1
|
Hou J, Li W, Xu X, Sun A, Xu G, Cheng Z, Zhang H, An X. MiR-2284b regulation of α-s1 casein synthesis in mammary epithelial cells of dairy goats. Anim Biotechnol 2024; 35:2334725. [PMID: 38623994 DOI: 10.1080/10495398.2024.2334725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The lactation character of dairy goats is the most important characteristic, and milk protein is an important index to evaluate milk quality. Casein accounts for more than 80% of the total milk protein in goat milk and is the main component of milk protein. Using GMECs (goat mammary epithelial cells) as the research object, the CHECK2 vector of the CSN1S1 gene and the overexpression vector of pcDNA 3.1 were constructed, and the mimics of miR-2284b and the interfering RNA of CSN1S1 were synthesized. Using PCR, RT-qPCR, a dual luciferase activity detection system, EdU, CCK8, cell apoptosis detection and ELISA detection, we explored the regulatory mechanism and molecular mechanism of miR-2284b regulation of αs1-casein synthesis in GMECs. miR-2284b negatively regulates proliferation and apoptosis of GMECs and αs1-casein synthesis. Two new gene sequences of CSN1S1 were discovered. CSN1S1-1/-2 promoted the proliferation of GMECs and inhibited cell apoptosis. However, it had no effect on αs1-casein synthesis. MiR-2284b negatively regulates αs1-casein synthesis in GMECs by inhibiting the CSN1S1 gene. These results all indicated that miR-2284b could regulate αs1-casein synthesis, thus playing a theoretical guiding role in the future breeding process of dairy goats and accelerating the development of dairy goat breeding.
Collapse
Affiliation(s)
- Jinxing Hou
- College of Animal Engineering, Yangling Vocational & Technical College, Yangling, Shaanxi, P.R. China
| | - Wenfei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiaolong Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Ao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Ganggang Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Zefang Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Haoyuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| |
Collapse
|
2
|
Kong S, Xu YH, Zheng M, Ju SQ, Shi HC. Circ_0004592: An auxiliary diagnostic biomarker for gastric cancer. World J Gastrointest Oncol 2024; 16:2745-2756. [DOI: 10.4251/wjgo.v16.i6.2745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/12/2024] [Accepted: 04/12/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) has a high mortality rate, and robust diagnostic biomarkers are currently lacking. However, the clinical relevance of circular RNAs (circRNAs) as GC biomarkers remains largely unexplored.
AIM To evaluate the potential of novel circRNA circ_0004592 in the early screening and prognosis of GC.
METHODS High-throughput sequencing of circRNAs was performed to screen for potential target molecules. Circ_0004592 expression was examined in GC tissues, cells, and plasma. Plasma samples were collected from healthy subjects’ patients, as well as from patients with benign lesions, precancerous lesions, and GC, whereafter the diagnostic accuracy of circ_0004592 was evaluated. The correlation between circ_0004592 levels in plasma and clinicopathological data of patients with GC was further analyzed.
RESULTS Circ_0004592 was upregulated in both the tissue and plasma of patients with GC. Further, circ_0004592 expression was higher in patients with precancerous lesions than in healthy controls while being highest in patients with GC. In the same patient, the postoperative plasma level of circ_0004592 was lower than that in the preoperative period. Moreover, circ_0004592 level was significantly correlated with tumor differentiation, tumor depth, and lymph node metastasis. The area under the curve (AUC) of plasma circ_0004592 exhibited high sensitivity and specificity for differentiating patients with GC from healthy donors. Diagnosis based on circ_0004592, carcinoembryonic antigen, and cancer antigen 199 achieved a superior AUC and was highly sensitive.
CONCLUSION Plasma circ_0004592 may represent a potential non-invasive auxiliary diagnostic biomarker for patients with GC.
Collapse
Affiliation(s)
- Shan Kong
- Department of Laboratory Medicine, Jiangsu Province Official Hospital, Nanjing 210000, Jiangsu Province, China
| | - Yan-Hua Xu
- Department of Laboratory Medicine, Northern Jiangsu People’s Hospital, Yangzhou 225000, Jiangsu Province, China
| | - Ming Zheng
- Department of Laboratory Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Shao-Qing Ju
- Department of Laboratory Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Heng-Chuan Shi
- Department of Laboratory Medicine, Jiangsu Province Official Hospital, Nanjing 210000, Jiangsu Province, China
| |
Collapse
|
3
|
Kong S, Xu YH, Zheng M, Ju SQ, Shi HC. Circ_0004592: An auxiliary diagnostic biomarker for gastric cancer. World J Gastrointest Oncol 2024; 16:2757-2768. [PMID: 38994162 PMCID: PMC11236232 DOI: 10.4251/wjgo.v16.i6.2757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/12/2024] [Accepted: 04/12/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) has a high mortality rate, and robust diagnostic biomarkers are currently lacking. However, the clinical relevance of circular RNAs (circRNAs) as GC biomarkers remains largely unexplored. AIM To evaluate the potential of novel circRNA circ_0004592 in the early screening and prognosis of GC. METHODS High-throughput sequencing of circRNAs was performed to screen for potential target molecules. Circ_0004592 expression was examined in GC tissues, cells, and plasma. Plasma samples were collected from healthy subjects' patients, as well as from patients with benign lesions, precancerous lesions, and GC, whereafter the diagnostic accuracy of circ_0004592 was evaluated. The correlation between circ_0004592 levels in plasma and clinicopathological data of patients with GC was further analyzed. RESULTS Circ_0004592 was upregulated in both the tissue and plasma of patients with GC. Further, circ_0004592 expression was higher in patients with precancerous lesions than in healthy controls while being highest in patients with GC. In the same patient, the postoperative plasma level of circ_0004592 was lower than that in the preoperative period. Moreover, circ_0004592 level was significantly correlated with tumor differentiation, tumor depth, and lymph node metastasis. The area under the curve (AUC) of plasma circ_0004592 exhibited high sensitivity and specificity for differentiating patients with GC from healthy donors. Diagnosis based on circ_0004592, carcinoembryonic antigen, and cancer antigen 199 achieved a superior AUC and was highly sensitive. CONCLUSION Plasma circ_0004592 may represent a potential non-invasive auxiliary diagnostic biomarker for patients with GC.
Collapse
Affiliation(s)
- Shan Kong
- Department of Laboratory Medicine, Jiangsu Province Official Hospital, Nanjing 210000, Jiangsu Province, China
| | - Yan-Hua Xu
- Department of Laboratory Medicine, Northern Jiangsu People’s Hospital, Yangzhou 225000, Jiangsu Province, China
| | - Ming Zheng
- Department of Laboratory Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Shao-Qing Ju
- Department of Laboratory Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Heng-Chuan Shi
- Department of Laboratory Medicine, Jiangsu Province Official Hospital, Nanjing 210000, Jiangsu Province, China
| |
Collapse
|
4
|
Kirgiafini D, Kyrgiafini MA, Gournaris T, Mamuris Z. Understanding Circular RNAs in Health, Welfare, and Productive Traits of Cattle, Goats, and Sheep. Animals (Basel) 2024; 14:733. [PMID: 38473119 DOI: 10.3390/ani14050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Circular RNAs (circRNAs) are unique noncoding RNA molecules, notable for their covalent closed-loop structures, which play a crucial role in regulating gene expression across a variety of biological processes. This review comprehensively synthesizes the existing knowledge of circRNAs in three key livestock species: Bos taurus (cattle), Ovis aries (sheep), and Capra hircus (goats). It focuses on their functional importance and emerging potential as biomarkers for disease detection, stress response, and overall physiological health. Specifically, it delves into the expression and functionality of circRNAs in these species, paying special attention to traits critical to livestock productivity such as milk production, meat quality, muscle development, wool production, immune responses, etc. We also address the current challenges faced in circRNA research, including the need for standardized methodologies and broader studies. By providing insights into the molecular mechanisms regulated by circRNAs, this review underscores their scientific and economic relevance in the livestock industry. The potential of circRNAs to improve animal health management and the quality of animal-derived products aligns with growing consumer concerns for animal welfare and sustainability. Thus, this paper aims to guide future research directions while supporting the development of innovative strategies in livestock management and breeding.
Collapse
Affiliation(s)
- Dimitra Kirgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Institute of Animal Genetic Improvement, University Center for Research and Innovation PA.K.E.K. "IASON", University of Thessaly, 38221 Volos, Greece
| | - Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Institute of Animal Genetic Improvement, University Center for Research and Innovation PA.K.E.K. "IASON", University of Thessaly, 38221 Volos, Greece
- Averofeio Agri-Food Technological Park of Thessaly, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Theocharis Gournaris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Institute of Animal Genetic Improvement, University Center for Research and Innovation PA.K.E.K. "IASON", University of Thessaly, 38221 Volos, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Institute of Animal Genetic Improvement, University Center for Research and Innovation PA.K.E.K. "IASON", University of Thessaly, 38221 Volos, Greece
- Averofeio Agri-Food Technological Park of Thessaly, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| |
Collapse
|
5
|
Sahito JZA, Deng S, Qin L, Xiao L, Zhang D, Huang B. CeRNA Network Reveals the Circular RNA Characterization in Goat Ear Fibroblasts Reprogramming into Mammary Epithelial Cells. Genes (Basel) 2023; 14:1831. [PMID: 37895180 PMCID: PMC10606430 DOI: 10.3390/genes14101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 10/29/2023] Open
Abstract
Circular RNAs (circRNAs) are a type of non-coding RNA that play a crucial role in the development and lactation of mammary glands in mammals. A total of 107 differentially expressed circRNAs (DE circRNAs) were found, of which 52 were up-regulated and 55 were down-regulated. We also found that DE circRNA host genes were mainly involved in GO terms related to the development process of mammary epithelial cells and KEGG pathways were mostly related to mammary epithelial cells, lactation, and gland development. Protein network analysis found that DE circRNAs can competitively bind to miRNAs as key circRNAs by constructing a circRNA-miRNA-mRNA network. CircRNAs competitively bind to miRNAs (miR-10b-3p, miR-671-5p, chi-miR-200c, chi-miR-378-3p, and chi-miR-30e-5p) involved in goat mammary gland development, mammary epithelial cells, and lactation, affecting the expression of core genes (CDH2, MAPK1, ITGB1, CAMSAP2, and MAPKAPK5). Here, we generated CiMECs and systematically explored the differences in the transcription profile for the first time using whole-transcriptome sequencing. We also analyzed the interaction among mRNA, miRNA, and cirRNA and predicted that circRNA plays an important role in the maintenance of mammary epithelial cells.
Collapse
Affiliation(s)
- Jam Zaheer Ahmed Sahito
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.A.S.); (S.D.); (L.Q.); (L.X.); (D.Z.)
| | - Shan Deng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.A.S.); (S.D.); (L.Q.); (L.X.); (D.Z.)
| | - Liangshan Qin
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.A.S.); (S.D.); (L.Q.); (L.X.); (D.Z.)
| | - Lianggui Xiao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.A.S.); (S.D.); (L.Q.); (L.X.); (D.Z.)
| | - Dandan Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.A.S.); (S.D.); (L.Q.); (L.X.); (D.Z.)
- Guangxi Key Laboratory of Eye Health, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Ben Huang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.Z.A.S.); (S.D.); (L.Q.); (L.X.); (D.Z.)
