1
|
Glazunova OA, Moiseenko KV, Savinova OS, Fedorova TV. In Vitro and In Vivo Antihypertensive Effect of Milk Fermented with Different Strains of Common Starter Lactic Acid Bacteria. Nutrients 2022; 14:nu14245357. [PMID: 36558516 PMCID: PMC9782308 DOI: 10.3390/nu14245357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Currently, functional dairy products pave a promising way for the prophylaxis of essential hypertension, and the search for new strains capable of producing such products is a constant challenge for scientists around the world. In this study, the antihypertensive properties of milk fermented with several strains of traditional yogurt starters (Lactobacillus delbrueckii strains Lb100 and Lb200; Lactococcus lactis strains dlA, AM1 and MA1; Streptococcus thermophilus strains 159 and 16t) and one strain of non-conventional probiotic starter (Lacticaseibacillus paracasei ABK) were assessed. The in vitro assessment using angiotensin-converting enzyme inhibition assay was performed for all fermentation products, and the best performed products were tested in vivo using Spontaneously Hypertensive Rat (SHR) animal model. In addition, for the best performed products the fatty acid (FA) composition and FA-related nutritional indices were determined. As a result, the milk fermented with two strains (Lb. delbrueckii LB100 and Lc. lactis AM1) demonstrated significant antihypertensive effect during both in vitro and in vivo experiments. Moreover, the milk fermented with Lb. delbrueckii Lb100 demonstrated significantly better FA-related nutritional indexes and lowered total cholesterol in SHRs upon regular consumption. The obtained results can be used in the future to develop new starter cultures producing effective functional antihypertensive dairy products.
Collapse
|
2
|
Development and metabolic profiling of a postbiotic complex exhibiting antibacterial activity against skin microorganisms and anti-inflammatory effect on human keratinocytes. Food Sci Biotechnol 2022; 31:1325-1334. [PMID: 35992320 PMCID: PMC9385932 DOI: 10.1007/s10068-022-01123-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/01/2022] [Accepted: 06/16/2022] [Indexed: 11/04/2022] Open
Abstract
Beyond probiotics, the interest in the application of postbiotics to various fields has been growing. We aimed to develop a novel postbiotic complex (PC) with antibacterial and anti-inflammatory properties. Through antibacterial activity testing against Staphylococcus aureus or Cutibacterium acnes, a PC [a mixture of cell-free supernatants (postbiotics) from probiotic Lactobacillus helveticus (HY7801) and Lactococcus lactis (HY449)] was developed. Anti-inflammatory activity of the PC was investigated using HaCaT keratinocytes treated with S. aureus or C. acnes. PC significantly decreased IL-8 levels and increased hyaluronic acid levels in HaCaT cells cultured with S. aureus or C. acnes. GC-MS based metabolic profiling suggested 2-hydroxyisocaproic acid, hypoxanthine, succinic acid, ornithine, and γ-aminobutyric acid as potential contributing metabolites for the antibacterial and anti-inflammatory effects of PC. The PC developed in this study could be utilized in food, cosmetics, and pharmaceutical products as an alternative or complementary resources of probiotics. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01123-x.
Collapse
|
3
|
Textural and Functional Properties of Skimmed and Whole Milk Fermented by Novel Lactiplantibacillus plantarum AG10 Strain Isolated from Silage. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Milk fermentation by lactic acid bacteria both enhances its nutritional value and provides probiotic strains to correct the intestinal microflora. Here, we show the comparative analysis of milk fermented with the new strain, Lactiplantibacillus plantarum AG10, isolated from silage and the industrial strain Lactobacillus delbrukii subs. bulgaricus. While the milk acidification during fermentation with L. plantarum AG10 was lower compared with L. bulgaricus, milk fermented with L. plantarum AG10 after a 14-day storage period retained a high level of viable cells and was characterized by an increased content of exopolysaccharides and higher viscosity. The increased EPS production led to clot formation with higher density on microphotographs and increased firmness and cohesiveness of the product compared with L. bulgaricus-fermented milk. Furthermore, the L. plantarum AG10-fermented milk exhibited increased radical-scavenging activity assuming lower fat oxidation during storage. Taken together, these data suggest that L. plantarum AG10 seems to be a promising starter culture for dairy products with lowered levels of lactic acid, which is important for people with increased gastric acid formation.
