1
|
Silva EFP, Gaia RC, Mulim HA, Pinto LFB, Iung LHS, Brito LF, Pedrosa VB. Genome-Wide Association Study of Conformation Traits in Brazilian Holstein Cattle. Animals (Basel) 2024; 14:2472. [PMID: 39272257 PMCID: PMC11394126 DOI: 10.3390/ani14172472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The linear conformation of animals exerts an influence on health, reproduction, production, and welfare, in addition to longevity, which directly affects the profitability of milk-producing farms. The objectives of this study were (1) to perform genome-wide association studies (GWASs) of conformation traits, namely the Rump, Feet and Legs, Mammary System, Dairy Strength, and Final Classification traits, and (2) to identify genes and related pathways involved in physiological processes associated with conformation traits in Brazilian Holstein cattle. Phenotypic and genotypic data from 2339 Holstein animals distributed across the states of Rio Grande do Sul, Paraná, São Paulo, and Minas Gerais were used. The genotypic data were obtained with a 100 K SNP marker panel. The single-step genome-wide association study (ssGWAS) method was employed in the analyses. Genes close to a significant SNP were identified in an interval of 100 kb up- and downstream using the Ensembl database available in the BioMart tool. The DAVID database was used to identify the main metabolic pathways and the STRING program was employed to create the gene regulatory network. In total, 36 significant SNPs were found on 15 chromosomes; 27 of these SNPs were linked to genes that may influence the traits studied. Fourteen genes most closely related to the studied traits were identified, as well as four genes that showed interactions in important metabolic pathways such as myogenesis, adipogenesis, and angiogenesis. Among the total genes, four were associated with myogenesis (TMOD2, TMOD3, CCND2, and CTBP2), three with angiogenesis (FGF23, FGF1, and SCG3), and four with adipogenesis and body size and development (C5H12orf4, CCND2, EMILIN1, and FGF6). These results contribute to a better understanding of the biological mechanisms underlying phenotypic variability in conformation traits in Brazilian Holstein cattle.
Collapse
Affiliation(s)
- Emanueli F P Silva
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84010-330, PR, Brazil
| | - Rita C Gaia
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84010-330, PR, Brazil
| | - Henrique A Mulim
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Laiza H S Iung
- Neogen Corporation, Pindamonhangaba 12412-800, SP, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Victor B Pedrosa
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84010-330, PR, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Neogen Corporation, Biotechnology Research, Lincoln, NE 68504, USA
| |
Collapse
|
2
|
Reolon HG, Abduch NG, de Freitas AC, Silva RMDO, Fragomeni BDO, Lourenco D, Baldi F, de Paz CCP, Stafuzza NB. Proteomic changes of the bovine blood plasma in response to heat stress in a tropically adapted cattle breed. Front Genet 2024; 15:1392670. [PMID: 39149588 PMCID: PMC11324462 DOI: 10.3389/fgene.2024.1392670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Background Identifying molecular mechanisms responsible for the response to heat stress is essential to increase production, reproduction, health, and welfare. This study aimed to identify early biological responses and potential biomarkers involved in the response to heat stress and animal's recovery in tropically adapted beef cattle through proteomic analysis of blood plasma. Methods Blood samples were collected from 14 Caracu males during the heat stress peak (HSP) and 16 h after it (heat stress recovery-HSR) assessed based on wet bulb globe temperature index and rectal temperature. Proteome was investigated by liquid chromatography-tandem mass spectrometry from plasma samples, and the differentially regulated proteins were evaluated by functional enrichment analysis using DAVID tool. The protein-protein interaction network was evaluated by STRING tool. Results A total of 1,550 proteins were detected in both time points, of which 84 and 65 were downregulated and upregulated during HSR, respectively. Among the differentially regulated proteins with the highest absolute log-fold change values, those encoded by the GABBR1, EPHA2, DUSP5, MUC2, DGCR8, MAP2K7, ADRA1A, CXADR, TOPBP1, and NEB genes were highlighted as potential biomarkers because of their roles in response to heat stress. The functional enrichment analysis revealed that 65 Gene Ontology terms and 34 pathways were significant (P < 0.05). We highlighted those that could be associated with the response to heat stress, such as those related to the immune system, complement system, hemostasis, calcium, ECM-receptor interaction, and PI3K-Akt and MAPK signaling pathways. In addition, the protein-protein interaction network analysis revealed several complement and coagulation proteins and acute-phase proteins as important nodes based on their centrality and edges. Conclusion Identifying differentially regulated proteins and their relationship, as well as their roles in key pathways contribute to improve the knowledge of the mechanisms behind the response to heat stress in naturally adapted cattle breeds. In addition, proteins highlighted herein are potential biomarkers involved in the early response and recovery from heat stress in tropically adapted beef cattle.
Collapse
Affiliation(s)
| | - Natalya Gardezani Abduch
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, Brazil
- Department of Genetics, Ribeirao Preto Medical School (FMRP), University of Sao Paulo (USP), Ribeirão Preto, Brazil
| | - Ana Claudia de Freitas
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, Brazil
- Agricultural Research Agency of the State of Minas Gerais (EPAMIG), Patos de Minas, Brazil
| | | | | | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Fernando Baldi
- Department of Animal Science, School of Agricultural and Veterinary Sciences, Sao Paulo State University (UNESP), Jaboticabal, Brazil
| | - Claudia Cristina Paro de Paz
- Department of Genetics, Ribeirao Preto Medical School (FMRP), University of Sao Paulo (USP), Ribeirão Preto, Brazil
- Sustainable Livestock Research Center, Animal Science Institute, São José do Rio Preto, Brazil
| | | |
Collapse
|
3
|
Koch F, Reyer H, Görs S, Hansen C, Wimmers K, Kuhla B. Heat stress and feeding effects on the mucosa-associated and digesta microbiome and their relationship to plasma and digesta fluid metabolites in the jejunum of dairy cows. J Dairy Sci 2024; 107:5162-5177. [PMID: 38431250 DOI: 10.3168/jds.2023-24242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024]
Abstract
The intestinal microbiota plays a pivotal role in digestive processes and maintains gut health and intestinal homeostasis. These functions may be compromised by increased environmental heat, which in turn reduces feed intake and gut integrity and activates the intestinal immune system. It remains unknown whether high ambient temperatures, which cause heat stress (HS) in dairy cows, disturb the eubiosis of the microbial community, and if so, to which extent the reduction in feed intake and the impairment of circulating and intestinal metabolites account for the alterations of the jejunal microbiota. To address these questions, jejunal digesta, mucosa, and plasma samples were collected from cows exposed to heat stress (HS; 28°C, temperature-humidity index [THI] = 76, n = 10), control conditions (CON; 16°C, THI = 60, n = 10), or pair-fed (PF; 16°C, THI = 60, n = 10) for 7 d. Digesta fluids were examined for pH, acetate, nonesterified fatty acids (NEFA), glucose, and lactate, and plasma samples were analyzed for glucose, lactate, BHB, triglycerides, NEFA, creatinine, and urea. The microbiota of the digesta and mucosa samples were analyzed by 16S rRNA sequencing. The α-diversity was higher in mucosa than digesta but was not affected by high ambient temperatures. However, the mucosa-associated microbiota appeared more responsive to ambient heat than the digesta microbiome. The adaptive responses under HS conditions comprised an increased mucosal abundance of Bifidobacteriaceae, Succinivibrionaceae UCG-001, Clostridia and Lactobacillus. In the digesta, HS has exerted effects on microbial abundance of Colidextribacter, and Lachnospiraceae UCG-008. Several correlations between plasma or intestinal metabolites and microbiota were elucidated, including Methanobacteriaceae correlating positively with plasma BHB and digesta glucose concentrations. Moreover, the reduction in feed intake during HS had non-negligible effects on microbial diversity and the abundance of certain taxa, underpinning the importance of nutrient supply on maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Franziska Koch
