1
|
Machado AF, Rocha RDFB, Dos Santos RM, Toral FLB, Netto DDSL, Guimarães JD, Gomez-Leon VE, Facioni Guimarães SE. Genetic parameters for oocytes and embryo production and their association with linear type traits in dairy Gyr cattle. J Dairy Sci 2024; 107:9666-9675. [PMID: 39067753 DOI: 10.3168/jds.2024-24926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
In vitro embryo production is one of the main reproductive techniques used in dairy Gyr cattle. In addition, linear type measures are well characterized and have been used in dairy Gyr breed selection for the last 4 decades. The estimation of genetic parameters for the number of aspirated oocytes and in vitro-produced embryos associated with the linear type measures would support genetic progress for animal breeding programs toward embryo production. This study aimed to estimate genetic parameters for aspirated oocytes, embryo in vitro production, and linear type traits, exploring the association between them. The repeatability model was applied to 14,251 ovum pick-up events from 1,916 Gyr donors. A subset of 604 donors from the same group had their body measurements taken. Single- and 2-trait analyses were carried out using the BLUPF90 family programs. Heritability estimates of 0.38, 0.34, and 0.20 were obtained for total oocytes, viable oocytes, and embryos, respectively, and the heritability of the linear type traits ranged from 0.22 to 0.40. High genetic correlations between total oocytes and viable oocytes (0.99), and between oocytes (total and viable) and embryos (0.83) were obtained. Low to high genetic (-0.07 to 0.92) and phenotypic (0.32-0.86) correlations were obtained between the linear type traits. Moreover, low phenotypic correlations (0.01-0.13) were observed for oocytes (total and viable) and embryos with the linear type traits, whereas low to moderate genetic correlations (0.07-0.42) were observed between the same traits, especially for ilium width (0.42), rump area (0.38), and hip height (0.33). Thus, selection for in vitro production is achievable in Gyr dairy cattle, and superior genetic progress is associated with the selection of oocytes (total and viable). Furthermore, the moderate genetic association between oocytes and embryos with linear type traits, especially ilium width suggests that progress on in vitro embryo production may be achieved by accessing these measurements.
Collapse
Affiliation(s)
- Andréia Ferreira Machado
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil, 36570-900; Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506
| | | | - Rafael Monteiro Dos Santos
- Department of Animal Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 31270-901
| | - Fabio Luiz Buranelo Toral
- Department of Animal Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 31270-901
| | | | - José Domingos Guimarães
- Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil, 36570-900
| | - Victor E Gomez-Leon
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506
| | | |
Collapse
|
2
|
Feltes GL, Campos GS, Raidan FSS, Feres LFR, Ribeiro VMP, Cobuci JA. Comparing Bayesian models for the genetic evaluation of oocytes and embryo counts in Dairy Gir cattle. J Appl Genet 2024; 65:591-600. [PMID: 38570427 DOI: 10.1007/s13353-024-00862-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/08/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Count traits are usually explored in livestock breeding programs, and they usually do not fit into normal distribution, requiring alternatives to adjust the phenotype to estimate accurate genetic parameters and breeding values. Alternatively, distribution such as Poisson can be used to evaluate count traits. This study aimed to compare and discuss the genetic evaluation for oocyte and embryo counts considering Gaussian (untransformed variable - LIN; transformed by logarithm - LOG; transformed by Anscombe - ANS) and Poisson (POI) distributions. The data comprised 11,343 total oocytes (TO), viable oocytes (VO), cleaved embryos (CE), and viable embryo (VE) records of ovum pick-up from 1740 Dairy Gir heifers and cows. The genetic parameters and breeding values were estimated by the MCMCglmm package of the R software. The posterior means of heritability varied from 0.40 (LIN) to 0.49 (POI) for TO, 0.39 (LIN) to 0.49 (POI) for VO, 0.30 (LOG) to 0.41 (POI) for cleaved embryos, and 0.19 (LIN) to 0.32 (POI) for viable embryos. The posterior means of repeatability varied from 0.56 (LIN) to 0.65 (POI) for TO, 0.53 (LOG) to 0.63 (POI) for VO, 0.44 (LOG) to 0.60 (POI) for CE, and 0.36 (LOG) to 0.56 (POI) for VE. Deviance information criterion and mean squared residuals indicated that POI model should be used for the genetic evaluation of embryo and oocyte count traits. Spearman's rank correlation between estimated breeding value (EBV) for embryo and oocyte count traits computed by POI, LOG, and ANS models was high (ranging from 0.77 to 0.99), indicating little reranking among the best animals. The POI model is the most adequate for genetic evaluation, resulting in more reliable EBV of oocyte and embryo count traits for Dairy Gir cattle.