Collapse
|
4
|
Zhao X, Liang Q. EPS-Producing Lactobacillus plantarum MC5 as a Compound Starter Improves Rheology, Texture, and Antioxidant Activity of Yogurt during Storage. Foods 2022; 11:foods11111660. [PMID: 35681410 PMCID: PMC9179970 DOI: 10.3390/foods11111660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022] Open
Abstract
This study evaluated the effects of probiotic Lactobacillus plantarum MC5 on the quality, antioxidant activity, and storage stability of yogurt, to determine its possible application as a starter in milk fermentation. Four groups of yogurt were made with different proportions of probiotic L. plantarum MC5 and commercial starters. The yogurt samples’ rheological properties, texture properties, antioxidant activity, storage stability, and exopolysaccharides (EPS) content during storage were determined. The results showed that 2:1 and 1:1 yogurt samples (supplemented with L. plantarum MC5) attained the highest EPS content (982.42 mg/L and 751.71 mg/L) during storage. The apparent viscosity, consistency, cohesiveness, and water holding capacity (WHC) of yogurt samples supplemented with L. plantarum MC5 were significantly higher than those of the control group (p < 0.05). Further evaluation of antioxidant activity revealed that yogurt samples containing MC5 starter significantly increased in DPPH, ABTS, OH, and ferric iron-reducing power. The study also found that adding MC5 can promote the growth of Streptococcus thermophilus. Therefore, yogurt containing L. plantarum MC5 had favorable rheological properties, texture, and health effects. The probiotic MC5 usage in milk fermentation showed adequate potential for industrial application.
Collapse
Affiliation(s)
| | - Qi Liang
- Correspondence: ; Tel.: +86-139-1903-4438
| |
Collapse
|
5
|
Fermented sheep's milk enriched in gamma-amino butyric acid (GABA) by the addition of lactobacilli strains isolated from different food environments. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Ayag N, Dagdemir E, Hayaloglu AA. Comparison of γ-aminobutyric acid and free amino acid contents of some common varieties of Turkish cheeses. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Ding R, Li M, Zou Y, Wang Y, Yan C, Zhang H, Wu R, Wu J. Effect of normal and strict anaerobic fermentation on physicochemical quality and metabolomics of yogurt. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Hagi T, Kurahashi A, Oguro Y, Kodaira K, Kobayashi M, Hayashida S, Yamashita H, Arakawa Y, Miura T, Sato K, Tomita S, Suzuki S, Kusumoto KI, Moriya N, Nomura M. Effect of sake lees on cheese components in cheese ripened by Aspergillus oryzae and lactic acid bacteria. J Dairy Sci 2022; 105:4868-4881. [DOI: 10.3168/jds.2021-21721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/26/2022] [Indexed: 11/19/2022]
|
9
|
Psychobiotics, gut microbiota and fermented foods can help preserving mental health. Food Res Int 2022; 152:110892. [DOI: 10.1016/j.foodres.2021.110892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
|
10
|
Meng Y, Liang Z, Yi M, Tan Y, Li Z, Du P, Li A, Li C, Liu L. Enrichment of zinc in Lactobacillus plantarum DNZ-4: Impact on its characteristics, metabolites and antioxidant activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Sharma H, Ozogul F, Bartkiene E, Rocha JM. Impact of lactic acid bacteria and their metabolites on the techno-functional properties and health benefits of fermented dairy products. Crit Rev Food Sci Nutr 2021:1-23. [PMID: 34845955 DOI: 10.1080/10408398.2021.2007844] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
After conversion of lactose to lactic acid, several biochemical changes occur such as enhanced protein digestibility, fatty acids release, and production of bioactive compounds etc. during the fermentation process that brings nutritional and quality improvement in the fermented dairy products (FDP). A diverse range of lactic acid bacteria (LAB) is being utilized for the development of FDP with specific desirable techno-functional attributes. This review contributes to the knowledge of basic pathways and changes during fermentation process and the current research on techniques used for identification and quantification of metabolites. The focus of this article is mainly on the metabolites responsible for maintaining the desired attributes and health benefits of FDP as well as their characterization from raw milk. LAB genera including Lactobacillus, Streptococcus, Leuconostoc, Pediococcus and Lactococcus are involved in the fermentation of milk and milk products. LAB species accrue these benefits and desirable properties of FDP producing the bioactive compounds and metabolites using homo-fermentative and heterofermentative pathways. Generation of metabolites vary with incubation and other processing conditions and are analyzed and quantified using highly advanced and sophisticated instrumentation including nuclear magnetic resonance, mass-spectrometry based techniques. Health benefits of FDP are mainly possible due to the biological roles of such metabolites that also cause technological improvements desired by dairy manufacturers and consumers.