- Guangxi Key Laboratory of Eye Health, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| |
Collapse
|
6
|
Shi Y, Zhao Z, He X, Luo J, Chen T, Xi Q, Zhang Y, Sun J. The Characteristic Function of Blood-Derived Exosomes and Exosomal circRNAs Isolated from Dairy Cattle during the Dry Period and Mid-Lactation. Int J Mol Sci 2023; 24:12166. [PMID: 37569544 PMCID: PMC10419012 DOI: 10.3390/ijms241512166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Exosomes are key mediators of intercellular communication. They are secreted by most cells and contain a cargo of protein-coding genes, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), which modulate recipient cell behavior. Herein, we collected blood samples from Holstein cows at days 30 (mid-lactation) and 250 (dry period) of pregnancy. Prolactin, follicle-stimulating hormone, luteinizing hormone, estrogen, and progesterone levels showed an obvious increase during D250. We then extracted exosomes from bovine blood samples and found that their sizes generally ranged from 100 to 200 nm. Further, Western blotting validated that they contained CD9, CD63, and TSG101, but not calnexin. Blood-derived exosomes significantly promoted the proliferation of mammary epithelial cells, particularly from D250. This change was accompanied by increased expression levels of proliferation marker proteins PCNA, cyclin D, and cyclin E, as detected by EdU assay, cell counting kit-8 assay, and flow cytometric cell cycle analysis. Moreover, we treated mammary epithelial cells with blood-derived exosomes that were isolated from the D30 and D250 periods. And RNA-seq of two groups of cells led to the identification of 839 differentially expressed genes that were significantly enriched in KEGG signaling pathways associated with apoptosis, cell cycle and proliferation. In bovine blood-derived exosomes, we found 12,747 protein-coding genes, 31,181 lncRNAs, 9374 transcripts of uncertain coding potential (TUCP) candidates, and 460 circRNAs, and 32 protein-coding genes, 806 lncRNAs, 515 TUCP candidates, and 45 circRNAs that were differentially expressed between the D30 and D250 groups. We selected six highly expressed and four differentially expressed circRNAs to verify their head-to-tail splicing using PCR and Sanger sequencing. To summarize, our findings improve our understanding of the key roles of blood-derived exosomes and the characterization of exosomal circRNAs in mammary gland development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (Z.Z.); (X.H.); (J.L.); (T.C.); (Q.X.)
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (Z.Z.); (X.H.); (J.L.); (T.C.); (Q.X.)
| |
Collapse
|
7
|
Sun P, Chen M, Sooranna SR, Shi D, Liu Q, Li H. The emerging roles of circRNAs in traits associated with livestock breeding. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1775. [PMID: 36631071 DOI: 10.1002/wrna.1775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023]
Abstract
Many indicators can be used to evaluate the productivity and quality of livestock, such as meat and milk production as well as fat deposition. Meat and milk production are measures of livestock performance, while fat deposition affects the taste and flavor of the meat. The circRNAs, are non-coding RNAs, that are involved in the regulation of all these three traits. We review the functions and mechanisms of circRNAs in muscle and fat development as well as lactation to provide a theoretical basis for circRNA research in animal husbandry. Various phenotypic changes presented in livestock may be produced by different circRNAs. Our current concern is how to use the roles played by circRNAs to our advantage to produce the best possible livestock. Hence, we describe the advantages and disadvantages of knockout techniques for circRNAs. In addition, we also put forward our thoughts regarding the mechanism and network of circRNAs to provide researchers with novel ideas of how molecular biology can help us advance our goals in animal farming. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Ping Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Suren R Sooranna
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Xuan R, Wang J, Li Q, Wang Y, Du S, Duan Q, Guo Y, He P, Ji Z, Chao T. Identification and Characterization of circRNAs in Non-Lactating Dairy Goat Mammary Glands Reveal Their Regulatory Role in Mammary Cell Involution and Remodeling. Biomolecules 2023; 13:biom13050860. [PMID: 37238729 DOI: 10.3390/biom13050860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
This study conducted transcriptome sequencing of goat-mammary-gland tissue at the late lactation (LL), dry period (DP), and late gestation (LG) stages to reveal the expression characteristics and molecular functions of circRNAs during mammary involution. A total of 11,756 circRNAs were identified in this study, of which 2528 circRNAs were expressed in all three stages. The number of exonic circRNAs was the largest, and the least identified circRNAs were antisense circRNAs. circRNA source gene analysis found that 9282 circRNAs were derived from 3889 genes, and 127 circRNAs' source genes were unknown. Gene Ontology (GO) terms, such as histone modification, regulation of GTPase activity, and establishment or maintenance of cell polarity, were significantly enriched (FDR < 0.05), which indicates the functional diversity of circRNAs' source genes. A total of 218 differentially expressed circRNAs were identified during the non-lactation period. The number of specifically expressed circRNAs was the highest in the DP and the lowest in LL stages. These indicated temporal specificity of circRNA expression in mammary gland tissues at different developmental stages. In addition, this study also constructed circRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) regulatory networks related to mammary development, immunity, substance metabolism, and apoptosis. These findings help understand the regulatory role of circRNAs in mammary cell involution and remodeling.
Collapse
Affiliation(s)
- Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Shanfeng Du
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Qingling Duan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Yanfei Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Peipei He
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| |
Collapse
|
9
|
Li C, Yan Y, Pan C, Adjei M, Shahzad K, Wang P, Pan M, Li K, Wang Y, Zhao W. Identification and analysis of differentially expressed (DE) circRNA in epididymis of yak and cattleyak. Front Vet Sci 2023; 10:1040419. [PMID: 36825227 PMCID: PMC9941329 DOI: 10.3389/fvets.2023.1040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Circular RNAs (circRNAs), as endogenous non-coding RNA with unique closed ring structure, is closely related to animal reproduction, and understanding the expression of circRNA in yak and cattleyak epididymal tissues is of great significance for understanding cattleyak sterility. Based on this, we screened and identified the differentially expressed circRNA in the epididymis of three yaks and two cattleyak. A total of 1,298 circRNAs were identified in the epididymis of yak and cattleyak, of which 137 differentially expressed (DE) circRNAs and the functions of some of them were elucidated in this research, as well as qPCR verification to 6 circRNAs from the 137 DE circRNAs. Gene Ontology (GO) enrichment analysis suggested that DE circRNAs were mainly related to metabolic process, development process, immune system process, reproductive process, reproduction, biological adhesion and growth. COG classification analysis showed that the DE circRNAs derived genes were mainly related to replication, recombination and repair. KEGG pathway analysis suggested that DE circRNAs were mainly involved in RNA degradation. In addition, we also screened Bta-mir-103, which is a circRNA binding miRNA related to sperm activity.
Collapse
Affiliation(s)
- Chunhai Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Yan Yan
- College of Life Sciences, Yan'an University, Yan'An, Shaanxi, China
| | - Cheng Pan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Michael Adjei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Peng Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Meilan Pan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Kerui Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Ye Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China,*Correspondence: Ye Wang ✉
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China,Wangsheng Zhao ✉
| |
Collapse
|
10
|
Transcriptome RNA Sequencing Reveals That Circular RNAs Are Abundantly Expressed in Embryonic Breast Muscle of Duck. Vet Sci 2023; 10:vetsci10020075. [PMID: 36851380 PMCID: PMC10004440 DOI: 10.3390/vetsci10020075] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Circular RNAs are widespread in various species and have important roles in myogenesis. However, the circular RNAs involved in breast muscle development in ducks have not yet been studied. Here, to identify circular RNAs during duck skeletal muscle development, three pectorales from Shan Ma ducks at E13 and E19, which represent undifferentiated and differentiated myoblasts, respectively, were collected and subjected to RNA sequencing. A total of 16,622 circular RNAs were identified, of which approximately 80% were exonic circular RNAs and 260 were markedly differentially expressed between E19 and E13. The parental genes of the differentially expressed circular RNAs were significantly enriched in muscle-related biological processes. Moreover, we found that the overexpression of circGAS2-2 promoted cell cycle progression and increased the proliferation viability of duck primary myoblasts; conversely, knockdown of circGAS2-2 retarded the cell cycle and reduced the proliferation viability of myoblasts. Taken together, our results demonstrate that circular RNAs are widespread and variously expressed during the development of duck skeletal muscle and that circGAS2-2 is involved in the regulation of myogenesis.
Collapse
|
11
|
Chen X, Wang D, An J. Circular RNA ame_circ_2015 Function as microRNA Sponges in Regulating Egg-Laying of Honeybees ( Apis mellifera). LIFE (BASEL, SWITZERLAND) 2023; 13:life13010161. [PMID: 36676110 PMCID: PMC9865145 DOI: 10.3390/life13010161] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Honeybees (Apis mellifera) are critical to maintaining ecological balance and are important pollinators. The oviposition behavior in honeybees is important and complex. Circular RNAs (circRNAs) are found to form circRNA-miRNA crosstalk and play important roles in reproduction processes. Here, dual luciferase reporter was used to confirm the crosstalk between ame_circ_2015 and ame_miR-14-3p. Functional experiments in vitro and in vivo were performed to investigate the biological functions of ame_circ_2015 in egg-laying of queens. The results showed that ame_circ_2015 directly target ame_miR-14-3p, and the expression of ame_circ_2015 was negatively correlated with ame_miR-14-3p expression. Overexpression results showed that ame_circ_2015 promoted the number of eggs laid and knockdown of ame_circ_2015 suppressed the number of eggs laid. It demonstrates that up-regulated ame_circ_2015 promotes the number of eggs laid by sponging ame_miR-14-3p. The study will provide information towards a better understanding of circRNA-miRNA crosstalk in egg-laying in honeybees.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: ; Tel.: +86-1013426240519
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiandong An
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Feng X, Cai Z, Gu Y, Mu T, Yu B, Ma R, Liu J, Wang C, Zhang J. Excavation and characterization of key circRNAs for milk fat percentage in Holstein cattle. J Anim Sci 2023; 101:skad157. [PMID: 37209411 PMCID: PMC10290504 DOI: 10.1093/jas/skad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/19/2023] [Indexed: 05/22/2023] Open
Abstract
Milk fat percentage is one of the significant indicators governing the price and quality of milk and is regulated by a variety of non-coding RNAs. We used RNA sequencing (RNA-seq) techniques and bioinformatics approaches to explore potential candidate circular RNAs (circRNAs) regulating milk fat metabolism. After analysis, compared with low milk fat percentage (LMF) cows, 309 circRNAs were significantly differentially expressed in high milk fat percentage (HMF) cows. Functional enrichment and pathway analysis revealed that the main functions of the parental genes of differentially expressed circRNAs (DE-circRNAs) were related to lipid metabolism. We selected four circRNAs (Novel_circ_0000856, Novel_circ_0011157, novel_circ_0011944, and Novel_circ_0018279) derived from parental genes related to lipid metabolism as key candidate DE-circRNAs. Their head-to-tail splicing was demonstrated by linear RNase R digestion experiments and Sanger sequencing. However, the tissue expression profiles showed that only Novel_circ_0000856, Novel_circ_0011157, and Novel_circ_0011944 were expressed with high abundance in breast tissue. Based on the subcellular localization found that Novel_circ_0000856, Novel_circ_0011157, and Novel_circ_0011944 mainly function as competitive endogenous RNAs (ceRNAs) in the cytoplasm. Therefore, we constructed their ceRNA regulatory networks, and the five hub target genes (CSF1, TET2, VDR, CD34, and MECP2) in ceRNAs were obtained by CytoHubba and MCODE plugins in Cytoscape, as well as tissue expression profiles analysis of target genes. These genes play a key role as important target genes in lipid metabolism, energy metabolism, and cellular autophagy. The Novel_circ_0000856, Novel_circ_0011157, and Novel_circ_0011944 regulate the expression of hub target genes through interaction with miRNAs and constitute key regulatory networks that may be involved in milk fat metabolism. The circRNAs obtained in this study may act as miRNA sponges and thus influence mammary gland development and lipid metabolism in cows, which improves our understanding of the role of circRNAs in cow lactation.
