1
|
Hanigan MD, Souza VC, Martineau R, Lapierre H, Feng X, Daley VL. A meta-analysis of the relationship between milk protein production and absorbed amino acids and digested energy in dairy cattle. J Dairy Sci 2024; 107:5587-5615. [PMID: 38490550 DOI: 10.3168/jds.2024-24230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
Milk protein production is the largest draw on AA supplies for lactating dairy cattle. Prior NRC predictions of milk protein production have been absorbed protein (MP)-based and used a first-limiting nutrient concept to integrate the effects of energy and protein, which yielded poor accuracy and precision (root mean squared error [RMSE] >21%). Using a meta-data set gathered, various alternative equation forms considering MP, absorbed total EAA, absorbed individual EAA, and digested energy (DE) supplies as additive drivers of production were evaluated, and all were found to be superior in statistical performance to the first limitation approach (RMSE = 14%-15%). Inclusion of DE intake and a quadratic term for MP or absorbed EAA supplies were found to be necessary to achieve intercept estimates (nonproductive protein use) that were similar to the factorial estimates of the National Academies of Sciences, Engineering, and Medicine (2021). The partial linear slope for MP was found to be 0.409, which is consistent with the observed slope bias of -0.34 g/g when a slope of 0.67 was used for MP efficiency in a first-limiting nutrient system. Replacement of MP with the supplies of individual absorbed EAA expressed in grams per day and a common quadratic across the EAA resulted in unbiased predictions with improved statistical performance as compared with MP-based models. Based on Akaike's information criterion and biological consistency, the best equations included absorbed His, Ile, Lys, Met, Thr, the NEAA, and individual DE intakes from fatty acids, NDF, residual OM, and starch. Several also contained a term for absorbed Leu. These equations generally had RMSE of 14.3% and a concordance correlation of 0.76. Based on the common quadratic and individual linear terms, milk protein response plateaus were predicted at approximately 320 g/d of absorbed His, Ile, and Lys; 395 g/d of absorbed Thr; 550 g/d of absorbed Met; and 70 g/d of absorbed Leu. Therefore, responses to each except Leu are almost linear throughout the normal in vivo range. De-aggregation of the quadratic term and parsing to individual absorbed EAA resulted in nonbiological estimates for several EAA indicating over-parameterization. Expression of the EAA as g/100 g total absorbed EAA or as ratios of DE intake and using linear and quadratic terms for each EAA resulted in similar statistical performance, but the solutions had identifiability problems and several nonbiological parameter estimates. The use of ratios also introduced nonlinearity in the independent variables which violates linear regression assumptions. Further screening of the global model using absorbed EAA expressed as grams per day with a common quadratic using an all-models approach, and exhaustive cross-evaluation indicated the parameter estimates for BW, all 4 DE terms, His, Ile, Lys, Met, and the common quadratic term were stable, whereas estimates for Leu and Thr were known with less certainty. Use of independent and additive terms and a quadratic expression in the equation results in variable efficiencies of conversion. The additivity also provides partial substitution among the nutrients. Both of these prevent establishment of fixed nutrient requirements in support of milk protein production.
Collapse
Affiliation(s)
- M D Hanigan
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061.
| | - V C Souza
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061
| | - R Martineau
- Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - H Lapierre
- Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada J1M 0C8
| | - X Feng
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061
| | - V L Daley
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
2
|
Seymour DJ, Kim JJM, Doelman J, Cant JP. Feed restriction of lactating cows triggers acute downregulation of mammary mammalian target of rapamycin signaling and chronic reduction of mammary epithelial mass. J Dairy Sci 2024; 107:5667-5680. [PMID: 38580148 DOI: 10.3168/jds.2023-24478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
While there is generally no consensus about how nutrients determine milk synthesis in the mammary gland, it is likely that the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) plays a role as a key integrator of nutritional and mitogenic signals that can influence a multitude of catabolic and anabolic pathways. The objectives of this study were to evaluate acute changes (<24 h) in translational signaling, in addition to chronic changes (14 d) in mammary gland structure and composition, in response to a severe feed restriction. Fourteen lactating Holstein dairy cows were assigned to either ad libitum feeding (n = 7) or a restricted feeding program (n = 7). Feed-restricted cows had feed removed after the evening milking on d 0. Mammary biopsies and blood samples were collected 16 h after feed removal, after which cows in the restricted group were fed 60% of their previously observed ad libitum intake for the remainder of the study. On d 14, animals were slaughtered and their mammary glands dissected. In response to feed removal, an acute increase in plasma nonesterified fatty acid concentration was observed, concurrent to a decrease in milk yield. In mammary tissue, we observed downregulation of the mTORC1-S6K1 signaling cascade, in addition to reductions in mRNA expression of markers of protein synthesis, endoplasmic reticulum biogenesis, and cell turnover (i.e., transcripts associated with apoptosis or cell proliferation). During the 14 d of restricted feeding, animals underwent homeorhetic adaptation to 40% lower nutrient intake, achieving a new setpoint of 14% reduced milk yield with 18% and 29% smaller mammary secretory tissue DM and CP masses, respectively. On d 14, no treatment differences were observed in markers of protein synthesis or mammary cell turnover evaluated using gene transcripts and immunohistochemical staining. These findings implicate mTORC1-S6K1 in the early phase of the adaptation of the mammary gland's capacity for milk synthesis in response to changes in nutrient supply. Additionally, changes in rates of mammary cell turnover may be transient in nature, returning to basal levels following brief alterations that have sustained effects.
Collapse
Affiliation(s)
- D J Seymour
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1 Canada.
| | - J J M Kim
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1 Canada
| | - J Doelman
- Trouw Nutrition R&D, 5830 AE Boxmeer, the Netherlands
| | - J P Cant
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1 Canada
| |
Collapse
|
3
|
Erickson MG, Barros T, Aguerre MJ, Olmos Colmenero JJ, Bertics SJ, Wattiaux MA. Reducing dietary crude protein: Effects on digestibility, nitrogen balance, and blood metabolites in late-lactation Holstein cows. J Dairy Sci 2024; 107:4394-4408. [PMID: 38278300 DOI: 10.3168/jds.2023-24079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024]
Abstract
Our objectives were to determine the effects of reducing dietary CP concentration on nutrient digestibility, rumen function, N balance, and serum AA concentration for dairy cows in late lactation. At the initiation of the experimental period, we stratified Holstein cows (n = 128; mean ± SD 224 ± 54 DIM) by parity and days pregnant (86 ± 25 d) and assigned them to 1 of 16 pens. For 3 wk, all cows received a covariate diet containing 16.9% CP (DM basis). For the subsequent 12 wk, we assigned pens to 1 of 4 treatments containing 16.2%, 14.4%, 13.4%, or 11.9% CP (DM basis) in a randomized complete block design. Diets were fed as a TMR once daily. To reduce dietary CP, we replaced soybean meal with soybean hulls in the concentrate mix (DM basis). Diet evaluations suggested that several EAA, especially His, limited productivity as dietary CP declined. Digestibility of DM and CP decreased linearly with dietary CP reduction. Digestibility of NDF and potentially digestible NDF tended to respond in a quadratic pattern with the greatest digestibility at intermediate treatments. The reduction in dietary CP did not affect ruminal pH, but ruminal ammonia-N and branched-chain VFA concentrations declined linearly. The concentration of milk urea-N and plasma urea-N, secretion of milk N, and excretions of fecal N, urinary N, urinary urea-N, and unaccounted N decreased linearly with the reduction in dietary CP concentration. Urinary N expressed as a percentage of N intake was unaffected by dietary CP. Serum concentrations of total essential AA and NEAA were unaffected by dietary CP concentration. However, the ratio of essential to NEAA decreased with decreasing dietary CP. Serum 3-methylhistidine concentration increased linearly with decreasing dietary CP concentration, indicating greater skeletal muscle breakdown. Although our trial confirmed that reducing dietary CP decreased absolute excretion of urinary N, diet evaluations suggested that milk protein production decreased as certain essential AA became increasingly limited. Thus, reduced-CP diets have the potential to lessen reactive-N outputs of late-lactation cows, but more research is needed to design diets that minimize deleterious effects on productivity.
Collapse
Affiliation(s)
- M G Erickson
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - T Barros
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - M J Aguerre
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634
| | - J J Olmos Colmenero
- Departamento de Ciencias Pecuarias y Agricolas, Centro Universitario de Los Altos de la Universidad de Guadalajara, Tepatitlán, Jalisco, México 47600
| | - S J Bertics
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - M A Wattiaux
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
4
|
Li B, Khan MZ, Khan IM, Ullah Q, Cisang ZM, Zhang N, Wu D, Huang B, Ma Y, Khan A, Jiang N, Zahoor M. Genetics, environmental stress, and amino acid supplementation affect lactational performance via mTOR signaling pathway in bovine mammary epithelial cells. Front Genet 2023; 14:1195774. [PMID: 37636261 PMCID: PMC10448190 DOI: 10.3389/fgene.2023.1195774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Abstract
Mammary glands are known for their ability to convert nutrients present in the blood into milk contents. In cows, milk synthesis and the proliferation of cow mammary epithelial cells (CMECs) are regulated by various factors, including nutrients such as amino acids and glucose, hormones, and environmental stress. Amino acids, in particular, play a crucial role in regulating cell proliferation and casein synthesis in mammalian epithelial cells, apart from being building blocks for protein synthesis. Studies have shown that environmental factors, particularly heat stress, can negatively impact milk production performance in dairy cattle. The mammalian target of rapamycin complex 1 (mTORC1) pathway is considered the primary signaling pathway involved in regulating cell proliferation and milk protein and fat synthesis in cow mammary epithelial cells in response to amino acids and heat stress. Given the significant role played by the mTORC signaling pathway in milk synthesis and cell proliferation, this article briefly discusses the main regulatory genes, the impact of amino acids and heat stress on milk production performance, and the regulation of mTORC signaling pathway in cow mammary epithelial cells.