Collapse
Affiliation(s)
- Heena Sharma
- Food Technology Lab, Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - João Miguel Rocha
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering (DEQ), Faculty of Engineering, University of Porto FEUP), Porto, Portugal
| |
Collapse
|
12
|
|
13
|
Allen MM, Pike OA, Kenealey JD, Dunn ML. Metabolomics of acid whey derived from Greek yogurt. J Dairy Sci 2021; 104:11401-11412. [PMID: 34454763 DOI: 10.3168/jds.2021-20442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Acid whey, a byproduct of Greek yogurt production, has little commercial value due to its low protein content and is also environmentally harmful when disposed of as waste. However, as a product of microbial fermentation, acid whey could be a rich source of beneficial metabolites associated with fermented foods. This study increases understanding of acid whey composition by providing a complete metabolomic profile of acid whey. Commercial and laboratory-made Greek yogurts, prepared with 3 different bacterial culture combinations, were evaluated. Samples of uncultured milk and cultured whey from each batch were analyzed. Ultra-high-performance liquid chromatography-tandem mass spectrometry metabolomics were used to separate and identify 477 metabolites. Compared with uncultured controls, acid whey from fermented yogurt showed decreases in some metabolites and increases in others, presumably due to the effects of microbial metabolism. Additional metabolites appeared in yogurt whey but not in the uncultured control. Therefore, the effect of microbial fermentation is complex, leading to increases or decreases in potentially bioactive bovine metabolites while generating new microbial compounds that may be beneficial. Metabolite production was significantly affected by combinations of culturing organisms and production location. Differences between laboratory-made and commercial samples could be caused by different starting ingredients, environmental factors, or both.
Collapse
Affiliation(s)
- Muriel M Allen
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602
| | - Oscar A Pike
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602
| | - Jason D Kenealey
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602
| | - Michael L Dunn
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602.
| |
Collapse
|
14
|
Twenty years of amino acid determination using capillary electrophoresis: A review. Anal Chim Acta 2021; 1174:338233. [DOI: 10.1016/j.aca.2021.338233] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/28/2022]
|
15
|
Patel VD, Shamsi SA, Sutherland K. Capillary electromigration techniques coupled to mass spectrometry: Applications to food analysis. Trends Analyt Chem 2021; 139. [DOI: 10.1016/j.trac.2021.116240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Sharma H, El Rassi GD, Lathrop A, Dobreva VB, Belem TS, Ramanathan R. Comparative analysis of metabolites in cow and goat milk yoghurt using GC–MS based untargeted metabolomics. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Jitpakdee J, Kantachote D, Kanzaki H, Nitoda T. Selected probiotic lactic acid bacteria isolated from fermented foods for functional milk production: Lower cholesterol with more beneficial compounds. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Sharma H, Ramanathan R. Gas chromatography-mass spectrometry based metabolomic approach to investigate the changes in goat milk yoghurt during storage. Food Res Int 2020; 140:110072. [PMID: 33648294 DOI: 10.1016/j.foodres.2020.110072] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
The overall goal was to utilize a gas chromatography spectrometry based metabolomics approach to investigate the metabolite changes in goat milk yoghurt during storage. A total of 129 metabolites were identified in goat milk yoghurt during 28 days refrigerated storage. Among 129, 39 metabolites were differentially regulated (p < 0.05) wherein 22 were upregulated (UR) and 17 were downregulated (DR). 17 (9 UR, 8 DR), 20 (11 UR, 9 DR) and 2 (both UR) differential metabolites were identified during storage period of 0-14, 14-28, and 0-28 days, respectively. Metabolic pathway analysis revealed that aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis and phenylalanine metabolism altered during 0-14 days storage; while fatty acid biosynthesis, and propanoate metabolism altered during 14-28 days of storage. Metabolite-gene interaction analysis identified genes regulated by differentially expressed metabolites. Functional annotation of interacted genes in corroboration with that of KEGG pathway analysis provided the probable mechanisms that altered the metabolites during storage. These findings reveal comprehensive insights into the metabolite alterations during storage. This research provides practical information for developing goat milk yoghurt with enhanced bio-activities and would aid in future investigations into the nutritional research and isolation of functional compounds.