Collapse
Affiliation(s)
- Xiaofang Feng
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Zhengyun Cai
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Tong Mu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Baojun Yu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Ruoshuang Ma
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Jiaming Liu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Chuanchuan Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
13
|
Ma H, Bian S, Li Y, Ni A, Zhang R, Ge P, Han P, Wang Y, Zhao J, Zong Y, Yuan J, Sun Y, Chen J. Analyses of circRNAs profiles of the lactating and nonlactating crops in pigeon (Columba livia). Poult Sci 2022; 102:102464. [PMID: 36680859 PMCID: PMC9871334 DOI: 10.1016/j.psj.2022.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Pigeon has the specific biological ability to produce pigeon milk (also known as crop milk) by its crop. Circular RNAs (circRNAs) are important noncoding RNAs acting as the sponges of miRNAs, but the molecular mechanism of circRNAs regulating crop milk production has not been reported in pigeon. We compared expression profiles of crops during lactating and nonlactating crops, and networks of competing endogenous RNAs (ceRNAs) were constructed. The results showed a total of 8,723 circRNAs were identified, and there were 770 differentially expressed circRNAs (DECs) between these two different periods of crops. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the host genes of DECs were enriched in GnRH, MAPK, Insulin, Wnt, and AMPK signaling pathways. Furthermore, gga_circ_0000300 interacted with miR-92-2-5p, which targeted genes participating in lactation and milk composition synthesis. Gga_circ_0003018, gga_circ_0003019 and gga_circ_0003020 could bind with let-7c-5p regulating SOCS3 in crop milk production. These findings provide the circRNAs expression profiles and facilitate the analysis of molecular mechanism of crop milk production in pigeon.
Collapse
Affiliation(s)
- Hui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shixiong Bian
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunlei Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Aixin Ni
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ran Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pingzhuang Ge
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pengmin Han
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China
| | - Yuanmei Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinmeng Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhe Zong
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingwei Yuan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Sun
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
14
|
Exploring the physiological roles of circular RNAs in livestock animals. Res Vet Sci 2022; 152:726-735. [PMID: 36270182 DOI: 10.1016/j.rvsc.2022.09.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
|
15
|
Feng X, Cai Z, Mu T, Yu B, Wang Y, Ma R, Liu J, Wang C, Zhang J, Gu Y. CircRNA screening and ceRNA network construction for milk fat metabolism in dairy cows. Front Vet Sci 2022; 9:995629. [PMID: 36439356 PMCID: PMC9684208 DOI: 10.3389/fvets.2022.995629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Milk fat is one of the main reference elements for evaluating milk quality and is a primary objective trait in dairy cattle breeding. In recent years, circular RNAs (circRNAs) have been found to play crucial roles in many biological processes. However, the function and expression profiles of circRNAs in milk fat synthesis in cows are not completely understood. We performed RNA sequencing to analyze the genome-wide expression of circRNA transcripts in bovine mammary epithelial cells (BMECs) from cows with extreme differences in milk fat percentage. We identified candidate differential circRNAs associated with milk fat metabolism using functional enrichment analysis and constructed a lipid metabolism-related competing endogenous RNA (ceRNA) interactive regulatory network. RESULTS A total of 290 circRNAs were significantly differentially expressed (DE-circRNAs) in high milk fat percentage (HMF) cows compared to that in low milk fat percentage (LMF) cows. Of the 290 circRNAs, 142 were significantly upregulated and 148 were significantly downregulated. Enrichment analysis (Gene Ontology and Kyoto Encyclopedia of Genes and Genomes) identified four DE-circRNAs (circ_0001122, circ_0007367, circ_0018269, and circ_0015179) that potentially regulate milk fat metabolism. Among them, circ_0001122, circ_0007367, and circ_0015179 had relatively high expression levels in cow mammary gland tissue compared to other tissues (heart, liver, kidney, uterus, ovaries, and small intestine) of cows. The regulatory networks circ_0001122:miR-12043:LIPG, circ_0007367:miR-331-3p:CIDEA/PML, and circ_0018269:miR-11989:RORC/HPX are potential networks to explore the mechanism of milk fat regulation. CONCLUSIONS These results reveal the possible role of circRNAs in milk fat metabolism in dairy cows. Several important circRNAs and ceRNAs affecting milk fat synthesis were identified, providing insights into the complex biology of milk fat synthesis as well as a novel theoretical perspective for future research on lactation, milk quality, and breed improvement in dairy cows.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yaling Gu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
16
|
Chen W, Gu X, Lv X, Cao X, Yuan Z, Wang S, Sun W. Non-coding transcriptomic profiles in the sheep mammary gland during different lactation periods. Front Vet Sci 2022; 9:983562. [PMID: 36425117 PMCID: PMC9679157 DOI: 10.3389/fvets.2022.983562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
Sheep milk production is a dynamic and multifactorial trait regulated by diverse biological mechanisms. To improve the quality and production of sheep milk, it is necessary to understand the underlying non-coding transcriptomic mechanisms. In this study, ribonucleic acid-sequencing (RNA-seq) was used to profile the expression of microRNAs (miRNAs) and circular RNAs (circRNAs) in the sheep mammary gland at three key lactation time points (perinatal period, PP; early lactation, EL; and peak lactation, PL). A total of 2,369 novel circRNAs and 272 miRNAs were profiled, of which 348, 373, and 36 differentially expressed (DE) circRNAs and 30, 34, and 7 DE miRNAs were detected in the comparison of EL vs. PP, PL vs. PP, and PL vs. EL, respectively. A series of bioinformatics analyses including functional enrichment, machine learning prediction, and competing endogenous RNA (ceRNA) network analyses were conducted to identify subsets of the potential candidate miRNAs (e.g., oar_miR_148a, oar_miR_362, and oar_miR_432) and circRNAs (e.g., novel_circ_0011066, novel_circ_0010460, and novel_circ_0006589) involved in sheep mammary gland development. Taken together, this study offers a window into the dynamics of non-coding transcriptomes that occur during sheep lactation and may provide further insights into miRNA and circRNA that influence sheep mammary gland development.
Collapse
Affiliation(s)
- Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinyu Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shanhe Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| |
Collapse
|
17
|
Liu Q, Zhang M, Guo T, Wu S, Zong Y, Xu C, Zhu Z, Zhang Y, Cao Z. Expression Profiling of Circular RNAs in Early Pregnant Jianghuai Buffaloes. Animals (Basel) 2022; 12:ani12202748. [PMID: 36290133 PMCID: PMC9597768 DOI: 10.3390/ani12202748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Simple Summary CircRNA transcriptome sequencing technology is widely used in the study of germ-line stem cell proliferation and differentiation and early embryonic development, but the research on early pregnancy diagnosis in female animals is still in the preliminary stage, and the specific regulatory mechanism has not been reported. Here, we identified numerous differentially expressed circRNAs (DECs) in the venous blood of the distinctive local breed of Chinese Jianghuai buffalo. Analysis of the enrichment showed that DECs were mainly enriched in the epidermal growth factor receptor-signaling pathway that is important for embryonic development and pregnancy maintenance. These findings have provided a better understanding of buffalo pregnancy establishment and a potential basis for improving early pregnancy diagnosis techniques in buffalo. Abstract Circular RNA (circRNA) is expressed in cells and tissues of several species. However, the expression of circRNAs in the blood of Jianghuai buffaloes during early pregnancy has not been reported. In this study, we identified the DECs in the blood of Jianghuai buffaloes and annotated the functions of these DECs. The results showed that there were 890 DECs between the pregnant and non-pregnant groups, of which more than 80% were exon-derived circRNAs, including 323 up-regulated circRNAs and 567 down-regulated circRNAs. Enrichment analysis revealed that DECs were mainly enriched in the epidermal growth factor receptor-signaling pathway important for embryonic development and pregnancy maintenance. In addition, most DECs have multiple miRNA targets, suggesting that these DECs have the potential to function as miRNA sponges. In conclusion, several DECs are present between pregnant and non-pregnant Jianghuai buffaloes, and these DECs are associated with embryo implantation and pregnancy establishment.
Collapse
Affiliation(s)
- Qiuchen Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mengya Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tenglong Guo
- Department of Animal Engineering, Huaian Bioengineering Vocational College, Huaian 223001, China
| | - Sucheng Wu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yanfeng Zong
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Changzhi Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhihua Zhu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (Y.Z.); (Z.C.); Tel.: +86-551-6578-6537 (Y.Z. & Z.C.)
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (Y.Z.); (Z.C.); Tel.: +86-551-6578-6537 (Y.Z. & Z.C.)
| |
Collapse
|
18
|
Wu J, Zhang S, Yue B, Zhang S, Jiang E, Chen H, Lan X. CircRNA Profiling Reveals CircPPARγ Modulates Adipogenic Differentiation via Sponging miR-92a-3p. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6698-6708. [PMID: 35610559 DOI: 10.1021/acs.jafc.2c01815] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adipogenesis describes the proliferation, differentiation, and apoptosis of mature adipocytes from primary adipocytes and is regulated by post-transcriptional modifications. Circular RNAs (circRNAs) play critical roles in mammalian development and physiology. However, the circRNA-mediated regulation of adipogenesis remains poorly understood. We profiled circRNA expression during bovine primary adipogenesis, detecting 16 circRNA candidates, including circPPARγ, which was abundant in the adipose tissue. Overexpression (overexpression plasmids) and interference (small interfering RNAs) with circPPARγ in bovine primary adipocytes, and proliferation, differentiation, and apoptosis were analyzed using EdU (5-ethynyl-2'-deoxyuridine) cell proliferation, cell counting kit-8, flow cytometry, TdT-mediated dUTP nick-end labeling apoptosis assay, Oil Red O staining, quantitative real-time PCR, and western blotting assays, which showed that circPPARγ facilitates adipocyte differentiation and inhibits proliferation and apoptosis. Dual-luciferase reporter assay and RNA immunoprecipitation assays indicated that circPPARγ binds miR-92a-3p and YinYang 1 (YY1). A novel regulatory pathway regulating adipogenesis and adipose deposition was revealed.