Collapse
Affiliation(s)
- Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High‐Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Zhuo-Ma Cisang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Nan Zhang
- Tibet Autonomous Region Animal Husbandry Station, Lhasa, China
| | - Dan Wu
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High‐Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nan Jiang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Lapierre H, Martineau R, Hanigan MD, Ouellet DR. Review: How the efficiency of utilization of essential amino acids can be applied in dairy cow nutrition. Animal 2023; 17 Suppl 3:100833. [PMID: 37268529 DOI: 10.1016/j.animal.2023.100833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/04/2023] Open
Abstract
How the efficiency of utilization of essential amino acids (EffUEAA) can be applied in dairy cow nutrition is presented in this review. The concept of EffUEAA proposed by the National Academies of Sciences, Engineering and Medicine (NASEM, 2021) is first detailed. It represents the proportion of the metabolisable essential amino acids (mEAA) supply used to support protein secretions and accretions (scurf, metabolic fecal, milk and growth). For these processes, the efficiency of each individual EAA is variable, and considered to vary similarly for all the protein secretions and accretions. The anabolic process of gestation is ascribed to a constant efficiency (33%), whereas the efficiency of endogenous urinary loss (EndoUri) is set at 100%. Therefore, the NASEM model EffUEAA was calculated as the sum of EAA in the true protein of secretions and accretions divided by the available EAA (mEAA - EndoUri - gestation net true protein/0.33). In this paper, the reliability of this mathematical calculation was tested through an example where the experimental efficiency of His was calculated assuming that liver removal represents catabolism. The NASEM model and experimental efficiencies were in the same range and varied in similar manner. Assuming that the NASEM model EffUEAA reflects EAA metabolism in the dairy cow, its different applications were examined. In NASEM, target efficiencies were determined for each EAA: 75, 71, 73, 72, 73, 60, 64, 86 and 74% for His, Ile, Leu, Lys, Met, Phe, Thr, Trp, and Val, respectively. From these, recommendations for mEAA supply can be calculated as: [(secretions + accretions)/(target EffUEAA × 0.01) + EndoUri + gestation/0.33], assuming energy supply is adequate. In addition to NASEM propositions, equations to predict EffUEAA with precision and accuracy are detailed, using the ratio of (mEAA-EndoUri) to digestible energy intake, in a quadratic model that includes days in milk. Moreover, milk true protein yield predictions from predicted EffUEAA or efficiency of utilization of metabolisable protein are better than those from the multivariate equation of NASEM (2021) and superior to those predicted with a fixed efficiency. Finally, either the NASEM model or the predicted EffUEAA can be used to assess the responsiveness of a ration to supplementation with a single EAA. If the EffUEAA of the EAA to supplement is higher than the target EffUEAA, while the EffUEAA of the other EAA are lower than the target value, this suggests a potential improvement in milk true protein yield to supplementation with this EAA.
Collapse
Affiliation(s)
- H Lapierre
- Sherbrooke R&D Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada.
| | - R Martineau
- Sherbrooke R&D Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - M D Hanigan
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24060, USA
| | - D R Ouellet
- Sherbrooke R&D Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| |
Collapse
|
6
|
Zhang L, Chen Y, Zhou Z, Wang Z, Fu L, Zhang L, Xu C, Loor JJ, Wang G, Zhang T, Dong X. Vitamin C injection improves antioxidant stress capacity through regulating blood metabolism in post-transit yak. Sci Rep 2023; 13:10233. [PMID: 37353533 PMCID: PMC10290073 DOI: 10.1038/s41598-023-36779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023] Open
Abstract
Transportation stress is one of the most serious issues in the management of yak. Previous studies have demonstrated that transport stress is caused by a pro-oxidant state in the animal resulting from an imbalance between pro-oxidant and antioxidant status. In this context, vitamin C has the ability to regulate reactive oxygen species (ROS) synthesis and alleviate oxidative stress. Although this effect of vitamin C is useful in pigs, goats and cattle, the effect of vitamin C on the mitigation of transport stress in yaks is still unclear. The purpose of this study was to better assess the metabolic changes induced by the action of vitamin C in yaks under transportation stress, and whether these changes can influence antioxidant status. After the yaks arrived at the farm, control or baseline blood samples were collected immediately through the jugular vein (VC_CON). Then, 100 mg/kg VC was injected intramuscularly, and blood samples were collected on the 10th day before feeding in the morning (VC). Relative to the control group, the VC injection group had higher levels of VC. Compared with VC_CON, VC injection significantly (P < 0.05) decreased the blood concentrations of ALT, AST, T-Bil, D-Bil, IDBIL, UREA, CRP and LDH. However, VC injection led to greater (P < 0.05) AST/ALT and CREA-S relative to VC_CON. There was no difference (P > 0.05) in GGT, ALP, TBA, TP, ALBII, GLO, A/G, TC, TG, HDL-C, LDL-C, GLU and L-lactate between VC_CON and VC. The injection of VC led to greater (P < 0.05) concentration of MDA, but did not alter (P > 0.05) the serum concentrations of LPO and ROS. The injection of VC led to greater (P < 0.05) serum concentrations of POD, CAT and GSH-PX. In contrast, lower (P < 0.05) serum concentrations of SOD, POD and TPX were observed in VC relative to VC_CON. No difference (P > 0.05) in GSH, GSH-ST and GR was observed between VC_CON and VC. Compared with the control group, metabolomics using liquid chromatography tandem-mass spectrometry identified 156 differential metabolites with P < 0.05 and a variable importance in projection (VIP) score > 1.5 in the VC injection group. The injection of VC resulted in significant changes to the intracellular amino acid metabolism of glutathione, glutamate, cysteine, methionine, glycine, phenylalanine, tyrosine, tryptophan, alanine and aspartate. Overall, our study indicated that VC injections were able to modulate antioxidant levels by affecting metabolism to resist oxidative stress generated during transport.
Collapse
Affiliation(s)
- Li Zhang
- Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Yi Chen
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection; Chongqing Key Laboratory of Nano/Micro Composite Material and Device, College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Ziyao Zhou
- Chongqing Academy of Animal Sciences, Rongchang, 402460, China
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiyu Wang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Fu
- Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Lijun Zhang
- Tibet Leowuqi Animal Husbandry Station, Changdu Tibet, 855600, China
| | - Changhui Xu
- Tibet Leowuqi Animal Husbandry Station, Changdu Tibet, 855600, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, 61801, USA
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Tao Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection; Chongqing Key Laboratory of Nano/Micro Composite Material and Device, College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Xianwen Dong
- Chongqing Academy of Animal Sciences, Rongchang, 402460, China.
| |
Collapse
|
7
|
Salfer IJ, Matamoros CI, Bartell PA, Harvatine KJ. Effects of the timing of protein infusion on the daily rhythms of milk synthesis and plasma hormones and metabolites in dairy cows. J Dairy Sci 2023:S0022-0302(23)00293-X. [PMID: 37268575 DOI: 10.3168/jds.2022-22633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/10/2023] [Indexed: 06/04/2023]
Abstract
Milk synthesis exhibits a daily rhythm that is modified by the timing of feed intake. However, it is unknown how specific nutrients entrain this daily rhythm. Amino acids have an important role in milk synthesis, and may have a role in entrainment of mammary circadian rhythms. The objective of this study was to determine the effects of intestinally absorbed protein on daily rhythms of milk and milk component synthesis and key plasma hormones and metabolites. Nine lactating Holstein cows were assigned to 1 of 3 treatment sequences in a 3 × 3 Latin square. Treatments included abomasal infusions of 500 g/d of sodium caseinate either continuously throughout the day (CON), for 8 h/d from 0900 to 1700 h (DAY), or for 8 h/d from 2100 to 0500 h (NGT). Cows were milked every 6 h during the final 8 d of each period. A 24-h rhythm was fit to data using cosine analysis and the amplitude and acrophase were determined. Night infusion of protein decreased the daily milk yield and milk protein yield by 8.2% and 9.2%, respectively. Milk fat yield was increased 5.5% by DAY and milk fat concentration was increased 8.8% by NGT. Milk yield exhibited a daily rhythm in all treatments, with NGT increasing the amplitude of the daily rhythm 33% compared with CON. Milk fat concentration fit a daily rhythm in CON and NGT, but not DAY, whereas milk protein concentration fit a daily rhythm in CON and DAY, but not NGT. Moreover, DAY abolished the daily rhythm of plasma glucose concentration, but induced rhythms of plasma insulin and nonesterified fatty acid concentrations. Results suggest that feeding increased protein levels during the early part of the day may increase milk fat yield and modify energy metabolism through increased daily variation in insulin-stimulated lipid release, but additional research focused on feeding multiple diets across the day is required.