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Solvig Görs
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Christiane Hansen
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries, Institute of Livestock Farming, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
4
|
Skibiel AL. Hepatic mitochondrial bioenergetics and metabolism across lactation and in response to heat stress in dairy cows. JDS COMMUNICATIONS 2024; 5:247-252. [PMID: 38646582 PMCID: PMC11026913 DOI: 10.3168/jdsc.2023-0432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/01/2023] [Indexed: 04/23/2024]
Abstract
Lactation is energetically demanding for the dairy cow. Numerous morphological and metabolic changes orchestrated across different tissues in the body partition nutrients for milk synthesis. The liver is a key organ coordinating modifications in metabolism that increase substrate availability for the mammary gland. Impaired capacity to make the needed physiological adjustments for lactation, such as occurs with heat stress, can result in metabolic disease and poor lactation performance. At the cellular level, increases in mitochondrial density and bioenergetic and biosynthetic capacity are critical adaptations for successful lactation, providing energy and substrates for milk synthesis. Mitochondria are also involved in coordinating adaptation to a variety of stressors by providing the metabolic foundation to enlist a stress response. Heat stress can damage mitochondrial structures and impair mitochondrial function, with implications for pathogenesis and production. This systematic review focuses on the hepatic mitochondrial adaptations to lactation and the mitochondrial responses to heat stress. Future research directions are also discussed that may lead to improvements in managing the metabolic needs of the lactating cow and diminishing the adverse production and health consequences from environmental stress.
Collapse
Affiliation(s)
- Amy L. Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844
| |
Collapse
|
5
|
Loor JJ, Lopreiato V, Palombo V, D’Andrea M. Physiological impact of amino acids during heat stress in ruminants. Anim Front 2023; 13:69-80. [PMID: 37841758 PMCID: PMC10575319 DOI: 10.1093/af/vfad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Affiliation(s)
- Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, Università degli Studi di Messina, Viale Palatucci snc 98168, Messina, Italy
| | - Valentino Palombo
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, via De Sanctis snc 86100, Campobasso, Italy
| | - Mariasilvia D’Andrea
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, via De Sanctis snc 86100, Campobasso, Italy
| |
Collapse
|
6
|
Cheng Z, Little MW, Ferris C, Takeda H, Ingvartsen KL, Crowe MA, Wathes DC. Influence of the concentrate inclusion level in a grass silage-based diet on hepatic transcriptomic profiles in Holstein-Friesian dairy cows in early lactation. J Dairy Sci 2023; 106:S0022-0302(23)00376-4. [PMID: 37474362 DOI: 10.3168/jds.2022-22860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/15/2023] [Indexed: 07/22/2023]
Abstract
Excessive negative energy balance in early lactation is linked to an increased disease risk but may be mitigated by appropriate nutrition. The liver plays central roles in both metabolism and immunity. Hepatic transcriptomic profiles were compared between 3 dietary groups in each of 40 multiparous and 18 primiparous Holstein-Friesian cows offered isonitrogenous grass silage-based diets with different proportions of concentrates: (1) low concentrate (LC, 30% concentrate + 70% grass silage); (2) medium concentrate (MC, 50% concentrate + 50% grass silage), or (3) high concentrate (HC, 70% concentrate + 30% grass silage). Liver biopsies were taken from all cows at around 14 d in milk for RNA sequencing, and blood metabolites were measured. The sequencing data were analyzed separately for primiparous and multiparous cows using CLC Genomics Workbench V21 (Qiagen Digital Insights), focusing on comparisons between HC and LC groups. More differentially expressed genes (DEG) were seen between the primiparous cows receiving HC versus LC diets than for multiparous cows (597 vs. 497), with only 73 in common, indicating differential dietary responses. Multiparous cows receiving the HC diet had significantly higher circulating glucose and insulin-like growth factor-1 and lower urea than those receiving the LC diet. In response to HC, only the multiparous cows produced more milk. In these animals, bioinformatic analysis indicated expression changes in genes regulating fatty acid metabolism and biosynthesis (e.g., ACACA, ELOVL6, FADS2), increased cholesterol biosynthesis (e.g., CYP7A1, FDPS, HMGCR), downregulation in hepatic AA synthesis (e.g., GPT, GCLC, PSPH, SHMT2), and decreased expression of acute phase proteins (e.g., HP, LBP, SAA2). The primiparous cows on the HC diet also downregulated genes controlling AA metabolism and synthesis (e.g., CTH, GCLC, GOT1, ODC1, SHMT2) but showed higher expression of genes indicative of inflammation (e.g., CCDC80, IL1B, S100A8) and fibrosis (e.g., LOX, LUM, PLOD2). This potentially adverse response to a HC diet in physically immature animals warrants further investigation.
Collapse
Affiliation(s)
- Z Cheng
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| | - M W Little
- Agri-Food and Biosciences Institute, Belfast BT9 5PX, United Kingdom
| | - C Ferris
- Agri-Food and Biosciences Institute, Belfast BT9 5PX, United Kingdom
| | - H Takeda
- Unit of Animal Genomics, GIGA Institute, University of Liège, B-4000 Liège, Belgium
| | - K L Ingvartsen
- Department of Animal and Veterinary Science, Aarhus University, DK-8830 Tjele, Denmark
| | - M A Crowe
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - D C Wathes
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| |
Collapse
|
7
|
Mi H, Hu F, Gebeyew K, Cheng Y, Du R, Gao M, He Z, Tan Z. Genome wide transcriptome analysis provides bases on hepatic lipid metabolism disorder affected by increased dietary grain ratio in fattening lambs. BMC Genomics 2023; 24:364. [PMID: 37386405 DOI: 10.1186/s12864-023-09465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The liver is a principal metabolic organ and has a major role in regulating lipid metabolism. With the development of rapidly fattening livestock in the modern breeding industry, the incidence of hepatic steatosis and accumulation in animals was significantly increased. However, the molecular mechanisms responsible for hepatic lipid metabolic disturbances in a high concentrate diet remain unclear. The objective of this study was to evaluate the effects of increasing concentrate level in a fattening lamb diet on biochemical indices, hepatic triglycerides (TG) concentration, and hepatic transcriptomic profiles. In the present study, 42 weaned lambs (about 3 ± 0.3 months old) were randomly assigned to the GN60 group (60% concentrate of dry matter, GN60, n = 21) or GN70 group (70% concentrate of dry matter, n = 21) for a 3-months feeding trial. RESULTS No difference was observed in the growth performance or plasma biochemical parameters between the GN60 group and the GN70 group. The hepatic TG concentration was higher in the GN70 group than GN60 group (P < 0.05). Hepatic transcriptomic analysis showed that there were 290 differentially expressed genes identified between GN60 and GN70 groups, with 125 genes up-regulated and 165 genes down-regulated in the GN70 group. The enriched Gene Ontology (GO) items and KEGG pathways and protein-protein interaction (PPI) network of differentially expressed genes (DEGs) revealed that the majority of enriched pathways were related to lipid metabolism. Further analysis revealed that the fatty acid synthesis was up-regulated, while fatty acid transport, oxidation, and TG degradation were down-regulated in the GN70 group when compared with the GN60 group. CONCLUSIONS These results indicated that GN70 induced excess lipid deposition in the liver of lambs during the fattening period, with high synthesis rates and low degradation rates of TG. The identified mechanisms may help understand hepatic metabolism in lambs with a high concentrate diet and provide insight into decreasing the risk of liver metabolism disorder in animals.