Collapse
Affiliation(s)
- Jiyao Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaoli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Binglin Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Sihuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Enhui Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
19
|
Bin Li, Yan R, Liu X, Meng Z, Meng P, Wang Y, Huang Y. CircRNAs Biogenesis, Functions, and Its Research Progress in Aquaculture. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Xiao J, Joseph S, Xia M, Teng F, Chen X, Huang R, Zhai L, Deng W. Circular RNAs Acting as miRNAs’ Sponges and Their Roles in Stem Cells. J Clin Med 2022; 11:jcm11102909. [PMID: 35629034 PMCID: PMC9145679 DOI: 10.3390/jcm11102909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Circular RNAs (circRNAs), a novel type of endogenous RNAs, have become a subject of intensive research. It has been found that circRNAs are important players in cell differentiation and tissue homeostasis, as well as disease development. Moreover, the expression of circRNAs is usually not correlated with their parental gene expression, indicating that they are not only a steady-state by-product of mRNA splicing but a product of variable splicing under novel regulation. Sequence conservation analysis has also demonstrated that circRNAs have important non-coding functions. CircRNAs exist as a covalently closed loop form in mammalian cells, where they regulate cellular transcription and translation processes. CircRNAs are built from pre-messenger RNAs, and their biogenesis involves back-splicing, which is catalyzed by spliceosomes. The splicing reaction gives rise to three different types of intronic, exotic and exon–intron circular RNAs. Due to higher nuclease stability and longer half lives in cells, circRNAs are more stable than linear RNAs and have enormous clinical advantage for use as diagnostic and therapeutic biomarkers for disease. In recent years, it has been reported that circRNAs in stem cells play a crucial role in stem cell function. In this article, we reviewed the general feature of circRNAs and the distinct roles of circRNAs in stem cell biology, including regulation of stem cell self-renewal and differentiation. CircRNAs have shown unique expression profiles during differentiation of stem cells and could serve as promising biomarkers of these cells. As circRNAs play pivotal roles in stem cell regulation as well as the development and progression of various diseases, we also discuss opportunities and challenges of circRNA-based treatment strategies in future effective therapies for promising clinical applications.
Collapse
Affiliation(s)
- Juan Xiao
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Shija Joseph
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Mengwei Xia
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Feng Teng
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Xuejiao Chen
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Rufeng Huang
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Lihong Zhai
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
- Correspondence: (L.Z.); (W.D.)
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510060, China
- Jiangxi Deshang Pharmaceutical Co., Ltd., Zhangshu 336000, China
- Correspondence: (L.Z.); (W.D.)
| |
Collapse
|
21
|
Zhuang X, Lin Z, Xie F, Luo J, Chen T, Xi Q, Zhang Y, Sun J. Identification of circRNA-associated ceRNA networks using longissimus thoracis of pigs of different breeds and growth stages. BMC Genomics 2022; 23:294. [PMID: 35410129 PMCID: PMC9004053 DOI: 10.1186/s12864-022-08515-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 03/29/2022] [Indexed: 11/28/2022] Open
Abstract
Background Long-term artificial selection for growth rate and lean meat rate has eventually led to meat quality deterioration. Muscle fiber type is a key factor that markedly affects meat quality. circRNAs have been reported to participate in diverse biological activities, including myofiber growth and development; thus, we herein compared porcine circRNA transcriptome between oxidative and glycolytic muscle tissues. Results Longissimus thoracis muscle tissues were obtained from Lantang and Landrace pigs at birth (LT1D and LW1D, respectively) and 90 postnatal days (LT90D and LW90D, respectively). Hematoxylin and eosin staining and quantitative real-time PCR revealed that all structural traits of the muscle showed large variations between different breeds and growth stages. In total, 329 known miRNAs and 42,081 transcript candidates were identified; 6,962 differentially expressed transcripts were found to play a key role in myogenesis by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. In addition, 3,352 circRNAs were identified using five predicting algorithms, and 104 circRNA candidates were differentially expressed. Integrated analysis of differentially expressed miRNAs, mRNAs, and circRNAs led to the identification of 777, 855, and 22 convincing ceRNA interactions in LT1D vs. LT90D, LW1D vs. LW90D, and LT90D vs. LW90D, respectively. Finally, we identified a circRNA candidate circKANSL1L, which showed high homology between mice and pigs, and it was found to inhibit the proliferation of C2C12 cells but promote their differentiation. Conclusions We identified genome-wide circRNAs in 0- and 90-day-old Lantang and Landrace pigs by RNA-seq and found that circRNAs were abundant, differentially expressed, and associated with myogenesis. Our results should serve as a reference for future studies on pork quality. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08515-7.
Collapse
Affiliation(s)
- Xiaona Zhuang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zekun Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
22
|
Jiao P, Zhang M, Wang Z, Liang G, Xie X, Zhang Y, Chen Z, Jiang Q, Loor JJ. Circ003429 Regulates Unsaturated Fatty Acid Synthesis in the Dairy Goat Mammary Gland by Interacting with miR-199a-3p, Targeting the YAP1 Gene. Int J Mol Sci 2022; 23:ijms23074068. [PMID: 35409428 PMCID: PMC8999533 DOI: 10.3390/ijms23074068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023] Open
Abstract
Fatty acid composition is a key factor affecting the flavor and quality of goat milk. CircRNAs are now recognized as important regulators of transcription, and they play an important role in the control of fatty acid synthesis. Thus, understanding the regulatory mechanisms controlling this process in ruminant mammary glands is of great significance. In the present study, mammary tissue from dairy goats during early lactation and the dry period (nonlactating) were collected and used for high-throughput sequencing. Compared to levels during the dry period, the expression level of circ003429 during early lactation was lower (12.68-fold downregulated). In isolated goat mammary epithelial cells, circ003429 inhibited the synthesis of triglycerides (TAG) and decreased the content of unsaturated fatty acids (C16:1, C18:1, and C18:2), indicating that this circRNA plays an important role in regulating lipid synthesis. A binding site for miR-199a-3p in the circ003429 sequence was detected, and a dual-luciferase reporter system revealed that circ003429 targets miR-199a-3p. Overexpression of circ003429 (pcDNA-circ003429) downregulated the abundance of miR-199a-3p. In contrast, overexpression of miR-199a-3p increased TAG content and decreased mRNA abundance of Yes-associated protein 1 (YAP1) (a target gene of miR-199a-3p), and TAG content was decreased and mRNA abundance was increased in response to overexpression of circ003429. These results indicate that circ003429 alleviates the inhibitory effect of miR-199a-3p on the mRNA abundance of YAP1 by binding miR-199a-3p, resulting in subsequent regulation of the synthesis of TAG and unsaturated fatty acids.
Collapse
Affiliation(s)
- Peixin Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (P.J.); (M.Z.); (Z.W.); (G.L.); (X.X.); (Y.Z.)
| | - Meimei Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (P.J.); (M.Z.); (Z.W.); (G.L.); (X.X.); (Y.Z.)
| | - Ziwei Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (P.J.); (M.Z.); (Z.W.); (G.L.); (X.X.); (Y.Z.)
| | - Gege Liang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (P.J.); (M.Z.); (Z.W.); (G.L.); (X.X.); (Y.Z.)
| | - Xiaolai Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (P.J.); (M.Z.); (Z.W.); (G.L.); (X.X.); (Y.Z.)
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (P.J.); (M.Z.); (Z.W.); (G.L.); (X.X.); (Y.Z.)
| | - Zhi Chen
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.C.); (J.J.L.)
| | - Qianming Jiang
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Juan J. Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
- Correspondence: (Z.C.); (J.J.L.)
| |
Collapse
|
23
|
Wang J, Wu X, Kang Y, Zhang L, Niu H, Qu J, Wang Y, Ji D, Li Y. Integrative analysis of circRNAs from Yangtze River Delta white goat neck skin tissue by high-throughput sequencing (circRNA-seq). Anim Genet 2022; 53:405-415. [PMID: 35383992 DOI: 10.1111/age.13198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/16/2022] [Accepted: 03/22/2022] [Indexed: 01/22/2023]
Abstract
The Yangtze River Delta white goat is a unique goat species that can produce superior-quality brush hair. The formation of this brush hair is controlled by a series of critical genes and related signaling pathways. Circular RNAs (circRNAs), are ubiquitous endogenous non-coding RNAs that regulate many biological and physiological processes in mammals. However, little is known about the potential regulatory role of circRNAs on superior-quality brush hair formation in Yangtze River Delta white goat. In this study, high-throughput sequencing technology was used to only detect circRNAs in the neck skin tissue of normal-quality goats (NHQs) and superior-quality goats (HQs). A total of 61 803 circRNAs were identified and 32 of them were differentially expressed in the NHQ group vs. the HQ group. Functional enrichment analysis showed that the source gene of differentially expressed circRNAs (DE-circRNAs) was enriched mostly in platelet activation and the focal adhesion signal pathway. Action mechanism analysis revealed that DE-circRNAs could sponge to many identified miRNAs, including miR-31, miR-125b, miR-let-7a and miR-149-5p, which have important roles in goat hair follicle stem cell growth, hair follicle development and morphogenesis. Altogether, our findings provide a valuable basis for studying circRNAs involved in superior-quality brush hair traits and meanwhile advance our understanding of circRNA complex regulation mechanisms in Yangtze River Delta white goat skin hair follicle development.
Collapse
Affiliation(s)
- Jian Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Xi Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yan Kang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liuming Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haoyuan Niu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jingwen Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanhu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Dejun Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Yongjun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| |
Collapse
|
24
|
Liang Y, Gao Q, Wang H, Guo M, Arbab AAI, Nazar M, Li M, Yang Z, Karrow NA, Mao Y. Identification and Characterization of Circular RNAs in Mammary Tissue from Holstein Cows at Early Lactation and Non-Lactation. Biomolecules 2022; 12:478. [PMID: 35327670 PMCID: PMC8946036 DOI: 10.3390/biom12030478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, circular RNAs (circRNAs) from Holstein cow mammary tissues were identified and compared between early lactation and non-lactation. After analysis, 10,684 circRNAs were identified, ranging from 48 to 99,406 bp, and the average size was 882 bp. The circRNAs were mainly distributed on chromosomes 1 to 11, and 89.89% of the circRNAs belonged to sense-overlapping circRNA. The exons contained with circRNAs ranged from 1 to 47 and were concentrated from 1 to 5. Compared with the non-lactating cows, 87 circRNAs were significantly differentially expressed in the peak lactation cows. There were 68 upregulated circRNAs and 19 downregulated circRNAs. Enrichment analysis of circRNAs showed that GO analysis mainly focused on immune response, triglyceride transport, T cell receptor signaling pathway, etc. Pathway analysis mainly focused on cytokine-cytokine receptor interaction, T helper 17 cell differentiation, fatty acid biosynthesis, the JAK-STAT signaling pathway, etc. Specific primers were designed for two proximal ends of the circRNA junction sites to allow for PCR validation of four randomly selected circRNAs and carry out circRNA-miRNA interaction research. This study revealed the expression profile and characteristics of circRNAs in mammary tissue from Holstein cows at early lactation and non-lactation, thus providing rich information for the study of circRNA functions and mechanisms, as well as potential candidate miRNA genes for studying lactation in Holstein cows.