Collapse
Affiliation(s)
- Isaac J Salfer
- Department of Animal Science, Penn State University, University Park, PA 16802
| | - Cesar I Matamoros
- Department of Animal Science, Penn State University, University Park, PA 16802
| | - P A Bartell
- Department of Animal Science, Penn State University, University Park, PA 16802
| | - Kevin J Harvatine
- Department of Animal Science, Penn State University, University Park, PA 16802.
| |
Collapse
|
8
|
Zhang J, Deng L, Zhang X, Cao Y, Li M, Yao J. Multiple Essential Amino Acids Regulate Mammary Metabolism and Milk Protein Synthesis in Lactating Dairy Cows. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Nichols K, Dijkstra J, Breuer MJH, Lemosquet S, Gerrits WJJ, Bannink A. Essential amino acid profile of supplemental metabolizable protein affects mammary gland metabolism and whole-body glucose kinetics in dairy cattle. J Dairy Sci 2022; 105:7354-7372. [PMID: 35863921 DOI: 10.3168/jds.2021-21576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/26/2022] [Indexed: 11/19/2022]
Abstract
This study investigated mammary gland metabolism and whole-body (WB) rate of appearance (Ra) of glucose in dairy cattle in response to a constant supplemental level of metabolizable protein (MP) composed of different essential AA (EAA) profiles. Five multiparous rumen-fistulated Holstein-Friesian dairy cows (2.8 ± 0.4 lactations; 81 ± 11 d in milk; mean ± standard deviation) were abomasally infused according to a 5 × 5 Latin square design with saline (SAL) or 562 g/d of EAA delivered in different profiles where individual AA content corresponded to their relative content in casein. The profiles consisted of (1) a complete EAA mixture (EAAC), (2) Ile, Leu, and Val (ILV), (3) His, Ile, Leu, Met, Phe, Trp, Val (GR1+ILV), and (4) Arg, His, Lys, Met, Phe, Thr, Trp (GR1+ALT). A total mixed ration (58% corn silage, 16% alfalfa hay, and 26% concentrate on a dry matter basis) was formulated to meet 100 and 83% of net energy and MP requirements, respectively, and was fed at 90% of ad libitum intake on an individual cow basis. Each experimental period consisted of 5 d of continuous abomasal infusion followed by 2 d of no infusion. Arterial and venous blood samples were collected on d 4 of each period for determination of mammary gland AA and glucose metabolism. On d 5 of each period, D-[U-13C]glucose (13 mmol priming dose; continuous 3.5 mmol/h for 520 min) was infused into a jugular vein and arterial blood samples were collected before and during infusion to determine WB Ra of glucose. Milk protein yield did not differ between EAAC, GR1+ILV, and GR1+ALT, or between SAL and ILV, and increased over SAL and ILV with EAAC and GR1+ILV. Mammary plasma flow increased with ILV infusion compared with EAAC and GR1+ILV. Infusion of EAAC tended to increase mammary gland net uptake of total EAA and decreased the mammary uptake to milk protein output ratio (U:O) of non-EAA compared with SAL. Infusion of ILV increased mammary net uptake and U:O of Ile, Leu, and Val markedly over all treatments. The U:O of total Ile, Leu, and Val increased numerically (25%) with GR1+ILV infusion compared with EAAC, and the U:O of total Arg, Lys, and Thr tended to decrease, primarily from decreased U:O of Lys. During GR1+ALT infusion, U:O of total Arg, Lys, and Thr was greater than that during EAAC infusion, whereas U:O of Ile, Leu, and Val did not differ from EAAC. Glucose WB Ra increased 16% with GR1+ALT over SAL, and increased numerically 8 and 12% over SAL with EAAC and GR1+ILV, respectively. The average proportion of lactose yield relative to glucose WB Ra did not differ across treatments and averaged 0.53. On average, 28% of milk galactose arose from nonglucose precursors, regardless of treatment. In conclusion, intramammary catabolism of group 2 AA increased to support milk component synthesis when the EAA profile of MP was incomplete with respect to casein. Further, WB and mammary gland glucose metabolism was flexible in support of milk component synthesis, regardless of absorptive EAA profile.
Collapse
Affiliation(s)
- K Nichols
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands.
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - M J H Breuer
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - S Lemosquet
- PEGASE, INRAE, Institut Agro, 35590 Saint Gilles, France
| | - W J J Gerrits
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - A Bannink
- Wageningen Livestock Research, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
10
|
Fu L, Zhang L, Liu L, Yang H, Zhou P, Song F, Dong G, Chen J, Wang G, Dong X. Effect of Heat Stress on Bovine Mammary Cellular Metabolites and Gene Transcription Related to Amino Acid Metabolism, Amino Acid Transportation and Mammalian Target of Rapamycin (mTOR) Signaling. Animals (Basel) 2021; 11:ani11113153. [PMID: 34827885 PMCID: PMC8614368 DOI: 10.3390/ani11113153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary This study mainly employed metabolomics technology to determine changes of intracellular metabolite concentrations related to milk protein synthesis induced by heat stress (HS) in bovine mammary epithelial cells. HS was associated with significant differences in intracellular amino acid metabolism resulting in an increase in the intracellular amino acid concentrations. Moreover, HS promoted amino acid transportation and the activity of the mammalian target of rapamycin (mTOR) signaling pathway, which plays an important role as a central regulator of cell metabolism, growth, proliferation and survival. Greater expression of the alpha-S2-casein gene (CSN1S2) was also observed during HS. Overall, our study indicated that bovine mammary epithelial cells may have the ability to resist HS damage and continue milk protein synthesis partly through enhanced intracellular amino acid absorption and metabolism and by activating the mTOR signaling pathway during HS. Abstract Heat stress (HS) is one of the most serious factors to negatively affect the lactation performance of dairy cows. Bovine mammary epithelial cells are important for lactation. It was demonstrated that HS decreases the lactation performance of dairy cows, partly through altering gene expression within bovine mammary epithelial tissue. However, the cellular metabolism mechanisms under HS remains largely unknown. The objective of this study was to determine whether HS induced changes in intracellular metabolites and gene transcription related to amino acid metabolism, amino acid transportation and the mTOR signaling pathway. Immortalized bovine mammary epithelial cell lines (MAC-T cells, n = 5 replicates/treatment) were incubated for 12 h at 37 °C (Control group) and 42 °C (HS group). Relative to the control group, HS led to a greater mRNA expression of heat shock protein genes HSF1, HSPB8, HSPA5, HSP90AB1 and HSPA1A. Compared with the control group, metabolomics using liquid chromatography tandem–mass spectrometry identified 417 differential metabolites with p < 0.05 and a variable importance in projection (VIP) score >1.0 in the HS group. HS resulted in significant changes to the intracellular amino acid metabolism of glutathione, phenylalanine, tyrosine, tryptophan, valine, leucine, isoleucine, arginine, proline, cysteine, methionine, alanine, aspartate and glutamate. HS led to a greater mRNA expression of the amino acid transporter genes SLC43A1, SLC38A9, SLC36A1, and SLC3A2 but a lower mRNA expression of SLC7A5 and SLC38A2. Additionally, HS influenced the expression of genes associated with the mTOR signaling pathway and significantly upregulated the mRNA expression of mTOR, AKT, RHEB, eIF4E and eEF2K but decreased the mRNA expression of TSC1, TSC2 and eEF2 relative to the control group. Compared with the control group, HS also led to greater mRNA expression of the CSN1S2 gene. Overall, our study indicates that bovine mammary epithelial cells may have the ability to resist HS damage and continue milk protein synthesis partly through enhanced intracellular amino acid absorption and metabolism and by activating the mTOR signaling pathway during HS.
Collapse
Affiliation(s)
- Lin Fu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
| | - Li Zhang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
| | - Li Liu
- Faculty of Pharmaceutical Engineering, Chongqing Chemical Industry Vocational College, Chongqing 401228, China;
| | - Heng Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China;
| | - Peng Zhou
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
| | - Fan Song
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
| | - Guozhong Dong
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (G.D.); (J.C.)
| | - Juncai Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (G.D.); (J.C.)
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
- Correspondence: (G.W.); (X.D.)
| | - Xianwen Dong
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (L.F.); (L.Z.); (P.Z.); (F.S.)