Collapse
Affiliation(s)
- Heena Sharma
- National Dairy Research Institute, Karnal, Haryana, India; Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA.
| | - Ranjith Ramanathan
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
19
|
Sen C, Ray PR, Bhattacharyya M. A critical review on metabolomic analysis of milk and milk products. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chandrakanta Sen
- Department of Dairy Chemistry West Bengal University of Animal and Fishery Sciences Mohanpur Nadia West Bengal 741252 India
| | - Pinaki Ranjan Ray
- Department of Dairy Chemistry West Bengal University of Animal and Fishery Sciences Mohanpur Nadia West Bengal 741252 India
| | - Mahasweta Bhattacharyya
- Department of Dairy Chemistry West Bengal University of Animal and Fishery Sciences Mohanpur Nadia West Bengal 741252 India
| |
Collapse
|
20
|
Min Z, Yunyun J, Miao C, Zhennai Y. Characterization and ACE Inhibitory Activity of Fermented Milk with Probiotic Lactobacillus plantarum K25 as Analyzed by GC-MS-Based Metabolomics Approach. J Microbiol Biotechnol 2020; 30:903-911. [PMID: 32160695 PMCID: PMC9728348 DOI: 10.4014/jmb.1911.11007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Addition of probiotics to yogurt with desired health benefits is gaining increasing attention. To further understand the effect of probiotic Lactobacillus plantarum on the quality and function of fermented milk, probiotic fermented milk (PFM) made with probiotic L. plantarum K25 and yogurt starter (L. delbrueckii ssp. bulgaricus and Streptococcus thermophilus) was compared with the control fermented milk (FM) made with only the yogurt starter. The probiotic strain was shown to survive well with a viable count of 7.1 ± 0.1 log CFU/g in the PFM sample after 21 days of storage at 4°C. The strain was shown to promote formation of volatiles such as acetoin and 2,3-butanediol with milk fragrance, and it did not cause post-acidification during refrigerated storage. Metabolomics analysis by GC-MS datasets coupled with multivariate statistical analysis showed that addition of L. plantarum K25 increased formation of over 20 metabolites detected in fermented milk, among which γ-aminobutyric acid was the most prominent. Together with several other metabolites with relatively high levels in fermented milk such as glyceric acid, malic acid, succinic acid, glycine, alanine, ribose, and 1,3-dihydroxyacetone, they might play important roles in the probiotic function of L. plantarum K25. Further assay of the bioactivity of the PFM sample showed significant (p < 0.05) increase of ACE inhibitory activity from 22.3% at day 1 to 49.3% at day 21 of the refrigerated storage. Therefore, probiotic L. plantarum K25 could be explored for potential application in functional dairy products.