Collapse
Affiliation(s)
- Yan Liang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Department of Animal Breeding and Production, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (Q.G.); (H.W.); (M.G.); (A.A.I.A.); (M.N.); (M.L.); (Z.Y.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qisong Gao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Department of Animal Breeding and Production, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (Q.G.); (H.W.); (M.G.); (A.A.I.A.); (M.N.); (M.L.); (Z.Y.)
| | - Haiyang Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Department of Animal Breeding and Production, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (Q.G.); (H.W.); (M.G.); (A.A.I.A.); (M.N.); (M.L.); (Z.Y.)
| | - Mengling Guo
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Department of Animal Breeding and Production, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (Q.G.); (H.W.); (M.G.); (A.A.I.A.); (M.N.); (M.L.); (Z.Y.)
| | - Abdelaziz Adam Idriss Arbab
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Department of Animal Breeding and Production, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (Q.G.); (H.W.); (M.G.); (A.A.I.A.); (M.N.); (M.L.); (Z.Y.)
- Biomedical Research Institute, Darfur University College, Nyala 63313, Sudan
| | - Mudasir Nazar
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Department of Animal Breeding and Production, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (Q.G.); (H.W.); (M.G.); (A.A.I.A.); (M.N.); (M.L.); (Z.Y.)
| | - Mingxun Li
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Department of Animal Breeding and Production, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (Q.G.); (H.W.); (M.G.); (A.A.I.A.); (M.N.); (M.L.); (Z.Y.)
| | - Zhangping Yang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Department of Animal Breeding and Production, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (Q.G.); (H.W.); (M.G.); (A.A.I.A.); (M.N.); (M.L.); (Z.Y.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Niel A. Karrow
- Center for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Yongjiang Mao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Department of Animal Breeding and Production, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (Q.G.); (H.W.); (M.G.); (A.A.I.A.); (M.N.); (M.L.); (Z.Y.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
25
|
CircEZH2 Regulates Milk Fat Metabolism through miR-378b Sponge Activity. Animals (Basel) 2022; 12:ani12060718. [PMID: 35327115 PMCID: PMC8944462 DOI: 10.3390/ani12060718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Heat stress has seriously threatened the performance and health of dairy cows and has become one of the most important factors restricting the development of the dairy industry. In our previous study, we found that heat stress markedly altered the expression patterns of circRNAs in dairy cow’s mammary gland tissue, and heat-induced circRNAs participated in the regulation of milk fat metabolism through competing endogenous RNA (ceRNA) networks. Therefore, we evaluated the roles of heat-induced circEZH2 in the regulation of milk fat metabolism in this study. In more detail, we found that circEZH2 affects the proliferation, apoptosis, and lipid metabolism of mammary gland epithelial cells, and successfully verified the targeting relationship of circEZH2-bta-miR378b-LPL and circEZH2-bta-miR378b-CD36. This experiment expands the basic data on the role of circRNA in milk fat regulation, and provides a theoretical basis for alleviating heat stress in dairy cows. Abstract In this study, we evaluated the roles of heat-induced circEZH2 in the regulation of milk fat metabolism. CircEZH2 overexpression increased HC11 cell proliferation and decreased apoptosis. These changes were accompanied by increased expression of proliferation marker proteins (PCNA, Cyclin D, and Cyclin E) and the anti-apoptotic protein Bcl2, while expression of the pro-apoptotic proteins Bax and cleaved-caspase was reduced. SiRNA-mediated silencing of EZH2 in HC11 cells had the opposite effects. CircEZH2 overexpression promoted the uptake of a fluorescent fatty acid (Bodipy) as well as expression of the fatty acid transport-related protein CD36, lipolysis-related protein LPL, and unsaturated fatty acid metabolism-related proteins FADS1 and SCD1. Dual luciferase reporter assays verified the targeting relationship of the two ceRNA networks, circEZH2-miR378b-LPL and circEZH2-miR378b-CD36. This information provides further clarification of the role of circRNAs in milk fat regulation in addition to a theoretical basis for alleviating the effects of heat stress on milk production by dairy cows.
Collapse
|
26
|
Ahmad SM, Bhat B, Manzoor Z, Dar MA, Taban Q, Ibeagha-Awemu EM, Shabir N, Hussain MI, Shah RA, Ganai NA. Genome wide expression analysis of circular RNAs in mammary epithelial cells of cattle revealed difference in milk synthesis. PeerJ 2022; 10:e13029. [PMID: 35251787 PMCID: PMC8896013 DOI: 10.7717/peerj.13029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/08/2022] [Indexed: 01/11/2023] Open
Abstract
Milk is an excellent source of nutrients for humans. Therefore, in order to enhance the quality and production of milk in cattle, it is interesting to examine the underlying mechanisms. A number of new investigations and research have found that, circRNA; a specific class of non-coding RNAs, is linked with the development of mammary gland and lactation. In the present study, genome wide identification and expression of the circRNAs in mammary epithelial cells of two distinct cattle breeds viz Jersey and Kashmiri at peak lactation was conducted. We reported 1554 and 1286 circRNA in Jersey and Kashmiri cattle, respectively, with 21 circRNAs being differentially expressed in the two breeds. The developmental genes of the established differentially expressed circRNAs were found to be largely enriched in antioxidant activity, progesterone, estradiol, lipid, growth hormone, and drug response. Certain pathways like MAPK, IP3K and immune response pathways were found significantly enriched in KEGG analysis. These results add to our understanding of the controlling mechanisms connected with the lactation process, as well as the function of circRNAs in bovine milk synthesis. Additionally, the comparative analysis of differentially expressed circRNAs showed significant conservation across different species.
Collapse
Affiliation(s)
- Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Basharat Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Zainab Manzoor
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mashooq Ahmad Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India,Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Qamar Taban
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Mohd Isfaqul Hussain
- Division of Veterinary Microbiology, SKUAST-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Riaz A. Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Nazir A. Ganai
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
27
|
Zhao Z, Bai Y, Tian H, Shi B, Li X, Luo Y, Wang J, Hu J, Abbas Raza SH. Interference with ACSL1 gene in bovine adipocytes: Transcriptome profiling of circRNA related to unsaturated fatty acid production. Genomics 2021; 113:3967-3977. [PMID: 34601049 DOI: 10.1016/j.ygeno.2021.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 01/12/2023]
Abstract
Long-chain acyl-CoA synthetase 1 (ACSL1) is a member of the acyl-CoA synthetase family that plays a vital role in lipid metabolism. We have previously shown that the ACSL1 gene regulates the composition of unsaturated fatty acids (UFAs) in bovine skeletal muscle, which in turn regulates the fatty acid synthesis and the generation of lipid droplets. Here, we used RNA-Seq to screen circRNAs that regulated the expression of ACSL1 gene and other UFA synthesis-related genes by RNA interference and noninterference in bovine adipocytes. The results of KEGG pathway analysis showed that the parental genes of differentially expressed (DE)-circRNAs were primarily enriched in the adipocytokine signaling pathway. The prediction results showed that novel_circ_0004855, novel_circ_0001507, novel_circ_0001731, novel_circ_0005276, novel_circ_0002060, novel_circ_0005405 and novel_circ_0004254 regulated UFA synthesis-related genes by interacting with the related miRNAs. These results could help expand our knowledge of the molecular mechanisms of circRNAs in the regulation of UFA synthesis in bovine adipocytes.
Collapse
Affiliation(s)
- Zhidong Zhao
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanbin Bai
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongshan Tian
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingang Shi
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xupeng Li
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Luo
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
28
|
Yan Q, Wang K, Han X, Tan Z. The Regulatory Mechanism of Feeding a Diet High in Rice Grain on the Growth and microRNA Expression Profiles of the Spleen, Taking Goats as an Artiodactyl Model. BIOLOGY 2021; 10:biology10090832. [PMID: 34571708 PMCID: PMC8467863 DOI: 10.3390/biology10090832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022]
Abstract
Several researchers have testified that feeding with diets high in rice grain induces subacute ruminal acidosis and increases the risk of gastrointestinal inflammation. However, whether diets high in rice grain affect spleen growth and related molecular events remains unknown. Therefore, the present study was conducted to investigate the effects of feeding a high-concentrate (HC) diet based on rice on the growth and microRNA expression profiles in goat spleen. Sixteen Liuyang black goats were used as an artiodactyl model and fed an HC diet for five weeks. Visceral organ weight, LPS (lipopolysaccharide) concentration in the liver and spleen, and microRNA expression were analyzed. The results showed that feeding an HC diet increased the heart and spleen indexes and decreased the liver LPS concentration (p < 0.05). In total, 596 microRNAs were identified, and twenty-one of them were differentially expressed in the spleens of goats fed with the HC diet. Specifically, several microRNAs (miR-107, miR-512, miR-51b, miR-191, miR-296, miR-326, miR-6123 and miR-433) were upregulated. Meanwhile, miR-30b, miR-30d, miR-1468, miR-502a, miR-145, miR-139, miR-2284f, miR-101 and miR-92a were downregulated. Additionally, their target gene CPPED1, CDK6, CCNT1 and CASP7 expressions were inhibited (p < 0.05). These results indicated that the HC diet promoted the growth of the heart and spleen. The HC diet also regulated the expression of miR-326, miR-512-3p, miR-30b, miR-30d, miR-502a and their target genes (CPPED1, CDK6 and CCNT1) related to the enhancement of splenocyte proliferation. The HC diet also modulated the expression of miR-15b-5p, miR-1468 and miR-92a, related to the suppression of splenocyte apoptosis.
Collapse
Affiliation(s)
- Qiongxian Yan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.Y.); (K.W.); (X.H.)
| | - Kaijun Wang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.Y.); (K.W.); (X.H.)
| | - Xuefeng Han
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.Y.); (K.W.); (X.H.)
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.Y.); (K.W.); (X.H.)
- Hunan Co-Innovation Center of Animal Production Safety—CICAPS, Changsha 410128, China
- Correspondence:
| |
Collapse
|
29
|
Liu A, Chen X, Liu M, Zhang L, Ma X, Tian S. Differential Expression and Functional Analysis of CircRNA in the Ovaries of Low and High Fecundity Hanper Sheep. Animals (Basel) 2021; 11:ani11071863. [PMID: 34201517 PMCID: PMC8300399 DOI: 10.3390/ani11071863] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/30/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Litter size is an important trait affecting reproductive capacity and breeding economics in meat sheep. Consequently, revealing its molecular mechanism helps us understand multiple lambs from the genetic perspective. In this study, we provide a genome-wide expression profile of circular RNAs (circRNAs) expression in Hanper sheep, which is a new breed of meat sheep raised by cross and self-group breeding for 15 years. In this study, ovarian circular RNAs and miRNAs associated with high and low fertility Hanper sheep are identified during the follicular and luteal phases of the estrous cycle, and their potential biological functions are predicted through Gene Ontology (GO), KEGG, GSEA, STEM, WGCNA analysis. Abstract Litter size is a considerable quality that determines the production efficiency of mutton sheep. Therefore, revealing the molecular regulation of high and low fertility may aid the breeding process to develop new varieties of mutton sheep. CircRNAs are the important factors regulating follicular development, but their mechanism role in the regulation of litter size in Hanper sheep is not clear. In the present study, ovarian tissues from the follicular (F) or luteal phase (L) of Hanper sheep that were either consecutive monotocous (M) or polytocous were collected. Then, we performed transcriptome sequencing to screen for differentially expressed circRNAs (DE-circRNAs) and elucidate their function. In total, 4256 circRNA derived from 2184 host genes were identified in which 183 (146 were upregulated, while 37 were downregulated) were differentially expressed in monotocous sheep in the follicular phase versus polytocous sheep in the follicular phase (MF vs. PF). Moreover, 34 circRNAs (14 were upregulated, while 20 were downregulated) were differentially expressed in monotocous sheep in the luteal phase versus polytocous sheep in the luteal sheep (ML vs. PL). This was achieved through DE-circRNAs function enrichment annotation analysis by GESA, GO, and KEGG, which function through the EGF-EGFR-RAS-JNK, TGF-β and thyroid hormone signaling pathway to affect the litter size of Hanper sheep in MF vs. PF and ML vs. PL. STEM results showed that MAPK signaling pathways play a key role in MF vs. PF and ML vs. PL. Through WGCNA analysis, AKT3 was a core gene in MF vs. PF and ML vs. PL. Moreover, competitive endogenous RNA (ceRNA) network analysis revealed the target binding sites for miRNA such as oar-miR-27a, oar-miR-16b, oar-miR-200a/b/c, oar-miR-181a, oar-miR-10a/b, and oar-miR-432 in the identified DE-cirRNAs.
