
|
Teklebrhan T, Wang R, Wang M, Wen JN, Tan LW, Zhang XM, Ma ZY, Tan ZL. Effect of dietary corn gluten inclusion on rumen fermentation, microbiota and methane emissions in goats. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Alvarez-Hess PS, Moate PJ, Williams SRO, Jacobs JL, Beauchemin KA, Durmic Z, Hannah MC, Eckard RJ. The effect of diet of the donor cows on in vitro measurements of methane production from wheat and corn incubated in various forage-to-grain ratios. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3451-3458. [PMID: 30609046 DOI: 10.1002/jsfa.9563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/22/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Supplementation of ruminant diets with wheat and corn grains influences ruminal fermentation. In vitro fermentation is a methodology that can be used to screen feeds for their potential to produce enteric methane. However, there is evidence that the diet of the donor cows could impact the results of in vitro analysis. This research investigated the in vitro fermentation of wheat and corn grain when incubated in ruminal fluid from cows fed different grain types and different forage-to-grain ratios. RESULTS The type of grain fed to the donor cows, as well as forage-to-grain ratio, affected the outcome of fermentation of wheat and corn grain. Differences in methane production (MP) between grains were only observed when incubated with ruminal fluid adapted to each specific grain type. Increasing proportions of wheat but not of corn decreased in vitro MP in a linear manner compared with MP produced from forage only. CONCLUSIONS Wheat grain has a greater in vitro antimethanogenic effect than corn. However, to detect the different fermentations between wheat and corn, grains should be incubated in ruminal fluid from cows adapted to that specific grain type. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pablo S Alvarez-Hess
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
- Agriculture Victoria , Department of Jobs, Precincts and Regions, Ellinbank, VIC, Australia
| | - Peter J Moate
- Agriculture Victoria , Department of Jobs, Precincts and Regions, Ellinbank, VIC, Australia
| | - S Richard O Williams
- Agriculture Victoria , Department of Jobs, Precincts and Regions, Ellinbank, VIC, Australia
| | - Joe L Jacobs
- Agriculture Victoria , Department of Jobs, Precincts and Regions, Ellinbank, VIC, Australia
| | - Karen A Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Zoey Durmic
- School of Agriculture and Environment, The University of Western Australia M085, Crawley, WA, Australia
| | - Murray C Hannah
- Agriculture Victoria , Department of Jobs, Precincts and Regions, Ellinbank, VIC, Australia
| | - Richard J Eckard
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
26
|
Marques JA, Del Valle TA, Ghizzi LG, Zilio EMC, Gheller LS, Nunes AT, Silva TBP, Dias MSDS, Grigoletto NTS, Koontz AF, da Silva GG, Rennó FP. Increasing dietary levels of docosahexaenoic acid-rich microalgae: Ruminal fermentation, animal performance, and milk fatty acid profile of mid-lactating dairy cows. J Dairy Sci 2019; 102:5054-5065. [PMID: 30954254 DOI: 10.3168/jds.2018-16017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/10/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to evaluate the effects of increasing dietary levels of microalgae (ALG), rich in docosahexaenoic acid (DHA; All-G-Rich, Alltech, Nicholasville, KY), in isolipidic diets, on animal performance, nutrient digestibility, ruminal fermentation, milk fatty acid profile, energy balance, microbial protein synthesis, and blood serum metabolites in mid-lactating dairy cows. Twenty-four Holstein cows [130.3 ± 15.4 d in milk, and 30.8 ± 0.543 kg/d of milk yield (mean ± standard error)] were used in a 4 × 4 Latin square design experiment to evaluate the following treatments: control diet, without addition of ALG; and increasing levels of ALG [2, 4, and 6 g/kg of dry matter (DM)]. The ALG decreased DM intake and increased total-tract DM apparent digestibility. A tendency was observed for a quadratic effect on total-tract NDF digestibility by ALG inclusion, with peak value of the quadratic response at 4.13 g/kg of DM dose. Moreover, ALG increased ruminal pH and decreased acetate and total volatile fatty acid concentrations. Fat-corrected milk and energy-corrected milk were quadratically affected, and a tendency for a milk yield effect was observed when ALG levels increased, whereas maximal yields were observed with intermediate doses. Milk fat, protein, and lactose concentrations were diminished, whereas productive efficiency was improved by the increase of ALG levels. Saturated fatty acid proportions were decreased, whereas polyunsaturated fatty acid proportions were increased when ALG was fed. There was low DHA transfer into milk; however, ALG inclusion decreased C18:0, C18:1 cis-9, C18:2 cis-9,12, and C18:3 cis-9,12,15 proportions, and increased C18:2 cis-9,trans-11, C18:1 trans-9, and C18:1 trans-11 proportions. Gross energy intake was decreased, whereas no effect was observed on digestible, metabolizable, or net energy intake. The ALG inclusion quadratically affected the microbial protein synthesis, with maximal enhancement at 3.24 g/kg of DM dose, and also increased serum cholesterol concentration. Under the conditions of this experiment, the inclusion of ALG in diets for mid-lactating dairy cows decreased feed intake and increased nutrient digestibility, improving productive efficiency and modifying milk fatty acid profile. Estimated intermediate doses (1.22 to 2.90 g/kg of DM) of DHA-rich ALG may be beneficial to milk, fat-corrected milk, and energy-corrected milk yields, and is recommended for dairy cows.