Collapse
Affiliation(s)
- Hui Mi
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Hu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Cheng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruiping Du
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China
| | - Min Gao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Eom JS, Park DS, Lee SJ, Gu BH, Lee SJ, Lee SS, Kim SH, Kim BW, Lee SS, Kim M. Metabolomic and transcriptomic study to understand changes in metabolic and immune responses in steers under heat stress. ANIMAL NUTRITION 2022; 11:87-101. [PMID: 36189376 PMCID: PMC9483736 DOI: 10.1016/j.aninu.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/22/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
Abstract
Heat stress (HS) damages livestock by adversely affecting physiological and immunological functions. However, fundamental understanding of the metabolic and immunological mechanisms in animals under HS remains elusive, particularly in steers. To understand the changes on metabolic and immune responses in steers under HS condition, we performed RNA-sequencing and proton nuclear magnetic resonance spectroscopy-based metabolomics on HS-free (THI value: 64.92 ± 0.56) and HS-exposed (THI value: 79.13 ± 0.56) Jersey steer (n = 8, body weight: 559.67 ± 32.72 kg). This study clarifies the metabolic changes in 3 biofluids (rumen fluid, serum, and urine) and the immune responses observed in the peripheral blood mononuclear cells of HS-exposed steers. This integrated approach allowed the discovery of HS-sensitive metabolic and immunological pathways. The metabolomic analysis indicated that HS-exposed steers showed potential HS biomarkers such as isocitrate, formate, creatine, and riboflavin (P < 0.05). Among them, there were several integrative metabolic pathways between rumen fluid and serum. Furthermore, HS altered mRNA expression and immune-related signaling pathways. A meta-analysis revealed that HS decreased riboflavin metabolism and the expression of glyoxylate and dicarboxylate metabolism-related genes. Moreover, metabolic pathways, such as the hypoxia-inducible factor-1 signaling pathway, were downregulated in immune cells by HS (P < 0.05). These findings, along with the datasets of pathways and phenotypic differences as potential biomarkers in steers, can support more in-depth research to elucidate the inter-related metabolic and immunological pathways. This would help suggest new strategies to ameliorate the effects of HS, including disease susceptibility and metabolic disorders, in Jersey steers.
Collapse
Affiliation(s)
- Jun Sik Eom
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Da Som Park
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sang Jin Lee
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Shin Ja Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
- University-Centered Labs, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Byeong-Woo Kim
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sung Sill Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
- University-Centered Labs, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Corresponding authors.
| | - Myunghoo Kim
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
- Corresponding authors.
| |
Collapse
|
9
|
Cattaneo L, Laporta J, Dahl GE. Programming effects of late gestation heat stress in dairy cattle. Reprod Fertil Dev 2022; 35:106-117. [PMID: 36592976 DOI: 10.1071/rd22209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The final weeks of gestation represent a critical period for dairy cows that can determine the success of the subsequent lactation. Many physiological changes take place and additional exogenous stressors can alter the success of the transition into lactation. Moreover, this phase is pivotal for the final stage of intrauterine development of the fetus, which can have negative long-lasting postnatal effects. Heat stress is widely recognised as a threat to dairy cattle welfare, health, and productivity. Specifically, late gestation heat stress impairs the dam's productivity by undermining mammary gland remodelling during the dry period and altering metabolic and immune responses in early lactation. Heat stress also affects placental development and function, with relevant consequences on fetal development and programming. In utero heat stressed newborns have reduced birth weight, growth, and compromised passive immune transfer. Moreover, the liver and mammary DNA of in utero heat stressed calves show a clear divergence in the pattern of methylation relative to that of in utero cooled calves. These alterations in gene regulation might result in depressed immune function, as well as altered thermoregulation, hepatic metabolism, and mammary development jeopardising their survival in the herd and productivity. Furthermore, late gestation heat stress appears to exert multigenerational effects, influencing milk yield and survival up to the third generation.
Collapse
Affiliation(s)
- L Cattaneo
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - J Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - G E Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Coleman DN, Totakul P, Onjai-Uea N, Aboragah A, Jiang Q, Vailati-Riboni M, Pate RT, Luchini D, Paengkoum P, Wanapat M, Cardoso FC, Loor JJ. Rumen-protected methionine during heat stress alters mTOR, insulin signaling, and 1-carbon metabolism protein abundance in liver, and whole-blood transsulfuration pathway genes in Holstein cows. J Dairy Sci 2022; 105:7787-7804. [PMID: 35879168 DOI: 10.3168/jds.2021-21379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/26/2022] [Indexed: 11/19/2022]
Abstract
We investigated effects of rumen-protected Met (RPM) during a heat stress (HS) challenge on (1) hepatic abundance of mTOR, insulin, and antioxidant signaling proteins, (2) enzymes in 1-carbon metabolism, and (3) innate immunity. Holstein cows (n = 32; mean ± standard deviation, 184 ± 59 d in milk) were randomly assigned to 1 of 2 environmental groups, and 1 of 2 diets [total mixed ration (TMR) with RPM (Smartamine M; 0.105% dry matter as top-dress) or TMR without (CON); n = 16/diet] in a split-plot crossover design. There were 2 periods with 2 phases. During phase 1 (9 d), all cows were in thermoneutral conditions (TN; temperature-humidity index = 60 ± 3) and fed ad libitum. During phase 2 (9 d), half the cows (n = 8/diet) were exposed to HS using electric heat blankets. The other half (n = 8/diet) remained in TN, but was pair-fed to HS counterparts. After a 14-d washout and 7-d adaptation period, the study was repeated (period 2) and environmental treatments were inverted relative to phase 2, but dietary treatments were the same. Blood was collected on d 6 of each phase 2 to measure immune function and isolate whole-blood RNA. Liver biopsies were performed at the end of each period for cystathione β-synthase (CBS) and methionine adenosyltransferase activity, glutathione concentration, and protein abundance. Data were analyzed using PROC MIXED in SAS. Abundance of CUL3, inhibitor of antioxidant responses, tended to be downregulated by HS suggesting increased oxidative stress. Heat-shock protein 70 abundance was upregulated by HS. Phosphorylated mTOR abundance was greater overall with RPM, suggesting an increase in pathway activity. An environment × diet (E × D) effect was observed for protein kinase B (AKT), whereas there was a tendency for an interaction for phosphorylated AKT. Abundance of AKT was upregulated in CON cows during HS versus TN, this was not observed in RPM cows. For phosphorylated AKT, tissue from HS cows fed CON had greater abundance compared with all other treatments. The same effect was observed for EIF2A (translation initiation) and SLC2A4 (insulin-induced glucose uptake). An E × D effect was observed for INSR due to upregulation in CON cows during HS versus TN cows fed CON or RPM. There was an E × D effect for CBS, with lower activity in RPM versus CON cows during HS. The CON cows tended to have greater CBS during HS versus TN. An E × D effect was observed for methionine adenosyltransferase, with lower activity in RPM versus CON during HS. Although activity increased in CON during HS versus TN, RPM cows tended to have greater activity during TN. Neutrophil and monocyte oxidative burst and monocyte phagocytosis decreased with HS. An (E × D) effect was observed for whole-blood mRNA abundance of CBS, SOD1 and CSAD; RPM led to upregulation during TN versus HS. Regardless of diet, CDO1, CTH, and SOD1 decreased with HS. Although HS increased hepatic HSP70 and seemed to alter antioxidant signaling, feeding RPM may help cows maintain homeostasis in mTOR, insulin signaling, and 1-carbon metabolism. Feeding RPM also may help maintain whole-blood antioxidant response during HS, which is an important aspect of innate immune function.
