1
|
Liu Z, Li W, Zhao C, Zhang Y, Li Y, Wang L, Li X, Yao J, Pellikaan WF, Cao Y. Effects of fibrolytic and amylolytic compound enzyme preparation on rumen fermentation, serum parameters and production performance in primiparous early-lactation dairy cows. J DAIRY RES 2024:1-4. [PMID: 39397688 DOI: 10.1017/s0022029924000475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
This research communication reports the effects of a compound enzyme preparation consisting of fibrolytic (cellulase 3500 CU/g, xylanase 2000 XU/g, β-glucanase 17 500 GU/g) and amylolytic (amylase 37 000 AU/g) enzymes on nutrient intake, rumen fermentation, serum parameters and production performance in primiparous early-lactation (47 ± 2 d) dairy cows. Twenty Holstein-Friesian cows in similar body condition scores were randomly divided into control (CON, n = 10) and experimental (EXP, n = 10) groups in a completely randomized single-factor design. CON was fed a basal total mixed ration diet and EXP was dietary supplemented with compound enzyme preparation at 70 g/cow/d. The experiment lasted 4 weeks, with 3 weeks for adaptation and then 1 week for measurement. Enzyme supplementation significantly increased diet non-fibrous carbohydrates (NFC) content as well as dry matter intake (DMI) and NFC intake (P < 0.05). EXP had increased ruminal butyrate and isobutyrate percentages (P < 0.01) but decreased propionate and valerate percentages (P < 0.05), as well as increased serum alkaline phosphatase activity and albumin concentration (P ≤ 0.01). Additionally, EXP had increased milk yield (0.97 kg/d), 4% fat corrected milk yield and energy corrected milk yield, as well as milk fat and protein yield (P < 0.01). In conclusion, dietary supplementation with a fibrolytic and amylolytic compound enzyme preparation increased diet NFC content, DMI and NFC intake, affected rumen fermentation by increasing butyrate proportion at the expense of propionate, and enhanced milk performance in primiparous early-lactation dairy cows.
Collapse
Affiliation(s)
- Zhaokun Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Animal Nutrition Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Wen Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Congcong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yuanjie Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Lamei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - XiaoYong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Wilbert F Pellikaan
- Animal Nutrition Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Geng H, Xu Y, Dai X, Yang D. Abiotic and biotic roles of metals in the anaerobic digestion of sewage sludge: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169313. [PMID: 38123094 DOI: 10.1016/j.scitotenv.2023.169313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Anaerobic digestion (AD) is a promising technique for sludge treatment and resource recovery. Metals are very important components of sludge and can have substantial effects on its complex nature and microbial activity. However, systematic reviews have not addressed how metals in sludge affect AD and how they can be regulated to improve AD. This paper comprehensively reviews the effects of metals on the AD of sludge from both abiotic and biotic perspectives. First, we introduce the contents and basic characteristics (e.g., chemical forms) of intrinsic metals in sewage sludge. Then, we summarise the main mechanism by which metals influence sludge properties and the methods for removing metals and thus improving AD. Next, we analyze the effects of both intrinsic and exogenous metals on the enzymes and microbial communities involved in anaerobic bioconversion, focusing on the types, critical concentrations and valence states of the metals. Finally, we propose ideas for future research on the roles of metals in the AD of sludge. In summary, this review systematically clarifies the roles of metals in the AD of sludge and provides a reference for improving AD by regulating these metals.