- Correspondence: (G.W.); (X.D.)
| |
Collapse
|
11
|
Amino Acids Supplementation for the Milk and Milk Protein Production of Dairy Cows. Animals (Basel) 2021; 11:ani11072118. [PMID: 34359247 PMCID: PMC8300144 DOI: 10.3390/ani11072118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The composition of milk not only has nutritional implications, but is also directly related to the income of dairy producers. As regards milk’s composition, concerns around milk protein have emerged from the increased consumption of casein products. The synthesis of proteins in milk is a highly complex and high-cost process, because the conversion efficiency of dietary protein to milk protein is very low in dairy cows. Thus, some studies have increased milk protein by using protein supplements or a single amino acid (AA) supply. AAs are the building blocks of protein, and can also stimulate the protein synthetic pathway. This review mainly concerns the use of AAs for producing milk protein in high-producing dairy cows, particularly with methionine, lysine, and histidine. Understanding the mechanisms of AAs will help to promote milk protein synthesis in the dairy industry. Abstract As the preference of consumers for casein products has increased, the protein content of milk from dairy cows is drawing more attention. Protein synthesis in the milk of dairy cows requires a proper supply of dietary protein. High protein supplementation may help to produce more milk protein, but residues in feces and urine cause environmental pollution and increase production costs. As such, previous studies have focused on protein supplements and amino acid (AA) supply. This review concerns AA nutrition for enhancing milk protein in dairy cows, and mainly focuses on three AAs: methionine, lysine, and histidine. AA supplementation for promoting protein synthesis is related to the mammalian target of rapamycin (mTOR) complex and its downstream pathways. Each AA has different stimulating effects on the mTOR translation initiation pathway, and thus manifests different milk protein yields. This review will expand our understanding of AA nutrition and the involved pathways in relation to the synthesis of milk protein in dairy cows.
Collapse
|
12
|
Pszczolkowski VL, Arriola Apelo SI. The market for amino acids: understanding supply and demand of substrate for more efficient milk protein synthesis. J Anim Sci Biotechnol 2020; 11:108. [PMID: 33292704 PMCID: PMC7659053 DOI: 10.1186/s40104-020-00514-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
For dairy production systems, nitrogen is an expensive nutrient and potentially harmful waste product. With three quarters of fed nitrogen ending up in the manure, significant research efforts have focused on understanding and mitigating lactating dairy cows’ nitrogen losses. Recent changes proposed to the Nutrient Requirement System for Dairy Cattle in the US include variable efficiencies of absorbed essential AA for milk protein production. This first separation from a purely substrate-based system, standing on the old limiting AA theory, recognizes the ability of the cow to alter the metabolism of AA. In this review we summarize a compelling amount of evidence suggesting that AA requirements for milk protein synthesis are based on a demand-driven system. Milk protein synthesis is governed at mammary level by a set of transduction pathways, including the mechanistic target of rapamycin complex 1 (mTORC1), the integrated stress response (ISR), and the unfolded protein response (UPR). In tight coordination, these pathways not only control the rate of milk protein synthesis, setting the demand for AA, but also manipulate cellular AA transport and even blood flow to the mammary glands, securing the supply of those needed nutrients. These transduction pathways, specifically mTORC1, sense specific AA, as well as other physiological signals, including insulin, the canonical indicator of energy status. Insulin plays a key role on mTORC1 signaling, controlling its activation, once AA have determined mTORC1 localization to the lysosomal membrane. Based on this molecular model, AA and insulin signals need to be tightly coordinated to maximize milk protein synthesis rate. The evidence in lactating dairy cows supports this model, in which insulin and glucogenic energy potentiate the effect of AA on milk protein synthesis. Incorporating the effect of specific signaling AA and the differential role of energy sources on utilization of absorbed AA for milk protein synthesis seems like the evident following step in nutrient requirement systems to further improve N efficiency in lactating dairy cow rations.
Collapse
Affiliation(s)
- Virginia L Pszczolkowski
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Sebastian I Arriola Apelo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA. .,Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Pszczolkowski VL, Zhang J, Pignato KA, Meyer EJ, Kurth MM, Lin A, Arriola Apelo SI. Insulin potentiates essential amino acids effects on mechanistic target of rapamycin complex 1 signaling in MAC-T cells. J Dairy Sci 2020; 103:11988-12002. [PMID: 33222863 DOI: 10.3168/jds.2020-18920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/06/2020] [Indexed: 01/05/2023]
Abstract
Different models of lactation offer conflicting evidence as to whether insulin signaling is required for AA to stimulate mechanistic target of rapamycin complex 1 (mTORC1) activity. We hypothesized that insulin potentiates essential AA stimulation of mTORC1 activity in the MAC-T mammary epithelial cell line. Here, our objective was to assess mTORC1 signaling activity in response to insulin and individual or grouped essential AA. Insulin and essential AA concentrations in the treatment medium ranged from normo- to supraphysiological, with insulin at 0, 1, 10, or 100 nmol/L and essential AA at approximately 0, 0.01, 0.05, 0.1, 1, or 3× reference plasma levels. Effects and interaction of insulin and total essential AA were tested in a 3 × 5 factorial design (n = 3 replicates/treatment); insulin and the individual AA Leu, Met, Ile, and Arg were likewise tested in 3 × 4 factorials (n = 4). As the remaining individual AA His, Lys, Phe, Thr, Trp, and Val were expected to not affect mTORC1, these were tested only at the highest insulin level, 100 nmol/L (n = 4). For all of these, linear and quadratic effects of total and individual AA were evaluated. Essential AA were subsequently grouped by their positive (Leu, Met, Ile, Arg, and Thr; TOR-AA) or absent-to-negative effects (His, Lys, Phe, Trp, and Val; NTOR-AA), and tested for interaction in a 2 × 2 factorial design (n = 4), with each AA at its respective 1× plasma level, and insulin held at 100 nmol/L. All experiments consisted of 1 h treatment incubation, followed by Western blotting of cell lysates to measure phosphorylation and abundance of the mTORC1 pathway proteins Akt (Ser473); ribosomal protein S6 kinase p70 (S6K1, Thr389); eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1, Ser65); and ribosomal protein S6 (S6, Ser240/244). The Akt phosphorylation was overall increased by insulin, with a possible negative interaction with both total essential AA and the individual AA Leu. Total essential AA also increased S6K1 and 4E-BP1 phosphorylation in an insulin-dependent manner. The individual AA Leu, Met, Ile, and Arg increased S6K1 phosphorylation in an insulin-dependent manner. Similarly, Met and Arg increased 4E-BP1 phosphorylation in an insulin-dependent manner. Histidine, Lys, Trp, and Val did not affect S6K1 phosphorylation. However, S6K1 phosphorylation was linearly increased by Thr and quadratically decreased by Phe. Relative to the phosphorylation of S6K1 when cells were incubated with no essential AA, the NTOR-AA group had no effect, whereas the TOR-AA increased phosphorylation to the same degree observed with all 10 essential AA. Overall, we have found that insulin is required for essential AA to stimulate mTORC1 activity in MAC-T cells. In addition, the AA responsible for the bulk of mTORC1 activation in MAC-T are limited to Leu, Met, Ile, Arg, and Thr.
Collapse
Affiliation(s)
- Virginia L Pszczolkowski
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, 53706
| | - Jun Zhang
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706; State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China 100083
| | - Kayleigh A Pignato
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706
| | - Emma J Meyer
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706
| | - Madison M Kurth
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706
| | - Amy Lin
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706
| | - Sebastian I Arriola Apelo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, 53706.
| |
Collapse
|
14
|
Nichols K, Bannink A, van Baal J, Dijkstra J. Impact of post-ruminally infused macronutrients on bovine mammary gland expression of genes involved in fatty acid synthesis, energy metabolism, and protein synthesis measured in RNA isolated from milk fat. J Anim Sci Biotechnol 2020; 11:53. [PMID: 32477515 PMCID: PMC7238732 DOI: 10.1186/s40104-020-00456-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/01/2020] [Indexed: 11/10/2022] Open
Abstract
Background Characterising the regulation of milk component synthesis in response to macronutrient supply is critical for understanding the implications of nutritional interventions on milk production. Gene expression in mammary gland secretory cells was measured using RNA isolated from milk fat globules from 6 Holstein-Friesian cows receiving 5-d abomasal infusions of saline, essential amino acids (AA), or glucose (GG) or palm olein (LG) without (LAA) or with (HAA) essential AA, according to a 6 × 6 Latin square design. RNA was isolated from milk fat samples collected on d 5 of infusion and subjected to real-time quantitative PCR. We hypothesised that mRNA expression of genes involved in de novo milk fatty acid (FA) synthesis would be differently affected by GG and LG, and that expression of genes regulating transfer of tricarboxylic acid cycle intermediates would increase at the HAA level. We also hypothesised that the HAA level would affect genes regulating endoplasmic reticulum (ER) homeostasis but would not affect genes related to the mechanistic target of rapamycin complex 1 (mTORC1) or the integrated stress response (ISR) network. Results Infusion of GG did not affect de novo milk FA yield but decreased expression of FA synthase (FASN). Infusion of LG decreased de novo FA yield and tended to decrease expression of acetyl-CoA carboxylase 1 (ACC1). The HAA level increased both de novo FA yield and expression of ACC1, and tended to decrease expression of mitochondrial phosphoenolpyruvate carboxykinase (PCK2). mRNA expression of mTORC1 signaling participants was not affected by GG, LG, or AA level. Expression of the ε subunit of the ISR constituent eukaryotic translation initiation factor 2B (EIF2B5) tended to increase at the HAA level, but only in the presence of LG. X-box binding protein 1 (XBP1) mRNA was activated in response to LG and the HAA level. Conclusions Results show that expression of genes involved in de novo FA synthesis responded to glucogenic, lipogenic, and aminogenic substrates, whereas genes regulating intermediate flux through the tricarboxylic acid cycle were not majorly affected. Results also suggest that after 5 d of AA supplementation, milk protein synthesis is supported by enhanced ER biogenesis instead of signaling through the mTORC1 or ISR networks.