Collapse
Affiliation(s)
- D N Coleman
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - P Totakul
- Tropical Feed Resources Research and Development Center, Department of Animal Sciences, Khon Kaen University, Khon Kaen, Thailand 40002
| | - N Onjai-Uea
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 3000, Thailand
| | - A Aboragah
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - Q Jiang
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - M Vailati-Riboni
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - R T Pate
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | | | - P Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 3000, Thailand
| | - M Wanapat
- Tropical Feed Resources Research and Development Center, Department of Animal Sciences, Khon Kaen University, Khon Kaen, Thailand 40002
| | - F C Cardoso
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
11
|
Elolimy AA, Liang Y, Lopes MG, Loor JJ. Antioxidant networks and the microbiome as components of efficiency in dairy cattle. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Khan MZ, Ma Y, Ma J, Xiao J, Liu Y, Liu S, Khan A, Khan IM, Cao Z. Association of DGAT1 With Cattle, Buffalo, Goat, and Sheep Milk and Meat Production Traits. Front Vet Sci 2021; 8:712470. [PMID: 34485439 PMCID: PMC8415568 DOI: 10.3389/fvets.2021.712470] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Milk fatty acids are essential for many dairy product productions, while intramuscular fat (IMF) is associated with the quality of meat. The triacylglycerols (TAGs) are the major components of IMF and milk fat. Therefore, understanding the polymorphisms and genes linked to fat synthesis is important for animal production. Identifying quantitative trait loci (QTLs) and genes associated with milk and meat production traits has been the objective of various mapping studies in the last decade. Consistently, the QTLs on chromosomes 14, 15, and 9 have been found to be associated with milk and meat production traits in cattle, goat, and buffalo and sheep, respectively. Diacylglycerol O-acyltransferase 1 (DGAT1) gene has been reported on chromosomes 14, 15, and 9 in cattle, goat, and buffalo and sheep, respectively. Being a key role in fat metabolism and TAG synthesis, the DGAT1 has obtained considerable attention especially in animal milk production. In addition to milk production, DGAT1 has also been a subject of interest in animal meat production. Several polymorphisms have been documented in DGAT1 in various animal species including cattle, buffalo, goat, and sheep for their association with milk production traits. In addition, the DGAT1 has also been studied for their role in meat production traits in cattle, sheep, and goat. However, very limited studies have been conducted in cattle for association of DGAT1 with meat production traits in cattle. Moreover, not a single study reported the association of DGAT1 with meat production traits in buffalo; thus, further studies are warranted to fulfill this huge gap. Keeping in view the important role of DGAT1 in animal production, the current review article was designed to highlight the major development and new insights on DGAT1 effect on milk and meat production traits in cattle, buffalo, sheep, and goat. Moreover, we have also highlighted the possible future contributions of DGAT1 for the studied species.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ibrar Muhammad Khan
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Wang M, Li Y, Molenaar A, Li Q, Cao Y, Shen Y, Chen P, Yan J, Gao Y, Li J. Vitamin E and selenium supplementation synergistically alleviate the injury induced by hydrogen peroxide in bovine granulosa cells. Theriogenology 2021; 170:91-106. [PMID: 34000522 DOI: 10.1016/j.theriogenology.2021.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 01/20/2023]
Abstract
Dairy cows are susceptible to reproductive disorders, which are thought to be associated with oxidative stress. In the study, we investigated the effects of vitamin E (VE) and selenium (Se) on the proliferation, apoptosis, and steroidogenesis in bovine ovarian granulosa cells under hydrogen peroxide (H2O2) - induced oxidative stress and elaborated the underlying mechanisms. Our results showed that VE or Se could stimulate the granulosa cell proliferation, possibly due to up-regulating the expression of CCND1 and decreasing the P21 levels under oxidative stress. VE or Se treatment also increased the secretion of estradiol (E2) and progesterone (P4), which could be owing to improving the expression of genes associated with steroidogenesis (StAR, HSD3β1, and CYP19A1) expression. VE or Se treatment down-regulated the apoptosis-related genes (BAX, CASP3) expression and decreased cell apoptosis. Furthermore, VE or Se treatment inhibited reactive oxidative species (ROS) and malondialdehyde (MDA) generation, increased total antioxidant capacity (T-AOC), and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). Additionally, VE or Se treatment also alleviated the endoplasmic reticulum stress, activated the nuclear factor erythroid 2-related factor 2 (NRF2), and up-regulated the expression of its downstream genes, including NQO1, HO-1, GCLM, GCLC. More importantly, compared with either VE or Se treatment alone, their combined treatment showed a better protective effect against oxidative damage. Overall, our results indicated that VE and Se synergistically stimulated the granulosa cell proliferation and steroidogenesis, decreased cell apoptosis, mitigated the endoplasmic reticulum stress by activating the NRF2 signal pathway.