Collapse
Affiliation(s)
- Zhang Min
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 00048, P.R. China
| | - Jiang Yunyun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 00048, P.R. China,Mengniu Dairy (Beijing) Co., Ltd., Beijing, P.R. China
| | - Cai Miao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 00048, P.R. China
| | - Yang Zhennai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 00048, P.R. China,Corresponding author Phone: +13717785167 E-mail:
| |
Collapse
|
21
|
Chemical, Microbiological, and Functional Characterization of Kefir Produced from Cow's Milk and Soy Milk. Int J Microbiol 2020; 2020:7019286. [PMID: 32565815 PMCID: PMC7269609 DOI: 10.1155/2020/7019286] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/21/2020] [Indexed: 11/18/2022] Open
Abstract
Kefir is a functional beverage that contains lactic and acetic acid bacteria (LAB, AAB) and yeasts. This work's aim was to study the chemical, microbial, and functional characteristics of kefir produced from cow's milk and soy milk. After fermentation, free amino acids were 20.92 mg 100 mL-1 and 36.20 mg 100 mL-1 for cow's milk and soy milk kefir, respectively. Glutamic acid was majority in both, suggesting that microbial proteolysis leads to an increase in free amino acids including glutamic acid. 108-109 CFU mL-1 LAB, 106-107 CFU mL-1 AAB, and 106-107 CFU mL-1 yeasts were counted in cow's milk kefir, whereas soy milk kefir contained greatly lower yeasts and AAB. Lactococcus lactis, Kazachstania unispora, and Saccharomyces cerevisiae were isolated as major microorganisms in both kefirs. Acetobacter orientalis only existed in cow's milk kefir. Cow's milk and soy milk showed ACE inhibitory activity, which significantly increased after fermentation. Both kefirs also exhibited antioxidant activity and bactericidal activity against Escherichia coli, Salmonella Typhimurium, and Staphylococcus aureus.
Collapse
|
22
|
Mancano G, Mora-Ortiz M, Claus SP. Corrigendum to “Recent developments in nutrimetabolomics: from food characterisation to disease prevention” [Curr Opin Food Sci 22 (2018) 145–152]. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Santos-Espinosa A, Beltrán-Barrientos LM, Reyes-Díaz R, Mazorra-Manzano MÁ, Hernández-Mendoza A, González-Aguilar GA, Sáyago-Ayerdi SG, Vallejo-Cordoba B, González-Córdova AF. Gamma-aminobutyric acid (GABA) production in milk fermented by specific wild lactic acid bacteria strains isolated from artisanal Mexican cheeses. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01542-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Purpose
The purpose of this study was to screen wild GABA-producing lactic acid bacteria (LAB) isolated from artisanal Mexican cheeses and to evaluate the fermentation conditions for the enhancement of the GABA yield in fermented milk.
Methods
A qualitative test was carried out to select the GABA-producing LAB and the GABA was quantified by reversed-phase high-performance liquid chromatography in fermented milk (FM). Two inoculum concentrations (107 and 109 CFU/mL), two incubation temperatures (30 and 37 °C), three glutamate concentrations (1, 3, and 5 g/L), and three pyridoxal 5′-phosphate (PLP) concentrations (0, 100, and 200 μM) were assessed to establish suitable conditions to enhance the GABA yield in FM.
Results
Results showed that, from a total of 94 LAB strains, fermented milk with two Lactococcus lactis strains (L-571 or L-572) presented the highest GABA production. However, 37 °C of incubation and 109 CFU/mL and 3 g/L of glutamate significantly led the highest GABA yield in FM with L-571. Further studies are needed to establish the optimum conditions for producing GABA by this strain, and in vivo studies may reveal its potential use as GABA-producing culture.
Conclusion
These results highlight the importance of wild LAB strains in order to generate new alternatives and opportunities in the development of functional foods containing GABA.
Collapse
|
24
|
Hagi T, Nakagawa H, Ohmori H, Sasaki K, Kobayashi M, Narita T, Nomura M. Characterization of unique metabolites in γ-aminobutyric acid-rich cheese by metabolome analysis using liquid chromatography-mass spectrometry. J Food Biochem 2019; 43:e13039. [PMID: 31489647 DOI: 10.1111/jfbc.13039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
Fermented dairy products comprise many functional components. Our previous study using fermented milk showed that the γ-aminobutyric acid (GABA)-producing Lactococcus lactis 01-7 strain can produce unique metabolites such as antihypertensive peptides, whereas this study was designed to find the unique metabolites in GABA-rich cheese using the 01-7 strain. Metabolites between cheese ripening with the non-GABA-producing L. lactis 01-1 strain (control) and GABA-rich cheese ripening with a mixture of 01-1 and 01-7 strains were compared. GABA and ornithine were detected in GABA-rich cheese using an amino acid analyzer and citrate was detected in the control cheese using HPLC. Metabolome analysis using LC-MS showed that peptides with unknown function and those with antihypertensive activity were higher in the GABA-rich cheese than in the control cheese. Further analysis of the amount of the YLGY derivatives showed that the amount of YL in the GABA-rich cheese was lower than that in the control. PRACTICAL APPLICATIONS: Clarification of metabolites in cheese contributes to the improvement of cheese ripening, thereby providing consumers with unique cheese with good nutritional and functional characteristics. The use of the 01-7 strain as a cheese starter might provide a functional cheese with antihypertensive-, antioxidative-, and anxiolytic-like activities.