Collapse
Affiliation(s)
- Kelly Nichols
- 1Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - André Bannink
- 2Wageningen Livestock Research, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - Jurgen van Baal
- 1Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - Jan Dijkstra
- 1Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
15
|
Kim J, Lee JE, Lee JS, Park JS, Moon JO, Lee HG. Phenylalanine and valine differentially stimulate milk protein synthetic and energy-mediated pathway in immortalized bovine mammary epithelial cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:263-275. [PMID: 32292933 PMCID: PMC7142277 DOI: 10.5187/jast.2020.62.2.263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 11/20/2022]
Abstract
Studies on promoting milk protein yield by supplementation of amino acids have
been globally conducted. Nevertheless, there is a lack of knowledge of what
pathways affected by individual amino acid in mammary epithelial cells that
produce milk in practice. Phenylalanine (PHE) and valine (VAL) are essential
amino acids for dairy cows, however, researches on mammary cell levels are still
lacking. Thus, the aim of this study was conducted to evaluate the effects of
PHE and VAL on milk protein synthesis-related and energy-mediated cellular
signaling in vitro using immortalized bovine mammary epithelial
(MAC-T) cells. To investigate the effects of PHE and VAL, the following
concentrations were added to treatment medium: 0, 0.3, 0.6, 0.9, 1.2, and 1.5
mM. The addition of PHE or VAL did not adversely affect cell viability compared
to control group. The concentrations of cultured medium reached its maximum at
0.9 mM PHE and 0.6 mM VAL (p < 0.05). Therefore,
aforementioned 2 treatments were analyzed for proteomics. Glucose transporter 1
and mammalian target of rapamycin mRNA expression levels were up-regulated by
PHE (166% and 138%, respectively) (p < 0.05). Meanwhile,
sodium-dependent neutral amino acids transporter type 2 (ASCT2)
and β-casein were up-regulated by VAL (173% in ASCT2,
238% in and 218% in β-casein) (p < 0.05). A total of
134, 142, and 133 proteins were detected in control group, PHE treated group,
and VAL treated group, respectively. Among significantly fold-changed proteins,
proteins involved in translation initiation or energy metabolism were detected,
however, expressed differentially between PHE and VAL. Thus, pathway analysis
showed different stimulatory effects on energy metabolism and transcriptional
pathways. Collectively, these results showed different stimulatory effects of
PHE and VAL on protein synthesis-related and energy-mediated cellular signaling
in MAC-T cells.
Collapse
Affiliation(s)
- Jungeun Kim
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea.,Team of An Educational Program for Specialists in Global Animal Science, Brain Korea 21 Plus Project, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea
| | - Jeong-Eun Lee
- Institute of Integrated Technology, CJ CheilJedang, Suwon 16495, Korea
| | - Jae-Sung Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea
| | - Jin-Seung Park
- Institute of Integrated Technology, CJ CheilJedang, Suwon 16495, Korea
| | - Jun-Ok Moon
- Institute of Integrated Technology, CJ CheilJedang, Suwon 16495, Korea
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea.,Team of An Educational Program for Specialists in Global Animal Science, Brain Korea 21 Plus Project, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
16
|
Yoder PS, Huang X, Teixeira IA, Cant JP, Hanigan MD. Effects of jugular infused methionine, lysine, and histidine as a group or leucine and isoleucine as a group on production and metabolism in lactating dairy cows. J Dairy Sci 2020; 103:2387-2404. [PMID: 31954565 DOI: 10.3168/jds.2019-17082] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/04/2019] [Indexed: 01/07/2023]
Abstract
Essential AA (EAA), particularly leucine, isoleucine, methionine, and histidine, possess signaling properties for promoting cellular anabolic metabolism, whereas methionine, lysine, and histidine are considered also to be substrate limiting AA. The objective of this study was to evaluate production responses to supplementation of 2 AA groups in a 2 × 2 factorial design. Eight cows (99 ± 18 days in milk) were assigned to 4 jugular infusion treatments consisting of saline (CON), methionine plus lysine plus histidine (MKH), isoleucine plus leucine (IL), or MKH plus IL, in a replicated 4 × 4 Latin square design. Periods were 18 d in length, comprising 8 d of rest followed by 10 d of jugular infusion. Daily infusion amounts were 21 g of methionine, 38 g of lysine, 20 g of histidine, 50 g of leucine, and 22 g of isoleucine. Cows were ad libitum fed a common diet consisting of 15.2% crude protein and 1.61 Mcal/kg NEL on a dry matter basis that was predicted to meet rumen degradable protein requirements but was 15% deficient in metabolizable protein. Milk and energy-corrected milk yields increased by 2.3 kg/d and 1.9 kg/d, respectively, with infused IL, and no change was observed for MKH. Milk protein concentration increased by 0.13 percentage units for MKH, whereas milk protein yield increased for both MKH and IL by 84 g/d and 64 g/d, respectively. The milk protein yield increase for MKH+IL was 145 g/d versus CON. Gross feed efficiency tended to increase with IL infusion, and N efficiency tended to increase with MKH infusion. Aggregate arterial EAA concentrations less Met, Lys, and His declined by 7.2% in response to MKH infusion. Arterial EAA less Ile and Leu also declined by 6.2% in response to IL infusion. Net total AA (TAA) and EAA uptake by the udder tended to increase in response to MKH infusion, whereas mammary blood flow increased in response to IL infusion, but TAA and EAA net uptakes were unaffected. Apparent udder affinity increased for TAA and EAA less Met, Lys, and His in response to MKH infusion, whereas affinity for EAA less Ile and Leu increased for IL infusion. Venous Met and Leu concentrations increased by 192% and 35% from the MKH and IL infusions, respectively, compared with CON, which indicates that intracellular concentration of these EAA changed substantially. Increases in milk protein yield were observed from 2 groups of amino acids independently and additively, which contradicts the single limiting amino acid theory that a single EAA will limit milk protein yield.
Collapse
Affiliation(s)
- P S Yoder
- Department of Dairy Science, Virginia Tech, Blacksburg 24061; Perdue AgriBusiness LLC, Salisbury, MD 21804
| | - X Huang
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | | | - J P Cant
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada
| | - M D Hanigan
- Department of Dairy Science, Virginia Tech, Blacksburg 24061.
| |
Collapse
|
17
|
Nolte W, Weikard R, Brunner RM, Albrecht E, Hammon HM, Reverter A, Kühn C. Biological Network Approach for the Identification of Regulatory Long Non-Coding RNAs Associated With Metabolic Efficiency in Cattle. Front Genet 2019; 10:1130. [PMID: 31824560 PMCID: PMC6883949 DOI: 10.3389/fgene.2019.01130] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Genomic regions associated with divergent livestock feed efficiency have been found predominantly outside protein coding sequences. Long non-coding RNAs (lncRNA) can modulate chromatin accessibility, gene expression and act as important metabolic regulators in mammals. By integrating phenotypic, transcriptomic, and metabolomic data with quantitative trait locus data in prioritizing co-expression network analyses, we aimed to identify and functionally characterize lncRNAs with a potential key regulatory role in metabolic efficiency in cattle. Materials and Methods: Crossbred animals (n = 48) of a Charolais x Holstein F2-population were allocated to groups of high or low metabolic efficiency based on residual feed intake in bulls, energy corrected milk in cows and intramuscular fat content in both genders. Tissue samples from jejunum, liver, skeletal muscle and rumen were subjected to global transcriptomic analysis via stranded total RNA sequencing (RNAseq) and blood plasma samples were used for profiling of 640 metabolites. To identify lncRNAs within the indicated tissues, a project-specific transcriptome annotation was established. Subsequently, novel transcripts were categorized for potential lncRNA status, yielding a total of 7,646 predicted lncRNA transcripts belonging to 3,287 loci. A regulatory impact factor approach highlighted 92, 55, 35, and 73 lncRNAs in jejunum, liver, muscle, and rumen, respectively. Their ensuing high regulatory impact factor scores indicated a potential regulatory key function in a gene set comprising loci displaying differential expression, tissue specificity and loci overlapping with quantitative trait locus regions for residual feed intake or milk production. These were subjected to a partial correlation and information theory analysis with the prioritized gene set. Results and Conclusions: Independent, significant and group-specific correlations (|r| > 0.8) were used to build a network for the high and the low metabolic efficiency group resulting in 1,522 and 1,732 nodes, respectively. Eight lncRNAs displayed a particularly high connectivity (>100 nodes). Metabolites and genes from the partial correlation and information theory networks, which each correlated significantly with the respective lncRNA, were included in an enrichment analysis indicating distinct affected pathways for the eight lncRNAs. LncRNAs associated with metabolic efficiency were classified to be functionally involved in hepatic amino acid metabolism and protein synthesis and in calcium signaling and neuronal nitric oxide synthase signaling in skeletal muscle cells.