Collapse
Affiliation(s)
- Júlia A Marques
- Department of Animal Nutrition and Animal Production, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - Tiago A Del Valle
- Department of Animal Nutrition and Animal Production, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - Lucas G Ghizzi
- Department of Animal Nutrition and Animal Production, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - Elissandra M C Zilio
- Department of Animal Nutrition and Animal Production, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - Larissa S Gheller
- Department of Animal Nutrition and Animal Production, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - Alanne T Nunes
- Department of Animal Nutrition and Animal Production, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - Tássia B P Silva
- Department of Animal Nutrition and Animal Production, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - Mauro S da S Dias
- Department of Animal Nutrition and Animal Production, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - Nathália T S Grigoletto
- Department of Animal Nutrition and Animal Production, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | | | - Guilherme G da Silva
- Department of Animal Nutrition and Animal Production, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - Francisco P Rennó
- Department of Animal Nutrition and Animal Production, University of Sao Paulo, Pirassununga 13635-900, Brazil; Bursar 1-B of the National Council of Scientific and Technological Development, Brasília, Brazil 71605-001.
| |
Collapse
|
27
|
Alvarez-Hess PS, Williams SRO, Jacobs JL, Hannah MC, Beauchemin KA, Eckard RJ, Wales WJ, Morris GL, Moate PJ. Effect of dietary fat supplementation on methane emissions from dairy cows fed wheat or corn. J Dairy Sci 2019; 102:2714-2723. [PMID: 30660414 DOI: 10.3168/jds.2018-14721] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/21/2018] [Indexed: 11/19/2022]
Abstract
Diets that contain high proportions of either wheat or supplementary fat have been individually reported to reduce enteric methane production. The objective of this research was to determine the effect of dietary fat supplementation on methane emissions and milk yield from cows fed diets containing either corn or wheat grains. It was hypothesized that cows fed a diet containing wheat would produce less methane and have lower methane yield (methane per kg of dry matter intake; MY) than cows fed a diet containing corn and that methane mitigation from fat supplementation would occur irrespective of the type of grain in the basal diet. The experiment involved 32 Holstein-Friesian dairy cows allocated to 1 of 4 treatment groups (n = 8) and individually fed different diets restricted to approximately 90% of their mean ad libitum intake measured during a covariate period. All animals were offered 11.5 kg of dry matter/d of alfalfa hay, 1.8 kg of dry matter/d of solvent-extracted canola meal, and 1 of 4 dietary supplements. Dietary supplements were 8 kg of dry matter/d of either corn or wheat, or these same treatments with the addition of 0.8 kg of canola oil. In this 5-wk experiment, d 1 to 7 served as the covariate period, d 8 to 14 as the transition period, d 15 to 28 as the adaptation period, and d 29 to 35 as the experimental period. Cows were fed their full treatment diets from d 15 to 35 during which time milk production and feed intake were measured daily. During d 29 to 35, methane production was measured for individual cows daily using the sulfur hexafluoride tracer method. The resulting averages for milk production and feed intake were analyzed by analysis of covariance with factorial grain by fat as treatment structure, animal as the unit within blocks, and the corresponding milk production or feed intake covariate averages as principal covariate. Data on milk fatty acids, ruminal fluid data on pH, ammonia, volatile fatty acids, protozoa, and methane were analyzed by ANOVA using the same treatment and blocking structures excluding the principal covariate. Cows fed a diet containing wheat had greater MY than cows fed a diet containing corn. Irrespective of the type of grain in the diet, increasing the fat concentration from 2 to 6% dry matter reduced MY. It is concluded that the grain component in the basal diet does not affect the mitigating effects of dietary fat supplements on MY.