Collapse
Affiliation(s)
- Tatsuro Hagi
- Animal Products Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Hiroyuki Nakagawa
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Hideyuki Ohmori
- Animal Products Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Keisuke Sasaki
- Animal Products Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Miho Kobayashi
- Animal Products Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Takumi Narita
- Animal Products Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Masaru Nomura
- Animal Products Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| |
Collapse
|
25
|
Harnentis H, Nurmiati N, Marlida Y, Adzitey F, Huda N. γ-Aminobutyric acid production by selected lactic acid bacteria isolate of an Indonesian indigenous fermented buffalo milk ( dadih) origin. Vet World 2019; 12:1352-1357. [PMID: 31641319 PMCID: PMC6755389 DOI: 10.14202/vetworld.2019.1352-1357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/17/2019] [Indexed: 12/02/2022] Open
Abstract
Aim: This study aimed at optimizing γ-aminobutyric acid (GABA) production using lactic acid bacteria (LAB) of an Indonesian indigenous fermented buffalo milk (dadih) origin. This study utilized LAB previously cultured from dadih that has the ability to produce GABA. Materials and Methods: The study started with the identification of selected LAB by 16S rRNA, followed by optimization of GABA production by culture conditions using different initial pH, temperature, glutamate concentration, incubation time, carbon, and nitrogen sources. 16S rRNA polymerase chain reaction and analysis by phylogenetic were used to identify Lactobacillus plantarum (coded as N5) responsible for the production of GABA. Results: GABA production by high-performance liquid chromatography was highest at pH of 5.5, temperature of 36°C, glutamate concentration of 500 mM, and incubation time of 84 h. Peptone and glucose served as the nitrogen and carbon sources, respectively, whereas GABA was produced at optimum fermentation condition of 211.169 mM. Conclusion: Production of GABA by L. plantarum N5 was influenced by initial pH of 5.5, glutamic acid concentration, nitrogen source, glucose as carbon source, and incubation temperature and time.
Collapse
Affiliation(s)
- Harnentis Harnentis
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, Andalas University, West Sumatera, Indonesia
| | - Nurmiati Nurmiati
- Department of Biology, Faculty of Natural Sciences, Andalas University, West Sumatera, Indonesia
| | - Yetti Marlida
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, Andalas University, West Sumatera, Indonesia
| | - Frederick Adzitey
- Department of Veterinary Science, Faculty of Agriculture, University for Development Studies, Box TL 1882, Tamale, Ghana
| | - Nurul Huda
- Department of Food Science, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
26
|
Jung Park H, Shim HS, Lee GR, Yoon KH, Ho Kim J, Lee JM, Sohn M, Yin CS, Park CY, Kang YM, Jin Lee B, Shim I. A randomized, double-blind, placebo-controlled study on the memory-enhancing effect of lactobacillus fermented Saccharina japonica extract. Eur J Integr Med 2019. [DOI: 10.1016/j.eujim.2019.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
A metagenomic analysis of the relationship between microorganisms and flavor development in Shaoxing mechanized huangjiu fermentation mashes. Int J Food Microbiol 2019; 303:9-18. [PMID: 31102963 DOI: 10.1016/j.ijfoodmicro.2019.05.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 01/21/2023]
Abstract
Complex microbial metabolism is responsible for the unique flavor of Shaoxing mechanized huangjiu. However, the relationship between the microorganisms present during fermentation and the formation of specific flavor components is difficult to understand. In this study, gas chromatography-mass spectrometry and high-performance liquid chromatography were used to identify flavor components, and a metagenomic sequencing approach was used to characterize the taxonomic and functional attributes of the Shaoxing mechanized huangjiu fermentation microbiota. The metagenomic sequencing data were used to predict the relationship between microorganisms and flavor formation. The chromatographic analysis identified amino acids, alcohols, acids, phenols and esters as major flavor components, and six microbial genera (Saccharomyces, Aspergillus, Saccharopolyspora, Staphylococcus, Lactobacillus, and Lactococcus) were most closely related to the production of these flavor components. This study helps clarify the different metabolic roles of microorganisms in flavor formation during Shaoxing huangjiu fermentation.