Collapse
Affiliation(s)
- Wietje Nolte
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Rosemarie Weikard
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ronald M Brunner
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Elke Albrecht
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Harald M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Antonio Reverter
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Christa Kühn
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| |
Collapse
|
18
|
Nichols K, Bannink A, Dijkstra J. Energy and nitrogen balance of dairy cattle as affected by provision of different essential amino acid profiles at the same metabolizable protein supply. J Dairy Sci 2019; 102:8963-8976. [PMID: 31378498 DOI: 10.3168/jds.2019-16400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/07/2019] [Indexed: 12/21/2022]
Abstract
Amino acid composition of metabolizable protein (MP) is important in dairy cattle diets, but effects of AA imbalances on energy and N utilization are unclear. This study determined the effect of different AA profiles within a constant supplemental MP level on whole-body energy and N partitioning in dairy cattle. Five rumen-fistulated Holstein-Friesian dairy cows (2.8 ± 0.4 lactations; 81 ± 11 d in milk; mean ± standard deviation) were randomly assigned to a 5 × 5 Latin square design in which each experimental period consisted of 5 d of continuous abomasal infusion followed by 2 d of rest. A total mixed ration consisting of 58% corn silage, 16% alfalfa hay, and 26% concentrate (dry matter basis) was formulated to meet 100 and 83% of net energy and MP requirements, respectively, and was fed at 90% of ad libitum intake by individual cow. Abomasal infusion treatments were saline (SAL) or 562 g/d of essential AA delivered in 4 profiles where individual AA content corresponded to their relative content in casein. The profiles were (1) a complete essential amino acid mixture (EAAC), (2) Ile, Leu, and Val (ILV), (3) His, Ile, Leu, Met, Phe, Trp, Val (GR1+ILV), and (4) Arg, His, Lys, Met, Phe, Thr, Trp (GR1+ALT). The experiment was conducted in climate respiration chambers to determine energy and N balance in conjunction with milk production and composition, digestibility, and plasma constituents. Compared with SAL, infusion of EAAC increased milk, protein, and lactose yield, increased energy retained as body protein, and did not affect milk N efficiency. Total N intake and urine N output was higher with all AA infusions relative to SAL. Compared with EAAC, infusions of GR1+ILV and GR1+ALT produced the same milk yield and the same yield and content of milk fat, protein, and lactose, and had similar energy and N retention. Milk N efficiency was not different between EAAC and GR1+ILV, but was lower with GR1+ALT compared with EAAC, and tended to be lower with GR1+ALT compared with GR1+ILV. Infusion of ILV tended to decrease dry matter intake compared with the other AA infusions. Milk production and composition was not different between ILV and SAL. Compared with EAAC, infusion of ILV decreased or tended to decrease milk, protein, and lactose yields and milk protein content, and increased milk fat and lactose content. Milk N efficiency decreased with ILV compared with SAL, EAAC, and GR1+ILV. Milk urea concentration was not affected by essential amino acid (EAA) infusions. Plasma urea concentration did not differ between EAAC and SAL, tended to increase with ILV and GR1+ILV over SAL, and increased with GR1+ALT compared with EAAC and SAL. In conclusion, removing Arg, Lys, and Thr or removing Ile, Leu, and Val from a complete EAA profile when the total amount of EAA infused remained constant did not impair milk production, but milk N efficiency decreased when Ile, Leu, and Val were absent. Infusion of only Ile, Leu, and Val decreased milk protein yield and content and reduced milk N efficiency compared with a complete EAA profile.
Collapse
Affiliation(s)
- K Nichols
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands; Wageningen Livestock Research, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands.
| | - A Bannink
- Wageningen Livestock Research, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
19
|
Zhao K, Liu W, Lin XY, Hu ZY, Yan ZG, Wang Y, Shi KR, Liu GM, Wang ZH. Effects of rumen-protected methionine and other essential amino acid supplementation on milk and milk component yields in lactating Holstein cows. J Dairy Sci 2019; 102:7936-7947. [PMID: 31255267 DOI: 10.3168/jds.2018-15703] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/02/2019] [Indexed: 02/03/2023]
Abstract
Objectives of this study were to investigate the effects of supplementing rumen-protected methionine (RP-Met), threonine (RP-Thr), isoleucine (RP-Ile), and leucine (RP-Leu) individually or jointly to a low-protein diet, on the performance of lactating dairy cows, as well as to determine the effects of these amino acids (AA) on the mammalian target of rapamycin (mTOR) in vivo. Ten lactating Holstein cows were randomly allocated to a repeated 5 × 5 Latin square experiment with five 19-d periods. Treatments were high-protein diet (16% crude protein, positive control; HP), low-protein diet (12% crude protein, negative control; LP), LP plus RP-Met (LPM), LP plus RP-Met and RP-Thr (LPMT), and LP plus RP-Met, RP-Thr, RP-Ile, and RP-Leu (LPMTIL). The dry matter intakes (DMI) of the LP, LPM, and LPMT diets were lower than that of the HP diet, whereas the DMI of the LPMTIL diet was intermediate between the HP diet and the other LP diets. Supplementing RP-Met to the LP diet increased the yields of milk and milk protein, increased the content of milk urea N, and tended to increase milk N efficiency. Co-supplementation of RP-Thr with RP-Met resulted in no further milk production increase. Co-supplementation of all 4 rumen-protected amino acids (RP-AA) increased milk and lactose yields to the level of the HP diet and tended to increase milk protein yield compared with the LPMT diet. We found no significant differences in the contents and yields of milk components between the LPMTIL and HP diets except for a lower milk urea N content in the LPMTIL diet. Venous concentrations of the measured AA were similar across the LP and LP diets supplemented with RP-AA. Relative to levels of the HP diet, LP diets had higher venous concentrations of Met and Gly and tended to have higher Phe concentration and lower concentrations of Val and BCAA. The LPMTIL diet had higher venous concentrations of Arg, Lys, Met, Phe, and Glu, and a lower Val concentration. Phosphorylation status of the measured mTOR components in LPM and LPMT treatments were similar to those in the LP treatment but phosphorylation status of mTOR and eIF4E-binding protein 1 (4eBP1) in LPMTIL treatment were higher. The phosphorylation rates of eukaryotic elongation factor 2 (eEF2) in the 4 LP and LP plus RP-AA diets were higher than that of the HP diet. Overall, results of the present study supported the concept that under the relatively short time of this experiment, supplementing RP-AA, which are believed to stimulate the mTOR signal pathway, can lead to increased milk protein yield. This increase appears to be due to increased DMI, greater mTOR signaling, and greater eEF2 activity.
Collapse
Affiliation(s)
- K Zhao
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, P. R. China
| | - W Liu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, P. R. China
| | - X Y Lin
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, P. R. China
| | - Z Y Hu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, P. R. China
| | - Z G Yan
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, P. R. China
| | - Y Wang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, P. R. China
| | - K R Shi
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, P. R. China
| | - G M Liu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, P. R. China
| | - Z H Wang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, P. R. China.
| |
Collapse
|
20
|
Nichols K, Bannink A, Doelman J, Dijkstra J. Mammary gland metabolite utilization in response to exogenous glucose or long-chain fatty acids at low and high metabolizable protein levels. J Dairy Sci 2019; 102:7150-7167. [PMID: 31155242 DOI: 10.3168/jds.2019-16285] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/08/2019] [Indexed: 01/27/2023]
Abstract
We investigated mammary gland metabolism in lactating dairy cattle in response to energy from glucogenic (glucose; GG) or lipogenic (palm olein; LG) substrates at low (LMP) and high (HMP) metabolizable protein levels. According to a 6 × 6 Latin square design, 6 rumen-fistulated second-lactation Holstein-Friesian dairy cows (97 ± 13 d in milk) were abomasally infused with saline (LMP-C); isoenergetic infusions (digestible energy basis) of 1,319 g/d glucose (LMP-GG), 676 g/d palm olein (LMP-LG), or 844 g/d essential AA (EAA; HMP-C); or isoenergetic infusions of 1,319 g/d glucose + 844 g/d EAA (HMP-GG) or 676 g/d palm olein + 844 g/d EAA (HMP-LG). Each experimental period consisted of 5 d of continuous infusion followed by 2 d of rest. A total mixed ration (42% corn silage, 31% grass silage, and 27% concentrate on a dry matter basis) formulated to meet 100 and 83% of net energy and metabolizable protein requirements, respectively, was fed at 90% of ad libitum intake by individual cow. Arterial and venous blood samples were collected on d 5 of each period. Infusing GG or LG at the HMP level did not affect milk yield or composition differently than at the LMP level. Neither GG nor LG infusion stimulated milk protein or lactose yield, but fat yield tended to decrease with GG and tended to increase with LG. Infusion of GG increased arterial plasma concentrations of glucose and insulin and decreased concentrations of β-hydroxybutyrate (BHB), nonesterified fatty acids, long-chain fatty acids (LCFA), total AA, EAA, and group 2 AA. Infusion of LG increased arterial triacylglycerides (TAG) and LCFA but did not affect EAA concentrations. Compared with the LMP level, the HMP level increased arterial concentrations of BHB, urea, and all EAA groups and decreased the concentration of total non-EAA. Mammary plasma flow increased with GG and was not affected by LG or protein level. Uptake and clearance of total EAA and group 2 AA were affected or tended to be affected by GG × AA interactions, with their uptakes being lower and their clearances higher with GG, but only at the LMP level. Infusion of LG did not affect uptake or clearance of any AA group. The HMP level increased uptake and decreased clearance of all EAA groups and decreased non-EAA uptake. Infusion of GG tended to increase mammary glucose uptake, and tended to decrease BHB uptake only at the LMP level. Infusion of LG increased mammary uptake of TAG and LCFA and increased or tended to increase clearance of TAG and LCFA. We suspect GG increased mammary plasma flow to maintain intramammary energy and AA balance and stimulated lipogenesis in adipose, accounting for depressed arterial BHB and group 2 AA concentrations. Mammary glucose uptake did not cover estimated requirements for lactose and fat synthesis at the HMP level, except during HMP-GG infusion. Results of this study illustrate flexibility in mammary metabolite utilization when absorptive supply of glucogenic, lipogenic, and aminogenic substrate is increased.