Collapse
Affiliation(s)
- P S Alvarez-Hess
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria 3010, Australia; Agriculture Research, Department of Economic Development, Jobs, Transport and Resources, Ellinbank, Victoria 3821, Australia.
| | - S R O Williams
- Agriculture Research, Department of Economic Development, Jobs, Transport and Resources, Ellinbank, Victoria 3821, Australia
| | - J L Jacobs
- Agriculture Research, Department of Economic Development, Jobs, Transport and Resources, Ellinbank, Victoria 3821, Australia
| | - M C Hannah
- Agriculture Research, Department of Economic Development, Jobs, Transport and Resources, Ellinbank, Victoria 3821, Australia
| | - K A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada T1J 4B1
| | - R J Eckard
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - W J Wales
- Agriculture Research, Department of Economic Development, Jobs, Transport and Resources, Ellinbank, Victoria 3821, Australia
| | - G L Morris
- Agriculture Research, Department of Economic Development, Jobs, Transport and Resources, Ellinbank, Victoria 3821, Australia
| | - P J Moate
- Agriculture Research, Department of Economic Development, Jobs, Transport and Resources, Ellinbank, Victoria 3821, Australia
| |
Collapse
|
28
|
Nguyen QV, Le HV, Nguyen DV, Nish P, Otto JR, Malau-Aduli BS, Nichols PD, Malau-Aduli AEO. Supplementing Dairy Ewes Grazing Low Quality Pastures with Plant-Derived and Rumen-Protected Oils Containing Eicosapentaenoic Acid and Docosahexaenoic Acid Pellets Increases Body Condition Score and Milk, Fat, and Protein Yields. Animals (Basel) 2018; 8:E241. [PMID: 30572585 PMCID: PMC6316841 DOI: 10.3390/ani8120241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/07/2018] [Accepted: 12/15/2018] [Indexed: 11/25/2022] Open
Abstract
The Australian dairy sheep industry is small and mostly based on a natural grass grazing system, which can limit productivity. The current study tested different plant oil-infused and rumen protected polyunsaturated fats and their interactions with sire breeds to improve lactation traits and body condition scores (BCS) of ewes grazing low quality pastures. It was hypothesised that supplementing lactating ewe's diets with plant-derived polyunsaturated oils would improve milk production and composition without compromising BCS. Sixty ewes (n = 10/treatment) in mid-lactation, balanced by sire breed, parity, milk yield, body condition score, and liveweight, were supplemented with: (1) control: wheat-based pellets without oil inclusion; wheat-based pellets including; (2) canola oil (CO); (3) rice bran oil (RBO); (4) flaxseed oil (FSO); (5); safflower oil (SFO); and (6) rumen protected marine oil containing eicosapentaenoic acid and docosahexaenoic acid (RPO). Except for the control group, all supplementary diets included the same level of 50 mL/kg DM of oil and all diets were isocaloric and isonitrogenous. Experimental animals were grazed in the same paddock with ad libitum access to pasture, hay, and water during the 10-week study. RPO was the most effective diet that enhanced milk, fat, and protein yields by approximately 30%, 13%, and 31%, respectively (p < 0.0001). A significant increase in milk production was also observed with CO, RBO, and SFO treatments (p < 0.0001). Breed significantly influenced animal performance with higher milk yields recorded for crossbred Awassi × East Friesian (AW × EF) (578 g/day) vs. purebred Awassi (452 g/day) (p < 0.0001). This study provides empirical evidence for the use of rumen-protected and plant-derived oil-infused pellets as supplements under low quality pasture grazing conditions to improve the production performance of purebred Awassi and crossbred AW × EF ewes.