Collapse
Affiliation(s)
- Aiju Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (A.L.); (X.C.); (X.M.)
| | - Xiaoyong Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (A.L.); (X.C.); (X.M.)
| | - Menghe Liu
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Limeng Zhang
- Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou 450000, China;
| | - Xiaofei Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (A.L.); (X.C.); (X.M.)
| | - Shujun Tian
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (A.L.); (X.C.); (X.M.)
- The Research Center of Cattle and Sheep Embryonic Technique of Hebei Province, Baoding 071000, China
- Correspondence: ; Tel.: +86-312-752-8449
| |
Collapse
|
30
|
Transcripts and protein levels of CSN1S1 and CSN3 genes in dairy cattle mammary gland secretory tissue during chronic staphylococcal infection. J DAIRY RES 2021; 88:73-77. [PMID: 33663628 DOI: 10.1017/s0022029921000145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Our objective was to determine the influence of chronic coagulase-positive staphylococci (CoPS) or coagulase-negative staphylococci (CoNS) infection on the mRNA and protein levels of two main milk proteins responsible for cheese curd quantity and quality, alpha-S1-casein (CSN1S1) and kappa-casein (CSN3). Measurements were made in cow mammary parenchyma with a prevalence of secretory tissue (MGST). Samples of MGST were collected from the separate quarters and divided into CoPS, CoNS and bacteria-free (H) groups according to the microbiological status of the quarter milk. No differences in CSN1S1 and CSN3 mRNA level were found between groups, however, CSN1S1 protein level was significantly higher in the H group than the CoNS group, and CSN3 protein level was significantly higher in H than CoPS group. Hence, while the CSN1S1 and CSN3 genes appear to be constitutively expressed at the mRNA level in dairy cow MGST during mastitis, CoNS infection negatively affected CSN1S1 protein level, and CoPS infection negatively affected CSN3 protein level. The lack of change at the mRNA level suggests that staphylococcal infection may affect the post-transcriptional or post-translational modifications.
Collapse
|
31
|
Functional Role of circRNAs in the Regulation of Fetal Development, Muscle Development, and Lactation in Livestock. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5383210. [PMID: 33688493 PMCID: PMC7914090 DOI: 10.1155/2021/5383210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 01/23/2021] [Accepted: 02/05/2021] [Indexed: 01/04/2023]
Abstract
circRNAs are a class of endogenous noncoding RNA molecules with closed loop structures. They are mainly responsible for regulating gene expression in eukaryotic cells. With the emergence of high-throughput RNA sequencing (RNA-Seq) and new types of bioinformatics tools, thousands of circRNAs have been discovered, making circRNA one of the research hotspots. Recent studies have shown that circRNAs play an important regulatory role in the growth, reproduction, and formation of livestock products. They can not only regulate mammalian fetal growth and development but also have important regulatory effects on livestock muscle development and lactation. In this review, we briefly introduce the putative biogenic pathways and regulatory functions of circRNA and highlight our understanding of circRNA and its latest advances in fetal development, muscle development, and lactation biogenesis as well as expression in livestock. This review will provide a theoretical basis for the research and development of related industries.
Collapse
|
32
|
Qi Y, Zhang L, Guo Y, Wang J, Chu M, Zhang Y, Guo J, Li Q. Genome-wide identification and functional prediction of circular RNAs in response to heat stress in Chinese Holstein cows. Anim Biotechnol 2021; 33:1170-1180. [PMID: 33586615 DOI: 10.1080/10495398.2021.1879825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Heat stress (HS) leads to substantial economic loss of dairy industry each year. The negative effect of HS in dairy cows is becoming one of the more urgent issue due to accelerating side-effects of global warming. Various genes are involved in HS response but the information about the role of noncoding RNAs, especially circular RNAs (circRNAs) is largely unknown. In our study, we aimed to investigate the different expression profile of circRNAs between HS and Non-heat-stressed condition (NC) of Chinese Holstein cow's mammary gland. CircRNAs were identified using RNA sequencing and bioinformatics analysis. In total, 37405 circRNAs were detected and 95 were differentially expressed (DE), including 15 downregulated and 80 upregulated circRNAs in HS group compared to NC. Eight circRNAs were randomly selected to verify the RNA sequencing result. Further, Sanger sequencing validated the backsplicing site of the eight circRNAs. Moreover, results obtained from the Quantitative real time PCR (qRT-PCR) showed consistent expression trend with that of RNA sequencing. GO annotation and KEGG analysis suggested that these DE circRNAs probably involved in the energy metabolic regulation. Furthermore, we constructed ceRNA network and the result indicated that these DE circRNAs could regulate lactation through IGF1 and PRL signaling pathway.
Collapse
Affiliation(s)
- Ying Qi
- Hebei Key Laboratory of Animal Diversity, Langfang Key Laboratory of Cell Engineering and Application, College of Life Sciences, Langfang Normal University, Langfang, People's Republic of China
| | - Lin Zhang
- Hebei Key Laboratory of Animal Diversity, Langfang Key Laboratory of Cell Engineering and Application, College of Life Sciences, Langfang Normal University, Langfang, People's Republic of China
| | - Yuemei Guo
- Hebei Key Laboratory of Animal Diversity, Langfang Key Laboratory of Cell Engineering and Application, College of Life Sciences, Langfang Normal University, Langfang, People's Republic of China
| | - Jing Wang
- Hebei Key Laboratory of Animal Diversity, Langfang Key Laboratory of Cell Engineering and Application, College of Life Sciences, Langfang Normal University, Langfang, People's Republic of China
| | - Mingxing Chu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yiming Zhang
- Hebei Key Laboratory of Animal Diversity, Langfang Key Laboratory of Cell Engineering and Application, College of Life Sciences, Langfang Normal University, Langfang, People's Republic of China
| | - Junfei Guo
- Clinical Laboratory Department, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Qiuling Li
- Hebei Key Laboratory of Animal Diversity, Langfang Key Laboratory of Cell Engineering and Application, College of Life Sciences, Langfang Normal University, Langfang, People's Republic of China
| |
Collapse
|
33
|
Ivanova E, Le Guillou S, Hue-Beauvais C, Le Provost F. Epigenetics: New Insights into Mammary Gland Biology. Genes (Basel) 2021; 12:genes12020231. [PMID: 33562534 PMCID: PMC7914701 DOI: 10.3390/genes12020231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
The mammary gland undergoes important anatomical and physiological changes from embryogenesis through puberty, pregnancy, lactation and involution. These steps are under the control of a complex network of molecular factors, in which epigenetic mechanisms play a role that is increasingly well described. Recently, studies investigating epigenetic modifications and their impacts on gene expression in the mammary gland have been performed at different physiological stages and in different mammary cell types. This has led to the establishment of a role for epigenetic marks in milk component biosynthesis. This review aims to summarize the available knowledge regarding the involvement of the four main molecular mechanisms in epigenetics: DNA methylation, histone modifications, polycomb protein activity and non-coding RNA functions.
Collapse
|
34
|
Liu J, Li M, Kong L, Cao M, Zhang M, Wang Y, Song C, Fang X, Chen H, Zhang C. CircARID1A regulates mouse skeletal muscle regeneration by functioning as a sponge of miR-6368. FASEB J 2021; 35:e21324. [PMID: 33421208 DOI: 10.1096/fj.202001992r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
The noncoding RNAs play important role in growth and development of mammalian skeletal muscle. Recent work has shown that circRNAs are abundant in skeletal muscle tissue, with significant changes in their expression patterns during muscle development and aging. We identified a novel circRNA called circARID1A that is highly expressed in mice skeletal muscle compare to its linear transcript. Experiments shown that circARID1A significantly inhibited the process of C2C12 cell proliferation and promoted its differentiation. Interactions between circRNA and miRNA were screened by miRNA gene chip sequencing. The results indicated that circARID1A can sponge miR-6368, which was further verified by miRNA sensor and other experiments. Besides, miR-6368 is a commonly expressed miRNA that regulates the expression of several target genes including Tlr4. A mouse model of skeletal muscle injury was successfully established to explore the role of circARID1A in skeletal muscle development and regeneration in vivo. Moreover, we found the overexpression of circARID1A significantly promoted the regeneration of skeletal muscle. The results of our study suggest that circARID1A may regulate skeletal muscle cell development and regeneration by sponging miR-6368.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - MengLu Li
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - LingHao Kong
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - MengWen Cao
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - MoLan Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - YanHong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - ChengChuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - XingTang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Hong Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - ChunLei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
35
|
Malmuthuge N, Guan LL. Noncoding RNAs: Regulatory Molecules of Host-Microbiome Crosstalk. Trends Microbiol 2021; 29:713-724. [PMID: 33419590 DOI: 10.1016/j.tim.2020.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Recent emerging evidence has revealed that regulatory noncoding RNAs (microRNAs, circular RNAs) modulate host-microbe interactions and they have been proposed as potential biomarkers of the host's response to microbiome-linked pathologies such as cancers, obesity, and neurodegenerative diseases. Interactions between microRNAs and circular RNAs, however, increase the complexity of the mechanisms that modulate host-microbe interactions. Current knowledge on these noncoding RNAs (ncRNAs) is mainly generated from well controlled germ-free or knockout (small) animal models. Application of such knowledge to effective modulation outcomes in humans (and livestock) is challenging due to the complex nature of microbiome-linked pathologies in larger outbred animals that constantly interact with the changing environment. This review critically discusses the findings of regulatory noncoding RNAs and their roles in microbiome-linked pathologies in small and large animals and provides insights on their roles as potential therapeutic agents to improve human (and livestock) health.