Collapse
Affiliation(s)
- K Nichols
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands; Wageningen Livestock Research, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands.
| | - A Bannink
- Wageningen Livestock Research, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - J Doelman
- Trouw Nutrition R&D, PO Box 220, 5830 AE Boxmeer, the Netherlands
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
21
|
Nichols K, Dijkstra J, van Laar H, Kim JJM, Cant JP, Bannink A. Expression of genes related to energy metabolism and the unfolded protein response in dairy cow mammary cells is affected differently during dietary supplementation with energy from protein and fat. J Dairy Sci 2019; 102:6603-6613. [PMID: 31103304 DOI: 10.3168/jds.2018-15875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/27/2019] [Indexed: 12/12/2022]
Abstract
Secretory capacity of bovine mammary glands is enabled by a high number of secretory cells and their ability to use a range of metabolites to produce milk components. We isolated RNA from milk fat to measure expression of genes involved in energy-yielding pathways and the unfolded protein response in mammary glands of lactating cows given supplemental energy from protein (PT) and fat (FT) tested in a 2 × 2 factorial arrangement. We hypothesized that PT and FT would affect expression of genes in the branched-chain AA catabolic pathway and tricarboxylic acid (TCA) cycle based on the different energy types (aminogenic versus lipogenic) used to synthesize milk components. We also hypothesized that the response of genes related to endoplasmic reticulum (ER) homeostasis via the unfolded protein response would reflect the increase in milk production stimulated by PT and FT. Fifty-six multiparous Holstein-Friesian dairy cows were fed a basal total mixed ration (34% grass silage, 33% corn silage, 5% grass hay, and 28% concentrate on a dry matter basis) for a 28-d control period. Experimental rations were then fed for 28 d, consisting of (1) low protein, low fat (LP/LF); (2) high protein, low fat (HP/LF); (3) low protein, high fat (LP/HF); or (4) high protein and high fat (HP/HF). To obtain the high-protein (HP) and high-fat (HF) diets, intake of the basal ration was restricted and supplemented isoenergetically (net energy basis) with 2.0 kg/d rumen-protected protein (soybean + rapeseed, 50:50 mixture on dry matter basis) and 0.68 kg/d hydrogenated palm fatty acids on a dry matter basis. RNA from milk fat samples collected on d 27 of each period underwent real-time quantitative PCR. Energy from protein increased expression of BCAT1 (branched-chain amino acid transferase 1) mRNA, but only at the LF level, and tended to decrease expression of mRNA encoding the main subunit of the branched-chain keto-acid dehydrogenase complex. mRNA expression of malic enzyme, a proposed channeling route for AA though the TCA cycle, was decreased by PT, but only at the LF level. Expression of genes associated with de novo fatty acid synthesis was not affected by PT or FT. Energy from fat had no independent effect on genes related to ER homeostasis. At the LF level, PT activated XBP1 (X-box binding protein 1) mRNA. At the HF level, PT increased mRNA expression of the gene encoding GADD34 (growth arrest and DNA damage-inducible 34). These findings support our hypothesis that mammary cells use aminogenic and lipogenic precursors differently for milk component production when dietary intervention alters AA and fatty acid supply. They also suggest that mammary cells respond to increased AA supply through mechanisms of ER homeostasis, dependent on the presence of FT.
Collapse
Affiliation(s)
- K Nichols
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands; Wageningen Livestock Research, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands.
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - H van Laar
- Trouw Nutrition R&D, PO Box 220, 5830 AE Boxmeer, the Netherlands
| | - J J M Kim
- Department of Animal Biosciences, University of Guelph, Ontario N1G 2W1, Canada
| | - J P Cant
- Department of Animal Biosciences, University of Guelph, Ontario N1G 2W1, Canada
| | - A Bannink
- Wageningen Livestock Research, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
22
|
Cant JP, Kim JJ, Cieslar SR, Doelman J. Symposium review: Amino acid uptake by the mammary glands: Where does the control lie? J Dairy Sci 2018; 101:5655-5666. [DOI: 10.3168/jds.2017-13844] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
|
23
|
Crompton LA, McKnight LL, Reynolds CK, Mills JAN, Ellis JL, Hanigan MD, Dijkstra J, Bequette BJ, Bannink A, France J. An isotope dilution model for partitioning of phenylalanine and tyrosine uptake by the liver of lactating dairy cows. J Theor Biol 2018; 444:100-107. [PMID: 29277601 DOI: 10.1016/j.jtbi.2017.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 11/16/2022]
Abstract
An isotope dilution model to describe the partitioning of phenylalanine and tyrosine in the bovine liver was developed. The model comprises four intracellular and six extracellular pools and various flows connecting these pools and external blood. Conservation of mass principles were applied to generate the fundamental equations describing the behaviour of the system in the steady state. The model was applied to datasets from multi-catheterised dairy cattle during a constant infusion of [1-13C]phenylalanine and [2,3,5,6-2H]tyrosine tracers. Model solutions described the extraction of phenylalanine and tyrosine from the liver via the portal vein and hepatic artery. In addition, the exchange of free phenylalanine and tyrosine between extracellular and intracellular pools was explained and the hydroxylation of phenylalanine to tyrosine was estimated. The model was effective in providing information about the fates of phenylalanine and tyrosine in the liver and could be used as part of a more complex system describing amino acid metabolism in the whole animal.
Collapse
Affiliation(s)
- L A Crompton
- Sustainable Agriculture and Food Systems Research Division, School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6AR, UK.
| | - L L McKnight
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Ontario N1G 2W1, Canada
| | - C K Reynolds
- Sustainable Agriculture and Food Systems Research Division, School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6AR, UK
| | - J A N Mills
- Sustainable Agriculture and Food Systems Research Division, School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6AR, UK
| | - J L Ellis
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Ontario N1G 2W1, Canada; Animal Nutrition Group, Wageningen University & Research, 6700 AH Wageningen, The Netherlands
| | - M D Hanigan
- Department of Dairy Science, Virginia Tech, 2080 Litton Reaves, Blacksburg, VA 24061, USA
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University & Research, 6700 AH Wageningen, The Netherlands
| | - B J Bequette
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - A Bannink
- Animal Nutrition, Wageningen Livestock Research, Wageningen University and Research, 6700 AH Wageningen, The Netherlands
| | - J France
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
24
|
Curtis RV, Kim JJ, Doelman J, Cant JP. Maintenance of plasma branched-chain amino acid concentrations during glucose infusion directs essential amino acids to extra-mammary tissues in lactating dairy cows. J Dairy Sci 2018; 101:4542-4553. [DOI: 10.3168/jds.2017-13236] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/02/2018] [Indexed: 01/14/2023]
|
25
|
Nichols K, Doelman J, Kim J, Carson M, Metcalf J, Cant J. Exogenous essential amino acids stimulate an adaptive unfolded protein response in the mammary glands of lactating cows. J Dairy Sci 2017; 100:5909-5921. [DOI: 10.3168/jds.2016-12387] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/23/2017] [Indexed: 01/08/2023]
|
26
|
Bajramaj DL, Curtis RV, Kim JJM, Corredig M, Doelman J, Wright TC, Osborne VR, Cant JP. Addition of glycerol to lactating cow diets stimulates dry matter intake and milk protein yield to a greater extent than addition of corn grain. J Dairy Sci 2017; 100:6139-6150. [PMID: 28601462 DOI: 10.3168/jds.2016-12380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/22/2017] [Indexed: 12/18/2022]
Abstract
The objective of this study was to determine if the addition of glycerol to the diet of dairy cows would stimulate milk protein yield in the same manner as the addition of corn grain. Twelve multiparous lactating dairy cows at 81 ± 5 d in milk were subjected to 3 dietary treatments in a replicated 3 × 3 Latin square design for 28-d periods. The diets were a 70% forage diet considered the basal diet, the basal diet with 19% ground and high-moisture corn replacing forages, and the basal diet with 15% refined glycerol and 4% added protein supplements to be isocaloric and isonitrogenous with the corn diet. Cows were milked twice a day and samples were collected on the last 7 d of each period for compositional analysis. Within each period, blood samples were collected on d 26 and 27, and mammary tissue was collected by biopsy on d 28 for Western blot analysis. Dry matter intake increased from 23.7 kg/d on the basal diet to 25.8 kg/d on the corn diet and 27.2 kg/d on the glycerol diet. Dry matter intake tended to be higher with glycerol than corn. Milk production increased from 39.2 kg/d on the basal diet to 43.8 kg/d on the corn diet and 44.2 kg/d on the glycerol diet. However, milk yield did not differ between corn and glycerol diets. Milk lactose yields were higher on the corn and glycerol diets than the basal diet. Milk fat yield significantly decreased on the glycerol diet compared with the basal diet and tended to decrease in comparison with the corn diet. Mean milk fat globule size was reduced by glycerol feeding. Milk protein yield increased 197 g/d with addition of corn to the basal diet and 263 g/d with addition of glycerol, and the glycerol effect was larger than the corn effect. The dietary treatments had no effects on plasma glucose concentration, but plasma acetate levels decreased 27% on the glycerol diet. Amino acid concentrations were not affected by dietary treatments, except for branched-chain amino acids, which decreased 22% on the glycerol diet compared with the corn diet. The decreases in plasma acetate and branched-chain amino acid concentrations with glycerol and the larger effects of glycerol than corn on milk protein and fat yields suggest that glycerol is more glucogenic for cows than corn grain.