Collapse
Affiliation(s)
- Meimei Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Yan Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Adrian Molenaar
- AgResearch Ltd., Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Qiufeng Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Yufeng Cao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Yizhao Shen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Panliang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Jinling Yan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| | - Jianguo Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| |
Collapse
|
14
|
Association Analysis of Polymorphisms in the 5' Flanking Region of the HSP70 Gene with Blood Biochemical Parameters of Lactating Holstein Cows under Heat and Cold Stress. Animals (Basel) 2020; 10:ani10112016. [PMID: 33147724 PMCID: PMC7693732 DOI: 10.3390/ani10112016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/22/2022] Open
Abstract
Thermal stress (heat and cold) has large economic and welfare implications for the worldwide dairy industry. Therefore, it is paramount to understand the genetic background of coping mechanism related to thermal stress for the implementation of effective genetic selection schemes in dairy cattle. We performed an association study between 11 single nucleotide polymorphisms having minor allelic frequency (MAF > 0.05) in the HSP70 gene with blood biochemical parameters. The concentrations of growth hormone (GH), lactate (LA), prolactin (PRL), and superoxide dismutase (SOD) in blood were significantly higher (p < 0.05), while the concentrations of blood urea nitrogen (BUN), c-reactive protein (CRP), potassium (K+), lactate dehydrogenase (LDH), lipid peroxide (LPO), and norepinephrine (NE) were significantly lower (p < 0.05) in heat-stressed animals as compared to the control group. A significant (p < 0.05) increase in the concentrations of cortisol (COR), corticosterone (CORT), and potassium (K+) was observed (p < 0.05), while the concentrations of adrenocorticotrophic hormone (ACTH), dopamine (DA), GH, LDH, NE, PRL, and SOD were significantly lower in cold-stressed animals as compared to the control group (p < 0.05). Furthermore, SNP A-12G and C181T were significantly associated with LA (p < 0.05), while A72G was linked with LPO (p < 0.05) in heat-stressed animals. Moreover, the SNPs A-12G and SNP C131G were significantly associated (p < 0.05) with DA and SOD under cold stress condition, respectively. These SNPs markers significantly associated with fluctuations in blood biochemical parameters under thermal stress provide a better insight into the genetic mechanisms underlying climatic resilience in Holstein cattle.
Collapse
|
15
|
Rovelli G, Ceccobelli S, Perini F, Demir E, Mastrangelo S, Conte G, Abeni F, Marletta D, Ciampolini R, Cassandro M, Bernabucci U, Lasagna E. The genetics of phenotypic plasticity in livestock in the era of climate change: a review. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1809540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Giacomo Rovelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
| | - Simone Ceccobelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Perini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
| | - Eymen Demir
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Giuseppe Conte
- Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, University of Pisa, Pisa, Italy
| | - Fabio Abeni
- Centro di ricerca Zootecnia e Acquacoltura, Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Lodi, Italy
| | - Donata Marletta
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | | | - Martino Cassandro
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, University of Padova, Legnaro, Italy
| | - Umberto Bernabucci
- Dipartimento di Scienze Agrarie e Forestali, Università della Tuscia, Viterbo, Italy
| | - Emiliano Lasagna
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
| |
Collapse
|
16
|
Shahzad K, Lopreiato V, Liang Y, Trevisi E, Osorio JS, Xu C, Loor JJ. Hepatic metabolomics and transcriptomics to study susceptibility to ketosis in response to prepartal nutritional management. J Anim Sci Biotechnol 2019; 10:96. [PMID: 31867104 PMCID: PMC6918647 DOI: 10.1186/s40104-019-0404-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022] Open
Abstract
Background Ketosis in dairy cows is associated with body fat mobilization during the peripartal period. Sub-clinical and clinical ketosis arise more frequently in cows that are overfed energy during the entire dry (last 50 to 45 days prior to parturition) or close-up period (last ~ 28 days prepartum). Methods A retrospective analysis was performed on 12 cows from a larger cohort that were fed a higher-energy diet [1.54 Mcal/kg of dry matter (DM); 35.9% of DM corn silage and 13% of DM ground corn] during the close-up dry period, of which 6 did not develop clinical ketosis (OVE, 0.83 mmol/L plasma hydroxybutyrate; BHB) and 6 were diagnosed with clinical ketosis (KET, 1.4 mmol/L BHB) during the first week postpartum. A whole-transcriptome bovine microarray (Agilent Technologies) and metabolomics (GC-MS, LC-MS; Metabolon® Inc.) were used to perform transcript and metabolite profiling of liver tissue harvested at − 10 days relative to parturition which allowed to establish potential associations between prepartal transcriptome/metabolome profiles and susceptibility to clinical ketosis postpartum. Results Cows in KET had greater (P = 0.01) overall body weight between − 2 and 1 week around parturition, but similar body condition score than OVE. Although dry matter intake (DMI) did not differ prepartum, KET cows had lower (P < 0.01) DMI and similar milk yield as OVE cows during the first week postpartum. Transcriptome analysis revealed a total of 3065 differentially expressed genes (DEG; P ≤ 0.05) in KET. Metabolomics identified 15 out of 313 total biochemical compounds significantly affected (P ≤ 0.10) in KET. Among those, greater concentrations (P ≤ 0.06, + 2.3-fold) of glycochenodeoxycholate in KET cows also have been detected in humans developing non-alcoholic fatty liver disease. Bioinformatics analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database and the DEG revealed that, among the top 20 most-impacted metabolic pathway categories in KET, 65% were overall downregulated. Those included ‘Metabolism of cofactors and vitamins’, ‘Biosynthesis of other secondary metabolites’, ‘Lipid’, ‘Carbohydrate’, and ‘Glycan biosynthesis and metabolism’. The lower relative concentration of glucose-6-phosphate and marked downregulation of fructose-1,6-bisphosphatase 2 and pyruvate dehydrogenase kinase 4 support a strong impairment in gluconeogenesis in prepartal liver of cows developing KET postpartum. Among the top 20 most-impacted non-metabolic pathways, 85% were downregulated. Pathways such as ‘mTOR signalling’ and ‘Insulin signalling’ were among those. ‘Ribosome’, ‘Nucleotide excision repair’, and ‘Adherens junctions’ were the only upregulated pathways in cows with KET. Conclusions The combined data analyses revealed more extensive alterations of the prepartal liver transcriptome than metabolome in cows overfed energy and developing ketosis postpartum. The causative link between these tissue-level adaptations and onset of clinical ketosis needs to be studied further.