Collapse
Affiliation(s)
- Quang V Nguyen
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia.
- College of Economics and Techniques, Thai Nguyen University, Thai Nguyen 252166, Vietnam.
| | - Hung V Le
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia.
- National Institute of Animal Science, Thuy Phuong, Bac Tu Liem, Hanoi 129909, Vietnam.
| | - Don V Nguyen
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia.
- National Institute of Animal Science, Thuy Phuong, Bac Tu Liem, Hanoi 129909, Vietnam.
| | - Peter Nish
- TasHerd Pty Limited, P.O. Box 68, Hadspen TAS 7290, Australia.
| | - John R Otto
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia.
| | - Bunmi S Malau-Aduli
- College of Medicine and Dentistry, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia.
| | - Peter D Nichols
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia.
- CSIRO Oceans & Atmosphere, P.O. Box 1538, Hobart TAS 7001, Australia.
| | - Aduli E O Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia.
| |
Collapse
|
29
|
Zhang H, Ao C, Khas‐Erdene, Dan N. Effects of isonitrogenous and isocaloric total mixed ration composed of forages with different quality on milk fatty acid composition and gene expression of mammary lipogenic enzymes in mid‐lactating dairy cows. Anim Sci J 2018; 90:214-221. [DOI: 10.1111/asj.13154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Hang Zhang
- College of Animal Science and TechnologyInner Mongolia University for Nationalities Tong Liao Inner Mongolia P. R. China
- College of Animal ScienceInner Mongolia Agricultural University Hohhot Inner Mongolia P. R. China
| | - Changjin Ao
- College of Animal ScienceInner Mongolia Agricultural University Hohhot Inner Mongolia P. R. China
| | - Khas‐Erdene
- College of Animal ScienceInner Mongolia Agricultural University Hohhot Inner Mongolia P. R. China
| | - Ni Dan
- College of Life ScienceInner Mongolia University for Nationalities Tong Liao Inner Mongolia P. R. China
| |
Collapse
|
30
|
Moallem U. Invited review: Roles of dietary n-3 fatty acids in performance, milk fat composition, and reproductive and immune systems in dairy cattle. J Dairy Sci 2018; 101:8641-8661. [DOI: 10.3168/jds.2018-14772] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022]
|
31
|
Thanh LP, Phakachoed N, Meeprom C, Suksombat W. Replacement of fish oil for sunflower oil in growing goat diet induces shift of ruminal fermentation and fatty acid concentration without affecting intake and digestion. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Bougouin A, Ferlay A, Doreau M, Martin C. Effects of carbohydrate type or bicarbonate addition to grass silage-based diets on enteric methane emissions and milk fatty acid composition in dairy cows. J Dairy Sci 2018; 101:6085-6097. [DOI: 10.3168/jds.2017-14041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/10/2018] [Indexed: 11/19/2022]
|
33
|
Qin N, Bayat AR, Trevisi E, Minuti A, Kairenius P, Viitala S, Mutikainen M, Leskinen H, Elo K, Kokkonen T, Vilkki J. Dietary supplement of conjugated linoleic acids or polyunsaturated fatty acids suppressed the mobilization of body fat reserves in dairy cows at early lactation through different pathways. J Dairy Sci 2018; 101:7954-7970. [PMID: 29960784 DOI: 10.3168/jds.2017-14298] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/08/2018] [Indexed: 01/25/2023]
Abstract
To investigate the metabolic changes in the adipose tissue (AT) of dairy cows under milk fat depression (MFD), 30 cows were randomly allocated to a control diet, a conjugated linoleic acid (CLA)-supplemented diet, or a high-starch diet supplemented with a mixture of sunflower and fish oil (2:1; as HSO diet) from 1 to 112 d in milk. Performance of animals, milk yield, milk composition, energy balance, and blood metabolites were measured during lactation. Quantitative PCR analyses were conducted on the AT samples collected at wk 3 and 15 of lactation. The CLA and HSO diets considerably depressed milk fat yield and milk fat content at both wk 3 and 15 in the absence of significant changes in milk protein and lactose contents. In addition, the HSO diet lowered milk yield at wk 15 and decreased dry matter intake of cows from wk 3 to 15. Compared with the control, both CLA and HSO groups showed reduced body weight loss, improved energy balance, and decreased plasma concentrations of nonesterified fatty acids and β-hydroxybutyrate at early