Collapse
Affiliation(s)
- D L Bajramaj
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada
| | - R V Curtis
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada
| | - J J M Kim
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada
| | - M Corredig
- Department of Food Science, University of Guelph, Ontario, N1G 2W1 Canada
| | - J Doelman
- Nutreco Canada Agresearch, Guelph, Ontario, N1G 4T2 Canada
| | - T C Wright
- Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, N1G 4Y2 Canada
| | - V R Osborne
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada
| | - J P Cant
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada.
| |
Collapse
|
27
|
Giallongo F, Harper MT, Oh J, Parys C, Shinzato I, Hristov AN. Histidine deficiency has a negative effect on lactational performance of dairy cows. J Dairy Sci 2017; 100:2784-2800. [PMID: 28131569 DOI: 10.3168/jds.2016-11992] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/02/2016] [Indexed: 11/19/2022]
Abstract
A 10-wk randomized complete block design experiment with 24 Holstein cows was conducted to investigate the long-term effects of feeding a His-deficient diet on lactational performance of dairy cows. Cows were blocked by days in milk, milk yield, and parity, and randomly assigned to 1 of the following 2 treatments: (1) His-adequate diet [HAD; providing +166 g/d over metabolizable protein (MP) requirements, according to the National Research Council (2001) and digestible His (dHis) supply of 68 g/d, or 2.5% of MP requirements] and (2) His-deficient diet (HDD; +37 g/d over MP requirements and dHis supply of 49 g/d, or 1.9% of MP requirements). Both HAD and HDD were supplemented with rumen-protected (RP) Met and Lys supplying digestible Met and digestible Lys at 2.4 and 2.4% and 7.2 and 7.1% of MP requirements, respectively. At the end of the 10-wk experiment, HDD was supplemented with RPHis (HDD+RPHis; total dHis supply of 61 g/d, or 2.4% of MP requirements) for an additional 9 d. Dry matter intake (DMI; 25.4 and 27.1 kg/d, standard error of the mean = 0.41), yields of milk (37.6 and 40.5 kg/d, standard error of the mean = 0.62), protein and lactose, energy-corrected milk, and milk and plasma urea-N were decreased by HDD compared with HAD. Feed and energy-corrected milk feed efficiencies, milk fat, protein and lactose concentrations, body weight, and body condition score of the cows were not affected by treatment. Apparent total-tract digestibility of dry and organic matter, crude protein, and neutral detergent fiber, and excretion of urinary N and urea-N were decreased by HDD compared with HAD. Concentration of plasma leptin tended to be decreased for HDD compared with HAD. Plasma concentrations of EAA (His, Leu, Lys, Val) and carnosine decreased and total EAA tended to be decreased in cows fed HDD compared with HAD. Muscle concentrations of free His, Leu, and Val decreased and Gly and β-alanine tended to be increased by HDD compared with HAD. Cows fed HDD had a lower blood hemoglobin concentration than cows fed HAD. At the end of the 10-wk study, the 9-d supplementation of HDD with RPHis (i.e., HDD+RPHis) increased DMI and plasma His, and tended to increase energy-corrected milk yield and plasma carnosine, compared with HDD. In conclusion, feeding a diet deficient in dHis supplying adequate MP, digestible Met, and digestible Lys affected negatively lactational performance of dairy cows. These results confirm our previous findings that low dietary His supply can impair DMI, yields of milk and milk protein, and blood hemoglobin in dairy cows.
Collapse
Affiliation(s)
- F Giallongo
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - M T Harper
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - J Oh
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - C Parys
- Evonik Nutrition and Care GmbH, 63457 Hanau, Germany
| | | | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
28
|
Hu XC, Gao CQ, Wang XH, Yan HC, Chen ZS, Wang XQ. Crop milk protein is synthesised following activation of the IRS1/Akt/TOR signalling pathway in the domestic pigeon (Columba livia). Br Poult Sci 2016; 57:855-862. [DOI: 10.1080/00071668.2016.1219694] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- X.-C. Hu
- College of Animal Science, South China Agricultural University/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture/ South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - C.-Q Gao
- College of Animal Science, South China Agricultural University/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture/ South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - X.-H. Wang
- College of Animal Science, South China Agricultural University/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture/ South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - H.-C. Yan
- College of Animal Science, South China Agricultural University/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture/ South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Z.-S. Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, USA
| | - X.-Q. Wang
- College of Animal Science, South China Agricultural University/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture/ South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| |
Collapse
|
29
|
Bradford BJ, Yuan K, Ylioja C. Managing complexity: Dealing with systemic crosstalk in bovine physiology. J Dairy Sci 2016; 99:4983-4996. [DOI: 10.3168/jds.2015-10271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/11/2015] [Indexed: 01/15/2023]
|
30
|
Doepel L, Hewage I, Lapierre H. Milk protein yield and mammary metabolism are affected by phenylalanine deficiency but not by threonine or tryptophan deficiency. J Dairy Sci 2016; 99:3144-3156. [DOI: 10.3168/jds.2015-10320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022]
|
31
|
Nichols K, Kim J, Carson M, Metcalf J, Cant J, Doelman J. Glucose supplementation stimulates peripheral branched-chain amino acid catabolism in lactating dairy cows during essential amino acid infusions. J Dairy Sci 2016; 99:1145-1160. [DOI: 10.3168/jds.2015-9912] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/13/2015] [Indexed: 11/19/2022]
|
32
|
Doelman J, Kim JJM, Carson M, Metcalf JA, Cant JP. Branched-chain amino acid and lysine deficiencies exert different effects on mammary translational regulation. J Dairy Sci 2015; 98:7846-55. [PMID: 26342977 DOI: 10.3168/jds.2015-9819] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/17/2015] [Indexed: 11/19/2022]
Abstract
Deficiencies and imbalances of specific group II essential amino acids (EAA) were created in lactating cows by an infusion subtraction protocol to explore effects on milk production and abundance and phosphorylation state of regulators of mRNA translation in the mammary glands. Five lactating cows on a diet of 11.2% crude protein were infused abomasally for 5d with saline, 563 g/d of a complete EAA mix, or EAA mixes without the branched-chain amino acids (BCAA), Leu, or Lys in a 5 × 5 Latin square design. Milk protein yield was stimulated by EAA infusion and returned to saline levels upon subtraction of BCAA, Leu, or Lys. Mammary abundance of phosphorylated S6K1 was measured as an indicator of mammalian target of rapamycin complex 1 (mTORC1) activity and was found not to be affected by the complete EAA mix but was increased by the mixture lacking Lys. Total S6K1 abundances in mammary tissue were elevated by complete and BCAA-lacking infusions. All of the EAA treatments except the one lacking BCAA upregulated mammary eIF2Bε and eIF2α abundances, which is stimulatory to global mRNA translation. Phosphorylation state of eIF2Bε tended to decrease when complete or Lys-lacking EAA mixtures were infused. Phosphorylation state of eIF2α was not affected by treatment. We detected a correlation of 0.62 between phosphorylation state of S6K1 and total eIF2Bε abundance, and a correlation of 0.58 between phosphorylation state of S6K1 and total eIF2α abundance, suggesting that mTORC1 activation may have upregulated eIF2Bε and eIF2α expression. Despite maintenance of mammary eIF2Bε and eIF2α abundances during Leu and Lys deficiencies, milk protein yield declined, suggesting that other factors are responsible for mediating effects of Lys and Leu. A deficiency of all 3 BCAA may impair milk protein yield through deactivation of mTORC1-mediated upregulation of eIF2Bε and eIF2α abundances.
Collapse
Affiliation(s)
- John Doelman
- Nutreco Canada Agresearch, Guelph, Ontario, N1G 4T2 Canada.
| | - Julie J M Kim
- Department of Animal BioSciences, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| | | | - John A Metcalf
- Nutreco Canada Agresearch, Guelph, Ontario, N1G 4T2 Canada
| | - John P Cant
- Department of Animal BioSciences, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| |
Collapse
|