Collapse
Affiliation(s)
- Khuram Shahzad
- 1COMSATS Institute of Information Technology, ChakShahzad, Islamabad, 44000 Pakistan.,2Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Vincenzo Lopreiato
- 3Istituto di Zootecnica, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Yusheng Liang
- 2Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Erminio Trevisi
- 3Istituto di Zootecnica, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Johan S Osorio
- 4Department of Dairy Science, South Dakota State University, Brookings, SD 57006 USA
| | - Chuang Xu
- 5College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Xinyang Rd. 5, Daqing, 163319 China
| | - Juan J Loor
- 2Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| |
Collapse
|
17
|
Sun HZ, Plastow G, Guan LL. Invited review: Advances and challenges in application of feedomics to improve dairy cow production and health. J Dairy Sci 2019; 102:5853-5870. [PMID: 31030919 DOI: 10.3168/jds.2018-16126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/02/2019] [Indexed: 12/22/2022]
Abstract
Dairy cattle science has evolved greatly over the past century, contributing significantly to the improvement in milk production achieved today. However, a new approach is needed to meet the increasing demand for milk production and address the increased concerns about animal health and welfare. It is now easy to collect and access large and complex data sets consisting of molecular, physiological, and metabolic data as well as animal-level data (such as behavior). This provides new opportunities to better understand the mechanisms regulating cow performance. The recently proposed concept of feedomics could help achieve this goal by increasing our understanding of interactions between the different components or levels and their impact on animal production. Feedomics is an emerging field that integrates a range of omics technologies (e.g., genomics, epigenomics, transcriptomics, proteomics, metabolomics, metagenomics, and metatranscriptomics) to provide these insights. In this way, we can identify the best strategies to improve overall animal productivity, product quality, welfare, and health. This approach can help research communities elucidate the complex interactions among nutrition, environment, management, animal genetics, metabolism, physiology, and the symbiotic microbiota. In this review, we summarize the outcomes of the most recent research on omics in dairy cows and highlight how an integrated feedomics approach could be applied in the future to improve dairy cow production and health. Specifically, we focus on 2 topics: (1) improving milk yield and milk quality, and (2) understanding metabolic physiology in transition dairy cows, which are 2 important challenges faced by the dairy industry worldwide.
Collapse
Affiliation(s)
- H Z Sun
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5
| | - G Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.
| |
Collapse
|
18
|
Angeli E, Trionfini V, Gareis NC, Matiller V, Huber E, Rey F, Salvetti NR, Ortega HH, Hein GJ. Protein and gene expression of relevant enzymes and nuclear receptor of hepatic lipid metabolism in grazing dairy cattle during the transition period. Res Vet Sci 2019; 123:223-231. [PMID: 30684909 DOI: 10.1016/j.rvsc.2019.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/15/2019] [Accepted: 01/20/2019] [Indexed: 12/15/2022]
Abstract
We aimed to study the protein and gene expression of some hepatic enzymes of lipid metabolism along with plasma biomarkers in grazing dairy cattle during the transition period. Blood and liver biopsies from a group of eight multiparous cows were sampled at -28, -14, +4, +14, +28 and +56 days relative to parturition. Peak concentrations of NEFA and beta-hydroxybutyric acid with high triacylglycerol content in the liver were recorded on day 4 postpartum. Consistent with blood biomarkers, the gene expression of carnitine palmitoyltransferase 1A (CPT1A) and acyl-CoA oxidase 1 (ACOX1) increased, whereas that of diacylglycerol O-acyltransferase 1 (DGAT1) decreased. Nevertheless, CPT1A protein expression did not change during all the period evaluated and ACOX1 protein expression increased on day 56 postpartum. In addition, the protein expression of peroxisome proliferator-activated receptor alpha (PPAR-alpha) increased on day 28 postpartum. On the other hand, DGAT1 protein expression decreased on day 14 postpartum. As expected, the expression of genes associated with fatty acid oxidation increased on the first days postpartum but, notably, protein expression was highest after transition. Since most infectious diseases and metabolic disorders in dairy cattle occur particularly on the first days postpartum, it is not so clear whether an increase in the oxidation capacity of the liver at that time could help to prevent disease and improve dairy production. The valuable results about protein expression of enzymes involved in liver lipid metabolism could help to better characterize the metabolism of dairy cattle during the transition period.
Collapse
Affiliation(s)
- E Angeli
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - V Trionfini
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - N C Gareis
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - V Matiller
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - E Huber
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - F Rey
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - N R Salvetti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - H H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - G J Hein
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Centro Universitario Gálvez, Universidad Nacional del Litoral (UNL), Gálvez, Santa Fe, Argentina.
| |
Collapse
|
19
|
Cheng J, Min L, Zheng N, Fan C, Zhao S, Zhang Y, Wang J. Strong, sudden cooling alleviates the inflammatory responses in heat-stressed dairy cows based on iTRAQ proteomic analysis. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:177-182. [PMID: 28887600 DOI: 10.1007/s00484-017-1439-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
This study was designed to investigate the effects of sudden cooling on the physiological responses of 12 heat-stressed Holstein dairy cows using an isobaric tags for relative and absolute quantification (iTRAQ) labeling approach. Plasma samples were collected from these cows during heat stress (HS), and after strong, sudden cooling in the summer (16 days later). We compared plasma proteomic data before and after sudden cooling to identify the differentially abundant proteins. The results showed that sudden cooling in summer effectively alleviated the negative consequences of HS on body temperature and production variables. Expressions of plasma hemoglobin alpha and hemoglobin beta were upregulated, whereas lipopolysaccharide-binding protein (LBP) and haptoglobin were downregulated in this process. The increase of hemoglobin after cooling may improve oxygen transport and alleviate the rise in respiration rates in heat-stressed dairy cows. The decrease of LBP and haptoglobin suggests that the inflammatory responses caused by HS are relieved after cooling. Our findings provide new insight into the physiological changes that occur when heat-stressed dairy cows experience strong, sudden cooling.
Collapse
Affiliation(s)
- Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Li Min
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Caiyun Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
20
|
Skibiel AL, Zachut M, do Amaral BC, Levin Y, Dahl GE. Liver proteomic analysis of postpartum Holstein cows exposed to heat stress or cooling conditions during the dry period. J Dairy Sci 2018; 101:705-716. [DOI: 10.3168/jds.2017-13258] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/19/2017] [Indexed: 12/25/2022]
|
21
|
Carabaño MJ, Ramón M, Díaz C, Molina A, Pérez-Guzmán MD, Serradilla JM. BREEDING AND GENETICS SYMPOSIUM: Breeding for resilience to heat stress effects in dairy ruminants. A comprehensive review. J Anim Sci 2017; 95:1813-1826. [PMID: 28464073 DOI: 10.2527/jas.2016.1114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Selection for heat tolerant (HT) animals in dairy production has been so far linked to estimation of declines in production using milk recording and meteorological information on the day of control using reaction norms. Results from these models show that there is a reasonable amount of genetic variability in the individual response to high heat loads, which makes feasible selection of HT animals at low costs. However, the antagonistic relationship between level of production and response to heat stress (HS) implies that selection for HT animals under this approach must be done with caution so that productivity is not damaged. Decomposition of the genetic variability in principal components (PC) can provide selection criteria independent of milk production level although biological interpretation of PC is difficult. Moreover, given that response to heat stress for each animal is estimated with very sparse information collected under different physiological and management circumstances, biased (normally underestimation) and lack of accuracy may be expected. Alternative phenotypic characterization of HT can come from the use of physiological traits, which have also shown moderate heritability. However, costs of a large scale implementation based on physiological characteristics has precluded its use. Another alternative is the use of biomarkers that define heat tolerance. A review of biomarkers of HS from more recent studies is provided. Of particular interest are milk biomarkers, which together with infrared spectra prediction equations can provide useful tools for genetic selection. In the 'omics' era, genomics, transcriptomics, proteomics and metabolomics have been already used to detect genes affecting HT. A review of findings in these areas is also provided. Except for the slick hair gene, there are no other genes for which variants have been clearly associated with HT. However, integration of omics information could help in pointing at knots of the HS control network and, in the end, to a panel of markers to be used in the selection of HT animals. Overall, HT is a complex phenomenon that requires integration of fine phenotypes and omics information to provide accurate tools for selection without damaging productivity. Technological developments to make on-farm implementation feasible and with greater insight into the key biomarkers and genes involved in HT are needed.