lactation. The gene expression analyses reflected suppressed lipolysis in AT of the CLA and HSO groups compared with the control at wk 3, as suggested by the downregulation of hormone-sensitive lipase and fatty acid binding protein 4 and the upregulation of perilipin 2. In addition, the HSO diet promoted lipogenesis in AT at wk 15 through the upregulation of 1-acylglycerol-3-phosphate O-acyltransferase 2, mitochondrial glycerol-3-phosphate acyltransferase, perilipin 2, and peroxisome proliferator-activated receptor γ. The CLA diet likely regulated insulin sensitivity in AT as it upregulated the transcription of various genes involved in insulin signaling, inflammatory responses, and ceramide metabolism, including protein kinase B2, nuclear factor κ B1, toll-like receptor 4, caveolin 1, serine palmitoyltransferase long chain base subunit 1, and N-acylsphingosine amidohydrolase 1. In contrast, the HSO diet resulted in little or no change in the pathways relevant to insulin sensitivity. In conclusion, the CLA and HSO diets induced a shift in energy partitioning toward AT instead of mammary gland during lactation through the regulation of different pathways.
Collapse
Affiliation(s)
- Nanbing Qin
- Department of Agricultural Sciences, PO Box 28, FI-00014 University of Helsinki, Finland
| | - Ali-Reza Bayat
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Piia Kairenius
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Sirja Viitala
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Mervi Mutikainen
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Heidi Leskinen
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Kari Elo
- Department of Agricultural Sciences, PO Box 28, FI-00014 University of Helsinki, Finland
| | - Tuomo Kokkonen
- Department of Agricultural Sciences, PO Box 28, FI-00014 University of Helsinki, Finland
| | - Johanna Vilkki
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland.
| |
Collapse
|
34
|
Frutos P, Toral P, Hervás G. Individual variation of the extent of milk fat depression in dairy ewes fed fish oil: Milk fatty acid profile and mRNA abundance of candidate genes involved in mammary lipogenesis. J Dairy Sci 2017; 100:9611-9622. [DOI: 10.3168/jds.2017-13354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/19/2017] [Indexed: 12/27/2022]
|
35
|
Tsiplakou E, Yiasoumis L, Maragou A, Mavrommatis A, Sotirakoglou K, Moatsou G, Zervas G. The response of goats to different starch/NDF ratios of concentrates on the milk chemical composition, fatty acid profile, casein fractions and rennet clotting properties. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Circulating 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) levels are associated with hyperglycemia and β cell dysfunction in a Chinese population. Sci Rep 2017; 7:3114. [PMID: 28596534 PMCID: PMC5465180 DOI: 10.1038/s41598-017-03271-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 04/26/2017] [Indexed: 01/19/2023] Open
Abstract
Several recent clinical studies have suggested that the levels of circulating 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) are significantly higher in patients with gestational diabetes mellitus (GDM), impaired glucose tolerance (IGT), and type 2 diabetes mellitus (T2DM). This study recruited a total of 516 participants. The following patient populations were enrolled: 99 newly diagnosed cases with T2DM, 219 cases with prediabetes [82 with isolated impaired glucose tolerance (I − IGT), 66 with isolated impaired fasting glucose (I − IFG) and 71 with impaired glucose tolerance and impaired fasting glucose (IGT + IFG)], and 198 cases with normal glucose tolerance [NGT, including 99 first-degree relatives of type 2 diabetes patients (FDRs) and 99 non-FDRs]. We investigated the circulating CMPF levels in subjects with different glucose metabolism statuses and examined the potential link between CMPF and β cell function. Our results indicate that the serum CMPF levels were elevated in the prediabetes, T2DM, and FDRs groups compared to the NGT group. Additionally, the serum CMPF concentrations were independently and negatively associated with the triglyceride levels and Stumvoll first-phase insulin secretion index. Cumulatively, our findings suggest that the circulating CMPF levels can predict glycolipid metabolism disorders. Furthermore, elevated serum CMPF concentrations may determine hyperglycemia and β cell dysfunction.