Collapse
Affiliation(s)
- Nilusha Malmuthuge
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1 Ave S, Lethbridge, Alberta, Canada T1J 4B1
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
36
|
Cui X, Zhang S, Zhang Q, Guo X, Wu C, Yao M, Sun D. Comprehensive MicroRNA Expression Profile of the Mammary Gland in Lactating Dairy Cows With Extremely Different Milk Protein and Fat Percentages. Front Genet 2020; 11:548268. [PMID: 33343617 PMCID: PMC7744623 DOI: 10.3389/fgene.2020.548268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022] Open
Abstract
A total of 31 differentially expressed genes in the mammary glands were identified in our previous study using RNA sequencing (RNA-Seq), for lactating cows with extremely high and low milk protein and fat percentages. To determine the regulation of milk composition traits, we herein investigated the expression profiles of microRNA (miRNA) using small RNA sequencing based on the same samples as in the previous RNA-Seq experiment. A total of 497 known miRNAs (miRBase, release 22.1) and 49 novel miRNAs among the reads were identified. Among these miRNAs, 71 were found differentially expressed between the high and low groups (p < 0.05, q < 0.05). Furthermore, 21 of the differentially expressed genes reported in our previous RNA-Seq study were predicted as target genes for some of the 71 miRNAs. Gene ontology and KEGG pathway analyses showed that these targets were enriched for functions such as metabolism of protein and fat, and development of mammary gland, which indicating the critical role of these miRNAs in regulating the formation of milk protein and fat. With dual luciferase report assay, we further validated the regulatory role of 7 differentially expressed miRNAs through interaction with the specific sequences in 3'UTR of the targets. In conclusion, the current study investigated the complexity of the mammary gland transcriptome in dairy cattle using small RNA-seq. Comprehensive analysis of differential miRNAs expression and the data from previous study RNA-seq provided the opportunity to identify the key candidate genes for milk composition traits.
Collapse
Affiliation(s)
- Xiaogang Cui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangyu Guo
- Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Mingze Yao
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
37
|
Wang J, Zhou H, Hickford JGH, Hao Z, Gong H, Hu J, Liu X, Li S, Shen J, Ke N, Song Y, Qiao L, Luo Y. Identification and characterization of circular RNAs in mammary gland tissue from sheep at peak lactation and during the nonlactating period. J Dairy Sci 2020; 104:2396-2409. [PMID: 33246614 DOI: 10.3168/jds.2020-18911] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022]
Abstract
Circular RNAs are a class of noncoding RNA with a widespread occurrence in eukaryote tissues, and with some having been demonstrated to have clear biological function. In sheep, little is known about the role of circular RNAs in mammary gland tissue, and therefore an RNA sequencing approach was used to compare mammary gland tissue expression of circular RNAs in 9 Small Tail Han sheep at peak lactation, and subsequently when they were not lactating. These 9 sheep had their RNA pooled for analysis into 3 libraries from peak lactation and 3 from the nonlactating period. A total of 3,278 and 1,756 circular RNAs were identified in the peak lactation and nonlactating mammary gland tissues, respectively, and the expression and identity of 9 of them was confirmed using reverse transcriptase-polymerase chain reaction analysis and DNA sequencing. The type, chromosomal location and length of the circular RNAs identified were ascertained. Forty upregulated and one downregulated circular RNAs were characterized in the mammary gland tissue at peak lactation compared with the nonlactating mammary gland tissue. Gene ontology enrichment analysis revealed that the parental genes of these differentially expressed circular RNAs were related to molecular function, binding, protein binding, ATP binding, and ion binding. Five differentially expression circular RNAs were selected for further analysis to predict their target microRNAs, and some microRNAs reportedly associated with the development of the mammary gland were found in the constructed circular RNA-microRNA network. This study reveals the expression profiles and characterization of circular RNAs at 2 key stages of mammary gland activity, thereby providing an improved understanding of the roles of circular RNAs in the mammary gland of sheep.
Collapse
Affiliation(s)
- Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Huitong Zhou
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jon G H Hickford
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Hua Gong
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiyuan Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Na Ke
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yize Song
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lirong Qiao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
38
|
Huang Y, Wang Y, Zhang C, Sun X. Biological functions of circRNAs and their progress in livestock and poultry. Reprod Domest Anim 2020; 55:1667-1677. [DOI: 10.1111/rda.13816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Yong Huang
- College of Animal Science and Technology Henan University of Science and Technology Luoyang China
| | - Yanli Wang
- Development Planning Office Henan University of Science and Technology Luoyang China
| | - Cai Zhang
- College of Animal Science and Technology Henan University of Science and Technology Luoyang China
| | - Xihong Sun
- Development Planning Office Henan University of Science and Technology Luoyang China
| |
Collapse
|
39
|
Zucko D, Boris-Lawrie K. Circular RNAs Are Regulators of Diverse Animal Transcriptomes: One Health Perspective. Front Genet 2020; 11:999. [PMID: 33193584 PMCID: PMC7531264 DOI: 10.3389/fgene.2020.00999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Derived from linear (parental) precursor mRNA, circRNA are recycled exons and introns whose ends are ligated. By titrating microRNAs and RNA binding proteins, circRNA interconnect networks of competing endogenous RNAs. Without altering chromosomal DNA, circRNA regulates skeletal muscle development and proliferation, lactation, ovulation, brain development, and responses to infections and metabolic stress. This review integrates emerging knowledge of circRNA activity coming from genome-wide characterizations in many clades of animals. circRNA research addresses one of the main pillars of the One Health vision – to improve the health and productivity of food animals and generate translational knowledge in animal species.
Collapse
Affiliation(s)
- Dora Zucko
- Department of Veterinary and Biomedical Sciences, Veterinary Medicine Graduate Program, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, Veterinary Medicine Graduate Program, University of Minnesota Twin Cities, Saint Paul, MN, United States
| |
Collapse
|
40
|
Identification of circRNA-Associated-ceRNA Networks Involved in Milk Fat Metabolism under Heat Stress. Int J Mol Sci 2020; 21:ijms21114162. [PMID: 32545169 PMCID: PMC7312917 DOI: 10.3390/ijms21114162] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
Summer temperatures are generally high in Southern China, and cows are likely to suffer a heat stress reaction. Heat stress will have a negative impact on the performance of dairy cows; however, the mechanism by which high temperature affects lactation is not clear. CircRNA is a type of non-coding RNA discovered in recent years, which performs a crucial function in many biological activities. However, the effects of circRNA on lactation function of dairy cows under heat stress is unknown. The present study aimed to explore the expression levels of circRNA in the mammary gland tissue of cows under heat stress. Firstly, we collected blood and milk samples of summer and winter cows and evaluated lactation performance using serum indicators, milk production, and milk composition. Incorporating the calculation of the temperature and humidity index, we conformed the heat stress status of cows in summer. Heat stress increased the concentration of HSP70 and decreased the concentration of SOD and PRL. Heat stress not only reduced milk yield but also affected milk quality, with milk lactose and milk protein decreasing with increased temperature. The analysis of the fatty acid composition in summer milk found significantly reduced concentrations of unsaturated fatty acids, especially long-chain unsaturated fatty acids. Sequencing of the cow's mammary gland transcriptome revealed that compared to the appropriate temperature (ST) group, the heat stress (HS) group had a total of 2204 upregulated and 3501 downregulated transcripts. GO enrichment and KEGG pathway analysis showed that these genes were mainly related to milk fat metabolism. In addition, 19 upregulated and 19 downregulated circRNA candidates were found in response to heat stress. We used Pearson's test to establish the correlation of circRNA-mRNA and identified four pairs of circRNA-miRNA networks between four circRNAs, six miRNAs, and the CD36 gene. In this study, we revealed the possible role of circRNAs in lactation of dairy cows and identified that circRNA-miRNA-mRNA networks might exist in the cow's mammary glands, providing valuable experience for dairy lactation and milk quality.
Collapse
|
41
|
Tian J, Fu Y, Li Q, Xu Y, Xi X, Zheng Y, Yu L, Wang Z, Yu B, Tian J. Differential Expression and Bioinformatics Analysis of CircRNA in PDGF-BB-Induced Vascular Smooth Muscle Cells. Front Genet 2020; 11:530. [PMID: 32547599 PMCID: PMC7272660 DOI: 10.3389/fgene.2020.00530] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is mediated by various factors and plays an important pathological foundation for cardiovascular and cerebrovascular diseases. Abnormal vascular smooth muscle cells (VSMCs) proliferation and migration have an essential role in atherosclerotic lesion formation. Circular RNAs (circRNA) have been widely detected in different species and are closely related to various diseases. However, the expression profiles and molecular regulatory mechanisms of circRNAs in VSMCs are still unknown. We used high-throughput RNA-seq as well as bioinformatics tools to systematically analyze circRNA expression profiles in samples from different VSMC phenotypes. Polymerase chain reaction (PCR), Sanger sequencing, and qRT-PCR were performed for circRNA validation. A total of 22191 circRNAs corresponding to 6273 genes (host genes) in the platelet-derived growth factor (PDGF-BB) treated group, the blank control group or both groups, were detected, and 112 differentially expressed circRNAs were identified between the PDGF-BB treated and control groups, of which 59 were upregulated, and 53 were downregulated. We selected 9 circRNAs for evaluation of specific head-to-tail splicing, and 10 differentially expressed circRNAs between the two groups for qRT-PCR validation. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses enrichment analyses revealed that the parental genes of the circRNAs mainly participated in cardiac myofibril assembly and positive regulation of DNA-templated transcription, indicating that they might be involved in cardiovascular diseases. Finally, we constructed a circRNA-miRNA network based on the dysregulated circRNAs and VSMC-related microRNAs. Our study is the first to show the differential expression of circRNAs in PDGF-BB-induced VSMCs and may provide new ideas and targets for the prevention and therapy of vascular diseases.
Collapse
Affiliation(s)
- Jiangtian Tian
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yahong Fu
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Li
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.,Department of Pathology, Harbin Medical University, Harbin, China
| | - Ying Xu
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.,Basic Medical College of Mudanjiang Medical College, Mudanjiang, China
| | - Xiangwen Xi
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuqi Zheng
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Yu
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhuozhong Wang
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
42
|
Hao Z, Zhou H, Hickford JG, Gong H, Wang J, Hu J, Liu X, Li S, Zhao M, Luo Y. Identification and characterization of circular RNA in lactating mammary glands from two breeds of sheep with different milk production profiles using RNA-Seq. Genomics 2020; 112:2186-2193. [DOI: 10.1016/j.ygeno.2019.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
|
43
|
Zhang Y, Guo X, Pei J, Chu M, Ding X, Wu X, Liang C, Yan P. CircRNA Expression Profile during Yak Adipocyte Differentiation and Screen Potential circRNAs for Adipocyte Differentiation. Genes (Basel) 2020; 11:E414. [PMID: 32290214 PMCID: PMC7230347 DOI: 10.3390/genes11040414] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
The yak (Bos grunniens) is subjected to nutritional deficiency during the whole winter grazing season; deciphering the adipose metabolism and energy homeostasis under cold and nutrients stress conditions could be a novel way to understand the specific mechanism of energy metabolism. Circular RNAs (circRNAs) have elucidated that they play a key role in many biological events, but the regulatory function of adipose development remains mostly unknown. Therefore, the expression pattern of circRNAs were identified for the first time during yak adipocyte differentiation to gain insight into their potential functional involvement in bovine adipogenesis. We detected 7203 circRNA candidates, most of them contained at least two exons, and multiple circRNA isoforms could be generated from one parental gene. Analysis of differential expression circRNAs displayed that 136 circRNAs were differentially expressed at day 12 (Ad) after adipocyte differentiation, compared with the control at day 0 (Pread 0), while 7 circRNAs were detected on day 2. Sanger sequencing validated that six circRNAs had head-to-tail junction, and quantitative real-time PCR (qPCR) results revealed that the expression patterns of ten circRNAs were consistent with their expression levels from RNA-sequencing (RNA-seq) data. We further predicted the networks of circRNA-miRNA-gene based on miRNAs sponging by circRNAs, in which genes were participated in the adipocyte differentiation-related signaling pathways. After that, we constructed several adipocyte differentiation-related ceRNAs and revealed six circRNAs (novel_circ_0009127, novel_circ_0000628, novel_circ_0011513, novel_circ_0010775, novel_circ_0006981 and novel_circ_0001494) were related to adipogenesis. Furthermore, we analyzed the homology among yak, human and mouse circRNAs and found that 3536 yak circRNAs were homologous to human and mouse circRNAs. In conclusion, these findings provide a solid basis for the investigation of yak adipocyte differentiation-related circRNAs and serve as a great reference to study the energy metabolism of high-altitude animals.