Collapse
|
28
|
Gamba RR, Yamamoto S, Sasaki T, Michihata T, Mahmoud AH, Koyanagi T, Enomoto T. Microbiological and Functional Characterization of Kefir Grown in Different Sugar Solutions. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | | | - Tetsuya Sasaki
- Chemistry/Food Department, Industrial Research Institute of Ishikawa
| | | | | | | | | |
Collapse
|
29
|
Huang X, Yu S, Han B, Chen J. Bacterial community succession and metabolite changes during sufu fermentation. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.07.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
ABD EL-SALAM MH, EL-SHİBİNY S. Fermente Süt Ürünlerinin Kan Basıncını Düşürücü Etkisi. AKADEMIK GIDA 2018; 16:67-77. [DOI: 10.24323/akademik-gida.417892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Hypertension (HTN) is a major risk factor for the development of cardiovascular
diseases. Therefore, there is a need to lower blood pressure (BP) to reduce the
risk of these degenerative diseases. Fermented milks contain several potential
factors that can lower BP including calcium and microbial metabolites
particularly the angiotension-converting enzyme (ACE) inhibitory peptides and
γ-aminobutyric acid. Animal studies
clearly demonstrated the BP lowering effect of fermented milk while results
from clinical trials were controversial due to a large number of variables that
should be considered in clinical trials. An overview on the antihypertensive effect
of fermented milk products is presented and discussed in this review.
Collapse
|
31
|
A Metabolomics Approach Uncovers Differences between Traditional and Commercial Dairy Products in Buryatia (Russian Federation). Molecules 2018; 23:molecules23040735. [PMID: 29565828 PMCID: PMC6017790 DOI: 10.3390/molecules23040735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 11/22/2022] Open
Abstract
Commercially available and traditional dairy products differ in terms of their manufacturing processes. In this study, commercially available and traditionally fermented cheese, yogurt, and milk beverages were analyzed and compared. The metabolomic technique of ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF) in the MSE mode was used in combination with statistical methods, including univariate analysis and chemometric analysis, to determine the differences in metabolite profiles between commercially and traditionally fermented dairy products. The experimental results were analyzed statistically and showed that traditional and commercial dairy products were well differentiated in both positive and negative ion modes, with significant differences observed between the samples. After screening for metabolite differences, we detected differences between traditional milk beverages and yogurt and their commercial counterparts in terms of the levels of compounds such as l-lysine, l-methionine, l-citrulline, l-proline, l-serine, l-valine and l-homocysteine, and of short peptides such as Asp-Arg, Gly-Arg, His-Pro, Pro-Asn. The greatest difference between commercially available and traditional cheese was in the short peptide composition, as commercially available and traditional cheese is rich in short peptides.
Collapse
|
32
|
Álvarez G, Montero L, Llorens L, Castro-Puyana M, Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2017; 39:136-159. [PMID: 28975648 DOI: 10.1002/elps.201700321] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
This review work presents and discusses the main applications of capillary electromigration methods in food analysis and Foodomics. Papers that were published during the period February 2015-February 2017 are included following the previous review by Acunha et al. (Electrophoresis 2016, 37, 111-141). The paper shows the large variety of food related molecules that have been analyzed by CE including amino acids, biogenic amines, carbohydrates, chiral compounds, contaminants, DNAs, food additives, heterocyclic amines, lipids, peptides, pesticides, phenols, pigments, polyphenols, proteins, residues, toxins, vitamins, small organic and inorganic compounds, as well as other minor compounds. This work describes the last results on food quality and safety, nutritional value, storage, bioactivity, as well as uses of CE for monitoring food interactions and food processing including recent microchips developments and new applications of CE in Foodomics.