Collapse
|
37
|
Jin D, Kang K, Wang H, Wang Z, Xue B, Wang L, Xu F, Peng Q. Effects of dietary supplementation of active dried yeast on fecal methanogenic archaea diversity in dairy cows. Anaerobe 2017; 44:78-86. [PMID: 28188879 DOI: 10.1016/j.anaerobe.2017.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/04/2017] [Accepted: 02/06/2017] [Indexed: 11/18/2022]
Abstract
This study aimed to investigate the effects of dietary supplementation of different dosages of active dried yeast (ADY) on the fecal methanogenic archaea community of dairy cattle. Twelve multiparous, healthy, mid-lactating Holstein dairy cows (body weight: 584 ± 23.2 kg, milk produced: 26.3 ± 1.22 kg/d) were randomly assigned to one of three treatments (control, ADY2, and ADY4) according to body weight with four replicates per treatment. Cows in the control group were fed conventional rations without ADY supplementation, while cows in the ADY2 and ADY4 group were fed rations supplemented with ADY at 2 or 4 g/d/head. Real-time PCR analysis showed the populations of total methanogens in the feces were significantly decreased (P < 0.05) in the ADY4 group compared with control. High-throughput sequencing technology was applied to examine the differences in methanogenic archaea diversity in the feces of the three treatment groups. A total of 155,609 sequences were recovered (a mean of 12,967 sequences per sample) from the twelve fecal samples, which consisted of a number of operational taxonomic units (OTUs) ranging from 1451 to 1,733, were assigned to two phyla, four classes, five orders, five families and six genera. Bioinformatic analyses illustrated that the natural fecal archaeal community of the control group was predominated by Methanobrevibacter (86.9% of the total sequence reads) and Methanocorpusculum (10.4%), while the relative abundance of the remaining four genera were below 1% with Methanosphaera comprising 0.8%, Thermoplasma composing 0.4%, and the relative abundance of Candidatus Nitrososphaera and Halalkalicoccus being close to zero. At the genus level, the relative abundances of Methanocorpusculum and Thermoplasma were increased (P < 0.05) with increasing dosage of ADY. Conversely, the predominant methanogen genus Methanobrevibacter was decreased with ADY dosage (P < 0.05). Dietary supplementation of ADY had no significant effect (P > 0.05) on the abundances of genera unclassified, Candidatus Nitrososphaera, and Halalkalicoccus. In conclusion, supplementation of ADY to the rations of dairy cattle could alter the population sizes and composition of fecal methanogenic archaea in the feces of dairy cattle. The decrease in Methanobrevibacter happened with a commensurate increase in the genera Methanocorpusculum and Thermoplasma.