Collapse
Affiliation(s)
- Yongfeng Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
| | - Xian Guo
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| | - Jie Pei
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| | - Min Chu
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| | - Xuezhi Ding
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| | - Xiaoyun Wu
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| | - Chunnina Liang
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| | - Ping Yan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| |
Collapse
|
44
|
Prolactin-Responsive Circular RNA circHIPK3 Promotes Proliferation of Mammary Epithelial Cells from Dairy Cow. Genes (Basel) 2020; 11:genes11030336. [PMID: 32245109 PMCID: PMC7141114 DOI: 10.3390/genes11030336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
The highly expressed circHIPK3 is a circular RNA that has been previously reported to regulate the growth of human cells. In this study, we found an increased expression of circHIPK3 in bovine mammary epithelial cells treated with prolactin (PRL) in high-throughput sequencing data. Thus, we further investigated the effect of circHIPK3 on the proliferation and differentiation of mammary epithelial cells. We used qRT-PCR/Cell Counting Kit-8 (CCK-8) and a Western blotting analysis to evaluate the effects on cell proliferation. We found that circHIPK3 promotes the proliferation of mammary epithelial cells. The STAT5 signaling pathway was previously associated with the prolactin response and when the STAT5 was suppressed, the expression of circHIPK3 decreased. The results suggest that the response to prolactin and the associated STAT5 signaling pathway affect the expression of circHIPK3, which subsequently affects the proliferation of mammary epithelial cells in dairy cows.
Collapse
|
45
|
Sun J, Zhang H, Hu B, Xie Y, Wang D, Zhang J, Chen T, Luo J, Wang S, Jiang Q, Xi Q, Chen Z, Zhang Y. Emerging Roles of Heat-Induced circRNAs Related to Lactogenesis in Lactating Sows. Front Genet 2020; 10:1347. [PMID: 32117411 PMCID: PMC7027193 DOI: 10.3389/fgene.2019.01347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/10/2019] [Indexed: 11/13/2022] Open
Abstract
Heat stress negatively influences milk production and disrupts normal physiological activity of lactating sows, but the precious mechanisms by which hyperthermia adversely affects milk synthesis in sows still remain for further study. Circular RNAs are a novel class of non-coding RNAs with regulatory functions in various physiological and pathological processes. The expression profiles and functions of circRNAs of sows in lactogenesis remain largely unknown. In the present study, long-term heat stress (HS) resulted in a greater concentration of serum HSP70, LDH, and IgG, as well as decreased levels of COR, SOD, and PRL. HS reduced the total solids, fat, and lactose of sow milk, and HS significantly depressed CSNαs1, CSNαs2, and CSNκ biosynthesis. Transcriptome sequencing of lactating porcine mammary glands identified 42 upregulated and 25 downregulated transcripts in HS vs. control. Functional annotation of these differentially-expressed transcripts revealed four heat-induced genes involved in lactation. Moreover, 29 upregulated and 21 downregulated circRNA candidates were found in response to HS. Forty-two positively correlated circRNA-mRNA expression patterns were constructed between the four lactogenic genes and differentially expressed circRNAs. Five circRNA-miRNA-mRNA post-transcriptional networks were identified involving genes in the HS response of lactating sows. In this study we establish a valuable resource for circRNA biology in sow lactation. Analysis of a circRNA-miRNA-mRNA network further uncovered a novel layer of post-transcriptional regulation that could be used to improve sow milk production.
Collapse
Affiliation(s)
- Jiajie Sun
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Haojie Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Baoyu Hu
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yueqin Xie
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Dongyang Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jinzhi Zhang
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Ting Chen
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Junyi Luo
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Songbo Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qinyan Jiang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zujing Chen
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Engineering & Research Center for Woody Fodder Plants, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
46
|
Chen D, Chen H, Du Y, Zhu Z, Wang J, Geng S, Xiong C, Zheng Y, Hou C, Diao Q, Guo R. Systematic identification of circular RNAs and corresponding regulatory networks unveil their potential roles in the midguts of eastern honeybee workers. Appl Microbiol Biotechnol 2019; 104:257-276. [PMID: 31754765 DOI: 10.1007/s00253-019-10159-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/07/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022]
Abstract
Currently, knowledge of circular RNAs (circRNAs) in insects including honeybee is extremely limited. Here, differential expression profiles and regulatory networks of circRNAs in the midguts of Apis cerana cerana workers were comprehensively investigated using transcriptome sequencing and bioinformatics. In total, 9589 circRNAs (201-800 nt in length) were identified from 8-day-old and 11-day-old workers' midguts (Ac1 and Ac2); among them, 5916 (61.70%) A. cerana cerana circRNAs showed conservation with our previously indentified circRNAs in Apis mellifera ligucstica workers' midguts (Xiong et al., Acta Entomologica Sinica 61:1363-1375, 2018). Five circRNAs were confirmed by RT-PCR and Sanger sequencing. Interestingly, novel_circ_003723, novel_circ_002714, novel_circ_002451, and novel_circ_001980 were highly expressed in both Ac1 and Ac2. In addition, the source genes of circRNAs were involved in 34 GO terms including organelle and cellular process and 141 pathways such as endocytosis and Wnt signaling pathway. Moreover, 55 DEcircRNAs including 34 upregulated and 21 downregulated circRNAs were identified in Ac2 compared with Ac1. circRNA-miRNA regulatory networks indicated that 1060 circRNAs can target 74 miRNAs; additionally, the DEcircRNA-miRNA-mRNA networks suggested that 13 downregulated circRNAs can bind to eight miRNAs and 29 miRNA-targeted mRNAs, while 16 upregulated circRNAs can link to 9 miRNAs and 29 miRNA-targeted mRNAs. These results indicated that DEcircRNAs as ceRNAs may play a comprehensive role in the growth, development, and metabolism of the worker's midgut via regulating source genes and interacting with miRNAs. Notably, eight DEcircRNAs targeting miR-6001-y were likely to be key participants in the midgut development. Our findings not only offer a valuable resource for further studies on A. cerana cerana circRNA and novel insights into understanding the molecular mechanisms underlying the midgut development of eastern honeybee but also provide putative circRNA candidates for functional research in the near future and novel biomarkers for identification of eastern honeybee species including A. cerana cerana and honeybee diseases such as chalkbrood and microsporidiosis.
Collapse
Affiliation(s)
- Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huazhi Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu Du
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiwei Zhu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jie Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sihai Geng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cuiling Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanzhen Zheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
47
|
Downregulated Expression of hsa_circ_0005556 in Gastric Cancer and Its Clinical Significance. DISEASE MARKERS 2019; 2019:2624586. [PMID: 31827632 PMCID: PMC6885797 DOI: 10.1155/2019/2624586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/09/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022]
Abstract
Background Gastric cancer (GC) has a poor prognosis due to the lack of ideal tumor markers. Circular RNAs (circRNAs) are a novel type of noncoding RNA related to the occurrence of GC. Among our research, we investigated the role of hsa_circ_0005556 in GC. Materials and Methods The expression of hsa_circ_0005556 of 100 paired GC tissues and adjacent normal tissues was detected using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). A receiver operating characteristic (ROC) curve was established to evaluate the diagnostic value of hsa_circ_0005556. The correlation between the expression of hsa_circ_0005556 and corresponding clinicopathological characteristic was explored. Results hsa_circ_0005556 was significantly downregulated in GC tissues contrasted with adjacent normal tissues (n = 100, p < 0.001). The areas under the ROC curve (AUC) of hsa_circ_0005556 were up to 0.773, while 64% sensitivity and 82% specificity, respectively. Moreover, its expression levels were significantly associated with differentiation (p = 0.001), TNM stage (p = 0.013), and lymphatic metastasis (p = 0.039). GC patients of high hsa_circ_0005556 levels had a longer overall survival (OS) than those of the low group (p = 0.047). Conclusion hsa_circ_0005556 is a potential biomarker for GC, which may guide judgment of the indication of endoscopic treatment for early gastric cancer (EGC).
Collapse
|
48
|
Ylioja CM, Rolf MM, Mamedova LK, Bradford BJ. Associations between body condition score at parturition and microRNA profile in colostrum of dairy cows as evaluated by paired mapping programs. J Dairy Sci 2019; 102:11609-11621. [PMID: 31548065 DOI: 10.3168/jds.2019-16675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/03/2019] [Indexed: 12/18/2022]
Abstract
MicroRNA (miRNA) are abundant in milk, and likely have regulatory activity involving lactation and immunity. The objective of this study was to determine the miRNA profile in colostrum of overconditioned cows compared with cows of more moderate body condition score (BCS) at calving. Multiparous cows with either high (≥4.0 on a scale of 1 to 5; n = 7) or moderate BCS (2.75 to 3.50; n = 9) in the week before parturition were selected from a commercial dairy herd. Blood and colostrum were sampled within 24 h after calving. Blood serum was analyzed for free fatty acid (FFA) concentration. MicroRNA was isolated from colostrum samples after removing milk fat and cells. MicroRNA were sequenced, and reads were mapped to the bovine genome and to the existing database of miRNA at miRBase.org. Two programs, Oasis 2.0 and miRDeep2, were employed in parallel for read alignment, and analysis of miRNA count data was performed using DESeq2. Identification of differentially expressed miRNA from DESeq2 was not affected by the differences in miRNA detected by the 2 mapping programs. Most abundant miRNA included miR-30a, miR-148a, miR-181a, let-7f, miR-26a, miR-21, miR-22, and miR-92a. Large-scale shifts in miRNA profile were not observed; however, colostrum of cows with high BCS contained less miR-486, which has been linked with altered glucose metabolism. Colostrum from cows with elevated serum FFA contained less miR-885, which may be connected to hepatic function during the transition period. Potential functions of abundant miRNA suggest involvement in development and maintenance of cellular function in the mammary gland, with the additional possibility of influencing neonatal tissue and immune system development.
Collapse
Affiliation(s)
- C M Ylioja
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - M M Rolf
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - L K Mamedova
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - B J Bradford
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506.
| |
Collapse
|
49
|
Discovery and molecular analysis of conserved circRNAs from cashmere goat reveal their integrated regulatory network and potential roles in secondary hair follicle. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
50
|
Chen X, Shi W, Chen C. Differential circular RNAs expression in ovary during oviposition in honey bees. Genomics 2019; 111:598-606. [DOI: 10.1016/j.ygeno.2018.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/10/2018] [Accepted: 03/19/2018] [Indexed: 02/02/2023]
|