Collapse
|
22
|
Weitzel JM, Viergutz T, Albrecht D, Bruckmaier R, Schmicke M, Tuchscherer A, Koch F, Kuhla B. Hepatic thyroid signaling of heat-stressed late pregnant and early lactating cows. J Endocrinol 2017; 234:129-141. [PMID: 28500083 PMCID: PMC5516449 DOI: 10.1530/joe-17-0066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/11/2017] [Indexed: 01/18/2023]
Abstract
During the transition between late gestation and early lactation, dairy cows experience severe metabolic stress due to the high energy and nutrient requirements of the fetus and the mammary gland. Additional thermal stress that occurs with rising temperatures during the ongoing climate change has further adverse implications on energy intake, metabolism and welfare. The thyroid hormone (TH)-mediated cellular signaling has a pivotal role in regulation of body temperature, energy intake and metabolic adaptation to heat. To distinguish between energy intake and heat stress-related effects, Holstein cows were first kept at thermoneutrality at 15°C followed by exposure to heat stress (HS) at 28°C or pair-feeding (PF) at 15°C for 6 days, in late pregnancy and again in early lactation. Herein, we focused on hepatic metabolic changes associated with alterations in the hypothalamic-pituitary-thyroid axis in HS and PF animals. T3 and T4 levels dropped with HS or PF; however, in HS animals, this decline was more pronounced. Thyroid-stimulating hormone (TSH) levels remain unaffected, while plasma cholesterol concentrations were lower in HS than PF animals. Hepatic marker genes for TH action (THRA, DIO1 and PPARGC1) decreased after HS and were lower compared to PF cows but only post-partum. Proteomics data revealed reduced hepatic amino acid catabolism ante-partum and a shift toward activated beta-oxidation and gluconeogenesis but declined oxidative stress defense post-partum. Thus, liver metabolism of HS and PF cows adapts differently to diminished energy intake both ante-partum and post-partum, and a different TH sensitivity is involved in the regulation of catabolic processes.
Collapse
Affiliation(s)
- Joachim M Weitzel
- Institute of Reproductive BiologyLeibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Torsten Viergutz
- Institute of Reproductive BiologyLeibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Dirk Albrecht
- Institute of MicrobiologyErnst-Moritz-Arndt-University, Greifswald, Germany
| | - Rupert Bruckmaier
- Veterinary PhysiologyVetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marion Schmicke
- Clinic for CattleEndocrinology Laboratory, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Armin Tuchscherer
- Institute of Genetics and BiometryLeibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Franziska Koch
- Institute of Nutritional Physiology 'Oskar Kellner'Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology 'Oskar Kellner'Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
23
|
Macciotta NPP, Biffani S, Bernabucci U, Lacetera N, Vitali A, Ajmone-Marsan P, Nardone A. Derivation and genome-wide association study of a principal component-based measure of heat tolerance in dairy cattle. J Dairy Sci 2017; 100:4683-4697. [PMID: 28365122 DOI: 10.3168/jds.2016-12249] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/05/2017] [Indexed: 12/19/2022]
Abstract
Heat stress represents a key factor that negatively affects the productive and reproductive performance of farm animals. In the present work, a new measure of tolerance to heat stress for dairy cattle was developed using principal component analysis. Data were from 590,174 test-day records for milk yield, fat and protein percentages, and somatic cell score of 39,261 Italian Holstein cows. Test-day records adjusted for main systematic factors were grouped into 11 temperature-humidity index (THI) classes. Daughter trait deviations (DTD) were calculated for 1,540 bulls as means of the adjusted test-day records for each THI class. Principal component analysis was performed on the DTD for each bull. The first 2 principal components (PC) explained 42 to 51% of the total variance of the system across the 4 traits. The first PC, a measure of the level at which the curve is located, was interpreted as a measure of the level at which the DTD curve was located. The second PC, which shows the slope of increasing or decreases DTD curves, synthesized the behavior of the DTD pattern. Heritability of the 2 component scores was moderate to high for level across all traits (range = 0.23-0.82) and low to moderate for slope (range = 0.16-0.28). For each trait, phenotypic and genetic correlations between level and slope were equal to zero. A genome-wide association analysis was carried out on a subsample of 423 bulls genotyped with the Illumina 50K bovine bead chip (Illumina, San Diego, CA). Two single nucleotide polymorphisms were significantly associated with slope for milk yield, 4 with level for fat percentage, and 2 with level and slope of protein percentage, respectively. The gene discovery was carried out considering windows of 0.5 Mb surrounding the significant markers and highlighted some interesting candidate genes. Some of them have been already associated with the mechanism of heat tolerance as the heat shock transcription factor (HSF1) and the malonyl-CoA-acyl carrier protein transacylase (MCAT). The 2 PC were able to describe the overall level and the slope of response of milk production traits across increasing levels of THI index. Moreover, they exhibited genetic variability and were genetically uncorrelated. These features suggest their use as measures of thermotolerance in dairy cattle breeding schemes.
Collapse
Affiliation(s)
- N P P Macciotta
- Dipartimento di Agraria, Università di Sassari, 07100 Sassari, Italy.
| | - S Biffani
- Associazione Italiana Allevatori, 00161 Roma, Italy
| | - U Bernabucci
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia-Viterbo, 01100 Viterbo, Italy
| | - N Lacetera
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia-Viterbo, 01100 Viterbo, Italy
| | - A Vitali
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia-Viterbo, 01100 Viterbo, Italy
| | - P Ajmone-Marsan
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - A Nardone
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia-Viterbo, 01100 Viterbo, Italy.
| |
Collapse
|
24
|
Wang Q, Zhao X, Zhang Z, Zhao H, Huang D, Cheng G, Yang Y. Proteomic analysis of physiological function response to hot summer in liver from lactating dairy cows. J Therm Biol 2017; 65:82-87. [PMID: 28343581 DOI: 10.1016/j.jtherbio.2017.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 11/28/2022]
Abstract
Lactation performance of dairy cattle is susceptible to heat stress. The liver is one of the most crucial organs affected by high temperature in dairy cows. However, the physiological adaption by the liver to hot summer conditions has not been well elucidated in lactating dairy cows. In the present study, proteomic analysis of the liver in dairy cows in spring and hot summer was performed using a label-free method. In total, 127 differentially expressed proteins were identified; most of the upregulated proteins were involved in protein metabolic processes and responses to stimuli, whereas most of the downregulated proteins were related to oxidation-reduction. Pathway analysis indicated that 3 upregulated heat stress proteins (HSP90α, HSP90β, and endoplasmin) were enriched in the NOD-like receptor signaling pathway, whereas several downregulated NADH dehydrogenase proteins were involved in the oxidative phosphorylation pathway. The protein-protein interaction network indicated that several upregulated HSPs (HSP90α, HSP90β, and GRP78) were involved in more interactions than other proteins and were thus considered as central hub nodes. Our findings provide novel insights into the physiological adaption of liver function in lactating dairy cows to natural high temperature.