Collapse
Affiliation(s)
- Dingxing Jin
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production, Sichuan Agricultural University, Ya'an, Sichuan, 625014, PR China
| | - Kun Kang
- Angel Yeast Co., Ltd, Yichang, Hubei, 443000, PR China
| | - Hongze Wang
- Angel Yeast Co., Ltd, Yichang, Hubei, 443000, PR China
| | - Zhisheng Wang
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production, Sichuan Agricultural University, Ya'an, Sichuan, 625014, PR China
| | - Bai Xue
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production, Sichuan Agricultural University, Ya'an, Sichuan, 625014, PR China
| | - Lizhi Wang
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production, Sichuan Agricultural University, Ya'an, Sichuan, 625014, PR China
| | - Feng Xu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Quanhui Peng
- Institute of Animal Nutrition, Key Laboratory of Bovine Low-Carbon Farming and Safe Production, Sichuan Agricultural University, Ya'an, Sichuan, 625014, PR China.
| |
Collapse
|
38
|
Influence of main dietary chemical constituents on the in vitro gas and methane production in diets for dairy cows. J Anim Sci Biotechnol 2016; 7:54. [PMID: 27660702 PMCID: PMC5026773 DOI: 10.1186/s40104-016-0109-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 08/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Modification of chemical composition of diets fed to dairy cows might be a good strategy to reduce methane (CH4) production in the rumen. Notable reductions of CH4 production compared to conventional high-roughages rations were more frequently observed for very concentrated diets or when fat supplements were used. In these cases, the reduction in the gas emission was mainly a consequence of an overall impairment of rumen function with a reduction of fiber digestibility. These strategies do not always comply with feeding standards used in intensive dairy farms and they are usually not applied owing to the risks of negative health and economic consequences. Thus, the present study evaluated the effects of seven commercial diets with contents of neutral detergent fiber (NDF), protein and lipids ranging 325 to 435 g/kg DM, 115 to 194 g/kg DM, and 26 to 61 g/kg DM, respectively, on in vitro degradability, gas (GP), and CH4 production. RESULTS In this experiment, changes in the dietary content of NDF, crude protein (CP) and lipids were always obtained at the expense or in favor of starch. A decreased of the dietary NDF content increased NDF (NDFd) and true DM (TDMd) degradability, and increased CH4 production per g of incubated DM (P < 0.001), but not that per g of TDMd. An increase of the dietary CP level did not change in vitro NDFd and TDMd, decreased GP per g of incubated DM (P < 0.001), but CH4 production per g of TDMd was not affected. An increased dietary lipid content reduced NDFd, TDMd, and GP per g of incubated DM, but it had no consequence on CH4 production per g of TDMd. CONCLUSIONS It was concluded that, under commercial conditions, changes in dietary composition would produce small or negligible alterations of CH4 production per unit of TDMd, but greater differences in GP and CH4 production would be expected when these amounts are expressed per unit of DM intake. The use of TDMd as a standardizing parameter is proposed to account for possible difference in DM intake and productivity.
Collapse
|
39
|
Wang M, Wang R, Xie TY, Janssen PH, Sun XZ, Beauchemin KA, Tan ZL, Gao M. Shifts in Rumen Fermentation and Microbiota Are Associated with Dissolved Ruminal Hydrogen Concentrations in Lactating Dairy Cows Fed Different Types of Carbohydrates. J Nutr 2016; 146:1714-21. [PMID: 27511925 DOI: 10.3945/jn.116.232462] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/05/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Different carbohydrates ingested greatly influence rumen fermentation and microbiota and gaseous methane emissions. Dissolved hydrogen concentration is related to rumen fermentation and methane production. OBJECTIVES We tested the hypothesis that carbohydrates ingested greatly alter the rumen environment in dairy cows, and that dissolved hydrogen concentration is associated with these changes in rumen fermentation and microbiota. METHODS Twenty-eight lactating Chinese Holstein dairy cows [aged 4-5 y, body weight 480 ± 37 kg (mean ± SD)] were used in a randomized complete block design to investigate effects of 4 diets differing in forage content (45% compared with 35%) and source (rice straw compared with a mixture of rice straw and corn silage) on feed intake, rumen fermentation, and microbial populations. RESULTS Feed intake (10.7-12.6 kg/d) and fiber degradation (0.584-0.692) greatly differed (P ≤ 0.05) between cows fed the 4 diets, leading to large differences (P ≤ 0.05) in gaseous methane