Collapse
Affiliation(s)
- Hui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
3
|
Andrade AP, de Figueiredo MP, de Quadros DG, Ferreira JQ, Whitney TR, Luz YS, Santos HRO, Souza MNS. Chemical and biological treatment of cotton gin trash for fattening Santa Ines lambs. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Adesogan AT, Arriola KG, Jiang Y, Oyebade A, Paula EM, Pech-Cervantes AA, Romero JJ, Ferraretto LF, Vyas D. Symposium review: Technologies for improving fiber utilization. J Dairy Sci 2019; 102:5726-5755. [PMID: 30928262 DOI: 10.3168/jds.2018-15334] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
The forage lignocellulosic complex is one of the greatest limitations to utilization of the nutrients and energy in fiber. Consequently, several technologies have been developed to increase forage fiber utilization by dairy cows. Physical or mechanical processing techniques reduce forage particle size and gut fill and thereby increase intake. Such techniques increase the surface area for microbial colonization and may increase fiber utilization. Genetic technologies such as brown midrib mutants (BMR) with less lignin have been among the most repeatable and practical strategies to increase fiber utilization. Newer BMR corn hybrids are better yielding than the early hybrids and recent brachytic dwarf BMR sorghum hybrids avoid lodging problems of early hybrids. Several alkalis have been effective at increasing fiber digestibility. Among these, ammoniation has the added benefit of increasing the nitrogen concentration of the forage. However, few of these have been widely adopted due to the cost and the caustic nature of the chemicals. Urea treatment is more benign but requires sufficient urease and moisture for efficacy. Ammonia-fiber expansion technology uses high temperature, moisture, and pressure to degrade lignocellulose to a greater extent than ammoniation alone, but it occurs in reactors and is therefore not currently usable on farms. Biological technologies for increasing fiber utilization such as application of exogenous fibrolytic enzymes, live yeasts, and yeast culture have had equivocal effects on forage fiber digestion in individual studies, but recent meta-analyses indicate that their overall effects are positive. Nonhydrolytic expansin-like proteins act in synergy with fibrolytic enzymes to increase fiber digestion beyond that achieved by the enzyme alone due to their ability to expand cellulose microfibrils allowing greater enzyme penetration of the cell wall matrix. White-rot fungi are perhaps the biological agents with the greatest potential for lignocellulose deconstruction, but they require aerobic conditions and several strains degrade easily digestible carbohydrates. Less ruminant nutrition research has been conducted on brown rot fungi that deconstruct lignocellulose by generating highly destructive hydroxyl radicals via the Fenton reaction. More research is needed to increase the repeatability, efficacy, cost effectiveness, and on-farm applicability of technologies for increasing fiber utilization.
Collapse
Affiliation(s)
- A T Adesogan
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611.
| | - K G Arriola
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - Y Jiang
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - A Oyebade
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - E M Paula
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - A A Pech-Cervantes
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - J J Romero
- Animal and Veterinary Sciences Program, School of Food and Agriculture, University of Maine, Orono 04469
| | - L F Ferraretto
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - D Vyas
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| |
Collapse
|
5
|
Romero-Güiza MS, Mata-Alvarez J, Chimenos JM, Astals S. The effect of magnesium as activator and inhibitor of anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 56:137-142. [PMID: 27402564 DOI: 10.1016/j.wasman.2016.06.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
Anaerobic digestion stands as a key technology in the emerging green energy economy. Mg(2+) has been identified as an important element to improve digesters methane production; however the inhibition risk that high Mg(2+) concentrations can cause to the AD process must also be considered when dosing Mg reagents and wastes containing Mg(2+). Despite its importance, Mg(2+) stimulation and inhibition mechanisms as well as threshold values are scarce in the literature. This research paper investigates the impact (stimulation and inhibition) of Mg(2+) on pig manure anaerobic digestion. Mathematical modelling was used to better understand the interaction between substrate, inoculum and magnesium, where Mg(2+) inhibition was modelled by a n-component non-competitive inhibition function. Modelling was done on absolute curves rather than specific methane productions curves (new approach) to account for the lower background methane production of the inoculum as the Mg(2+) concentration increased. Results showed that no stimulation or inhibition occurred between 40 (native concentration) and 400mgMg(2+)L(-1), while minor and major inhibition were observed at 750 and 1000mgMg(2+)L(-1), and at 2000 and 4000mgMg(2+)L(-1), respectively. Mg(2+) half maximal inhibition concentration was estimated at 2140mgMg(2+)L(-1) with an inhibition order of 2. The latter indicates that Mg(2+) inhibition is a progressive rather than a steep inhibition mechanism.
Collapse
Affiliation(s)
- M S Romero-Güiza
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain; Department of Materials Science and Metallurgical Engineering, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - J Mata-Alvarez
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - J M Chimenos
- Department of Materials Science and Metallurgical Engineering, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Astals
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain; Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
6
|
Romero J, Macias E, Ma Z, Martins R, Staples C, Beauchemin K, Adesogan A. Improving the performance of dairy cattle with a xylanase-rich exogenous enzyme preparation. J Dairy Sci 2016; 99:3486-3496. [DOI: 10.3168/jds.2015-10082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/30/2015] [Indexed: 11/19/2022]
|