Collapse
Affiliation(s)
- Qiangjun Wang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaowei Zhao
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Huiling Zhao
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Dongwei Huang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Guanglong Cheng
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yongxin Yang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| |
Collapse
|
25
|
Vailati-Riboni M, Meier S, Burke CR, Kay JK, Mitchell MD, Walker CG, Crookenden MA, Heiser A, Rodriguez-Zas SL, Roche JR, Loor JJ. Prepartum body condition score and plane of nutrition affect the hepatic transcriptome during the transition period in grazing dairy cows. BMC Genomics 2016; 17:854. [PMID: 27806685 PMCID: PMC5093966 DOI: 10.1186/s12864-016-3191-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/22/2016] [Indexed: 11/10/2022] Open
Abstract
Background A transcriptomic approach was used to evaluate potential interactions between prepartum body condition score (BCS) and feeding management in the weeks before calving on hepatic metabolism during the periparturient period. Methods Thirty-two mid-lactation grazing dairy cows of mixed age and breed were randomly allocated to one of four treatment groups in a 2 × 2 factorial arrangement: two prepartum BCS categories [4.0 (thin, BCS4) and 5.0 (optimal, BCS5); based on a 10-point scale], and two levels of energy intake during the 3 weeks preceding calving (75 and 125 % of estimated requirements). Liver samples were obtained at −7, 7, and 28 d relative to parturition and subsequent RNA was hybridized to the Agilent 44 K Bovine (V2) Microarray chip. The Dynamic Impact Approach was used for pathway analysis, and Ingenuity Pathway Analysis was used for gene network analysis. Results The greater number of differentially expressed genes in BCS4 cows in response to prepartum feed allowance (1071 vs 310, over the entire transition period) indicates that these animals were more responsive to prepartum nutrition management than optimally-conditioned cows. However, independent of prepartum BCS, pathway analysis revealed that prepartal feeding level had a marked effect on carbohydrate, amino acid, lipid, and glycan metabolism. Altered carbohydrate and amino acid metabolism suggest a greater and more prolonged negative energy balance postpartum in BCS5 cows overfed prepartum. This is supported by opposite effects of prepartum feeding in BCS4 compared with BCS5 cows in pathways encompassing amino acid, vitamin, and co-factor metabolism. The prepartum feed restriction ameliorates the metabolic adaptation to the onset of lactation in BCS5 cows, while detrimentally affecting BCS4 cows, which seem to better adapt when overfed. Alterations in the glycosaminoglycans synthesis pathway support this idea, indicating better hepatic health status in feed-restricted BCS5 and overfed BCS4 cows. Furthermore, IPA network analysis suggests liver damage in feed-restricted thin cows, likely due to metabolic overload. Conclusion Overall, the data support the hypothesis that overfeeding in late-pregnancy should be limited to underconditioned cows, while cows with optimal degree of body condition should be maintained on an energy-restricted diet. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3191-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Vailati-Riboni
- Department of Animal Sciences, University of Illinois, Urbana, 61801, USA
| | - S Meier
- DairyNZ Limited, Private Bag 3221, Hamilton, 3240, New Zealand
| | - C R Burke
- DairyNZ Limited, Private Bag 3221, Hamilton, 3240, New Zealand
| | - J K Kay
- DairyNZ Limited, Private Bag 3221, Hamilton, 3240, New Zealand
| | - M D Mitchell
- University of Queensland, Centre for Clinical Research, Royal Brisbane & Women's Hospital Campus, Herston, QLD, 4029, Australia
| | - C G Walker
- DairyNZ Limited, Private Bag 3221, Hamilton, 3240, New Zealand
| | - M A Crookenden
- DairyNZ Limited, Private Bag 3221, Hamilton, 3240, New Zealand
| | - A Heiser
- AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North, 4442, New Zealand
| | - S L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois, Urbana, 61801, USA
| | - J R Roche
- DairyNZ Limited, Private Bag 3221, Hamilton, 3240, New Zealand
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana, 61801, USA.
| |
Collapse
|
26
|
Koch F, Lamp O, Eslamizad M, Weitzel J, Kuhla B. Metabolic Response to Heat Stress in Late-Pregnant and Early Lactation Dairy Cows: Implications to Liver-Muscle Crosstalk. PLoS One 2016; 11:e0160912. [PMID: 27513961 PMCID: PMC4981427 DOI: 10.1371/journal.pone.0160912] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/27/2016] [Indexed: 11/30/2022] Open
Abstract
Climate changes lead to rising temperatures during summer periods and dramatic economic losses in dairy production. Modern high-yielding dairy cows experience severe metabolic stress during the transition period between late gestation and early lactation to meet the high energy and nutrient requirements of the fetus or the mammary gland, and additional thermal stress during this time has adverse implications on metabolism and welfare. The mechanisms enabling metabolic adaptation to heat apart from the decline in feed intake and milk yield are not fully elucidated yet. To distinguish between feed intake and heat stress related effects, German Holstein dairy cows were first kept at thermoneutral conditions at 15°C followed by exposure to heat-stressed (HS) at 28°C or pair-feeding (PF) at 15°C for 6 days; in late-pregnancy and again in early lactation. Liver and muscle biopsies and plasma samples were taken to assess major metabolic pathway regulation using real-time PCR and Western Blot. The results indicate that during heat stress, late pregnant cows activate Cahill but reduce Cori cycling, prevent increase in skeletal muscle fatty acid oxidation, and utilize increased amounts of pyruvate for gluconeogenesis, without altering ureagenesis despite reduced plane of nutrition. These homeorhetic adaptations are employed to reduce endogenous heat production while diverting amino acids to the growing fetus. Metabolic adaptation to heat stress in early lactation involves increased long-chain fatty acid degradation in muscle peroxisomes, allowance for muscle glucose utilization but diminished hepatic use of amino acid-derived pyruvate for gluconeogenesis and reduced peroxisomal fatty acid oxidation and ATP production in liver of HS compared to PF cows in early lactation. Consequently, metabolic adaptation to heat stress and reduced feed intake differ between late pregnancy and early lactation of dairy cows to maintain energy supply for fetus development or milk production simultaneously reducing endogenous heat production.
Collapse
Affiliation(s)
- Franziska Koch
- Institute of Nutritional Physiology “Oskar Kellner”, Leibnitz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ole Lamp
- Institute of Nutritional Physiology “Oskar Kellner”, Leibnitz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Schleswig Holstein Chamber of Agriculture, Department of Animal production, Futterkamp, Blekendorf, Germany
| | - Mehdi Eslamizad
- Institute of Nutritional Physiology “Oskar Kellner”, Leibnitz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Department of Animal Science, Campus of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Joachim Weitzel
- Institute of Reproductive Biology, Leibnitz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology “Oskar Kellner”, Leibnitz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- * E-mail:
| |
Collapse
|