yield (27.2-37.3 g/kg organic matter digested), dissolved hydrogen (0.258-1.64 μmol/L), rumen fermentation products, and microbiota. Ruminal dissolved hydrogen was negatively correlated (r < -0.40; P < 0.05) with molar proportion of acetate, numbers of fungi, abundance of Fibrobacter succinogenes, and methane yield, but positively correlated (r > 0.40; P < 0.05) with molar proportions of propionate and n-butyrate, numbers of methanogens, and abundance of Selenomonas ruminantium and Prevotella spp. Ruminal dissolved hydrogen was positively correlated (r = 0.93; P < 0.001) with Gibbs free energy changes of reactions producing greater acetate and hydrogen, but not correlated with those reactions producing more propionate without hydrogen. CONCLUSIONS Changes in fermentation pathways from acetate toward propionate production and in microbiota from fibrolytic toward amylolytic species were closely associated with ruminal dissolved hydrogen in lactating dairy cows. An unresolved paradox was that greater dissolved hydrogen was associated with greater numbers of methanogens but with lower gaseous methane emissions.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China; Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, China
| | - Rong Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Tian Yu Xie
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China; Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Peter H Janssen
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand; and
| | - Xue Zhao Sun
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand; and
| | - Karen A Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - Zhi Liang Tan
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China;
| | - Min Gao
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| |
Collapse
|
40
|
Appuhamy JADRN, France J, Kebreab E. Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand. GLOBAL CHANGE BIOLOGY 2016; 22:3039-56. [PMID: 27148862 DOI: 10.1111/gcb.13339] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/13/2016] [Accepted: 04/22/2016] [Indexed: 05/27/2023]
Abstract
There are several models in the literature for predicting enteric methane (CH4 ) emissions. These models were often developed on region or country-specific data and may not be able to predict the emissions successfully in every region. The majority of extant models require dry matter intake (DMI) of individual animals, which is not routinely measured. The objectives of this study were to (i) evaluate performance of extant models in predicting enteric CH4 emissions from dairy cows in North America (NA), Europe (EU), and Australia and New Zealand (AUNZ) and (ii) explore the performance using estimated DMI. Forty extant models were challenged on 55, 105, and 52 enteric CH4 measurements (g per lactating cow per day) from NA, EU, and AUNZ, respectively. The models were ranked using root mean square prediction error as a percentage of the average observed value (RMSPE) and concordance correlation coefficient (CCC). A modified model of Nielsen et al. (Acta Agriculturae Scand Section A, 63, 2013 and 126) using DMI, and dietary digestible neutral detergent fiber and fatty acid contents as predictor variables, were ranked highest in NA (RMSPE = 13.1% and CCC = 0.78). The gross energy intake-based model of Yan et al. (Livestock Production Science, 64, 2000 and 253) and the updated IPCC Tier 2 model were ranked highest in EU (RMSPE = 11.0% and CCC = 0.66) and AUNZ (RMSPE = 15.6% and CCC = 0.75), respectively. DMI of cows in NA and EU was estimated satisfactorily with body weight and fat-corrected milk yield data (RMSPE < 12.0% and CCC > 0.60). Using estimated DMI, the Nielsen et al. (2013) (RMSPE = 12.7 and CCC = 0.79) and Yan et al. (2000) (RMSPE = 13.7 and CCC = 0.50) models still predicted emissions in respective regions well. Enteric CH4 emissions from dairy cows can be predicted successfully (i.e., RMSPE < 15%), if DMI can be estimated with reasonable accuracy (i.e., RMSPE < 10%).
Collapse
Affiliation(s)
| | - James France
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ermias Kebreab
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
41
|
|
42
|
Elis S, Freret S, Desmarchais A, Maillard V, Cognié J, Briant E, Touzé JL, Dupont M, Faverdin P, Chajès V, Uzbekova S, Monget P, Dupont J. Effect of a long chain n-3 PUFA-enriched diet on production and reproduction variables in Holstein dairy cows. Anim Reprod Sci 2016; 164:121-32. [DOI: 10.1016/j.anireprosci.2015.11.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
|
43
|
|
44
|
Comparison of milk fatty acid responses during fish oil- and trans-10 cis-12 18:2-induced milk fat depression in dairy ewes. Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2015.09.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|