Collapse
Affiliation(s)
| | | | | | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Madrid, Spain
| | | |
Collapse
|
33
|
Poinsot V, Ong-Meang V, Ric A, Gavard P, Perquis L, Couderc F. Recent advances in amino acid analysis by capillary electromigration methods: June 2015-May 2017. Electrophoresis 2017; 39:190-208. [PMID: 28805963 DOI: 10.1002/elps.201700270] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
In the tenth edition of this article focused on recent advances in amino acid analysis using capillary electrophoresis, we describe the most important research articles published on this topic during the period from June 2015 to May 2017. This article follows the format of the previous articles published in Electrophoresis. The new developments in amino acid analysis with CE mainly describe improvements in CE associated with mass spectrometry. Focusing on applications, we mostly describe clinical works, although metabolomics studies are also very important. Finally, works focusing on amino acids in food and agricultural applications are also described.
Collapse
Affiliation(s)
- Véréna Poinsot
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| | | | - Audrey Ric
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| | - Pierre Gavard
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| | - Lucie Perquis
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| | - François Couderc
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| |
Collapse
|
34
|
Tomita S, Saito K, Nakamura T, Sekiyama Y, Kikuchi J. Rapid discrimination of strain-dependent fermentation characteristics among Lactobacillus strains by NMR-based metabolomics of fermented vegetable juice. PLoS One 2017; 12:e0182229. [PMID: 28759594 PMCID: PMC5536307 DOI: 10.1371/journal.pone.0182229] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/16/2017] [Indexed: 11/19/2022] Open
Abstract
In this study, we investigated the applicability of NMR-based metabolomics to discriminate strain-dependent fermentation characteristics of lactic acid bacteria (LAB), which are important microorganisms for fermented food production. To evaluate the discrimination capability, six type strains of Lactobacillus species and six additional L. brevis strains were used focusing on i) the difference between homo- and hetero-lactic fermentative species and ii) strain-dependent characteristics within L. brevis. Based on the differences in the metabolite profiles of fermented vegetable juices, non-targeted principal component analysis (PCA) clearly separated the samples into those inoculated with homo- and hetero-lactic fermentative species. The separation was primarily explained by the different levels of dominant metabolites (lactic acid, acetic acid, ethanol, and mannitol). Orthogonal partial least squares discrimination analysis, based on a regions-of-interest (ROIs) approach, revealed the contribution of low-abundance metabolites: acetoin, phenyllactic acid, p-hydroxyphenyllactic acid, glycerophosphocholine, and succinic acid for homolactic fermentation; and ornithine, tyramine, and γ-aminobutyric acid (GABA) for heterolactic fermentation. Furthermore, ROIs-based PCA of seven L. brevis strains separated their strain-dependent fermentation characteristics primarily based on their ability to utilize sucrose and citric acid, and convert glutamic acid and tyrosine into GABA and tyramine, respectively. In conclusion, NMR metabolomics successfully discriminated the fermentation characteristics of the tested strains and provided further information on metabolites responsible for these characteristics, which may impact the taste, aroma, and functional properties of fermented foods.
Collapse
Affiliation(s)
- Satoru Tomita
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- * E-mail:
| | - Katsuichi Saito
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Toshihide Nakamura
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yasuyo Sekiyama
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Graduate School of Bioagricultural Sciences and School of Agricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
35
|
Han SH, Hong KB, Suh HJ. Biotransformation of monosodium glutamate to gamma-aminobutyric acid by isolated strain Lactobacillus brevis L-32 for potentiation of pentobarbital-induced sleep in mice. FOOD BIOTECHNOL 2017. [DOI: 10.1080/08905436.2017.1301821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sung Hee Han
- BK21Plus, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Ki Bae Hong
- Institute for Biomaterials, Korea University, Seoul, Republic of Korea
| | - Hyung Joo Suh
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| |
Collapse
|