Collapse
Affiliation(s)
- Giovani Luis Feltes
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 7712 Agronomia, Porto Alegre, RS, CEP 91509-900, Brazil
| | - Gabriel Soares Campos
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 7712 Agronomia, Porto Alegre, RS, CEP 91509-900, Brazil
| | | | | | | | - Jaime Araújo Cobuci
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 7712 Agronomia, Porto Alegre, RS, CEP 91509-900, Brazil.
| |
Collapse
|
3
|
Gebreyesus G, Secher JB, Lund MS, Kupisiewicz K, Ivask M, Hallap T, Pärn P, Su G. Genetic parameters for bull effects on in vitro embryo production (IVP) and relationship between semen quality traits and IVP performance. Anim Reprod Sci 2024; 263:107436. [PMID: 38417313 DOI: 10.1016/j.anireprosci.2024.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/11/2023] [Accepted: 02/11/2024] [Indexed: 03/01/2024]
Abstract
In vitro production of embryos (IVP) is increasingly applied in dairy cattle breeding and promises widespread use of females of superior genetic merits. One of the current challenges with implementation of IVP is the variability in blastocyst rates. Several factors contribute to these variabilities, among which is known to be the bull used for oocytes fertilization. The extent of genetic control of bulls' effect on IVP performances is yet to be investigated. This study estimates genetic parameters for bull effects on IVP performance traits including blastocyst rate, hatching rate and an index trait combining Blastocyst rate, Kinetic Score, and Morphology score (BL_M_K). The IVP experiments were performed using oocytes aspirated from slaughterhouse ovaries from Holstein cows, fertilized with semen from 123 Holstein bulls. A total of 77 in vitro fertilization (IVF) experiments with 163 records (different IVF groups) were available for the analysis. The results indicate low to moderate heritability and moderate to high repeatability estimates for bull effects on IVP performance traits. Our study also showed that some semen quality traits had significant effects on IVP performance. This included strong genetic correlations between pre-cryopreservation sperm viability and blastocyst rate as well as BL_M_K score at days 7 and 8. Despite the generally weak bull effect correlations and the high standard errors of the estimates, our results provide initial evidence of a measurable genetic component in the bull's impact on IVP performance traits. However, the high standard errors underscore the need for further studies with a larger sample size.
Collapse
Affiliation(s)
- G Gebreyesus
- Center for Quantitative Genetics and Genomics, Aarhus University, C.F Møllers Alle 3, Aarhus DK-8000 , Denmark.
| | - J B Secher
- University of Copenhagen, Hoejbakkegaard Alle 5a, Taastrup 2630, Denmark
| | - M S Lund
- Center for Quantitative Genetics and Genomics, Aarhus University, C.F Møllers Alle 3, Aarhus DK-8000 , Denmark
| | - K Kupisiewicz
- Viking Genetics, Ebeltoftvej 16, Randers DK-8960, Denmark
| | - M Ivask
- Estonian University of Life Sciences, Kreutzwaldi 62, Tartu 51014, Estonia
| | - T Hallap
- Estonian University of Life Sciences, Kreutzwaldi 62, Tartu 51014, Estonia
| | - P Pärn
- Estonian University of Life Sciences, Kreutzwaldi 62, Tartu 51014, Estonia
| | - G Su
- Center for Quantitative Genetics and Genomics, Aarhus University, C.F Møllers Alle 3, Aarhus DK-8000 , Denmark
| |
Collapse
|
4
|
Huang Y, Zhang H, Mei C, Yang M, Zhao S, Zhu H, Wang Y. Phenotypic and Genetic Analyses of In Vitro Embryo Production Traits in Chinese Holstein Cattle. Animals (Basel) 2023; 13:3539. [PMID: 38003156 PMCID: PMC10668646 DOI: 10.3390/ani13223539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Ovum pick up and in vitro embryo production (OPU-IVEP) is an essential technique in the dairy industry. The production efficiency of OPU-IVEP is significantly influenced by various factors, and phenotypic and genetic characteristics are highly variable in different populations. The objectives of this study were (1) to reveal the phenotypic characteristics, including population distribution, and impacts of donor age and month on in vitro embryo production and (2) to estimate genetic parameters for five in vitro embryo production traits in Chinese Holstein cattle. A total of 7311 OPU-IVEP records of 867 Holstein heifers from August 2021 to March 2023 were collected in this study. Five in vitro embryo production traits were defined, including the number of cumulus-oocyte complexes (NCOC), the number of cleaved embryos (NCLV), the number of grade I embryos (NGE), and the proportion of NCLV to NCOC (PCLV) and NGE to NCOC (PGE). A univariate repeatability animal model was employed to estimate heritability and repeatability, and a bivariate repeatability animal model was employed to estimate the genetic correlations among five in vitro embryo production traits. It was found that the in vitro embryo production traits were significantly influenced by season, as the NGE and PGE were significantly decreased from June to August. In addition, the production efficiency of OPU-IVEP was also influenced by donor age. On the observed scale, the estimates of heritability were 0.33 for NCOC, 0.24 for NCLV, 0.16 for NGE, 0.06 for PCLV, and 0.10 for PGE, respectively. On the log-transformed scale, the estimates of heritability of NCOC, NCLV, and NGE were 0.34, 0.18, and 0.13. The genetic correlations among NCOC, NCLV, and NGE ranged from 0.61 (NCLV and NGE) to 0.95 (NCOC and NCLV), considering both scales. However, there were low genetic correlations between NCOC and proportion traits (PCLV and PGE) on both the observed scale and the log-transformed scale. In the end, the variation in Chinese Holstein cattle was found to be considerable. The EBV value and average NCOC, NGE, and PGE for the top 10% donors presented extreme differences to those for the bottom 10% donors for NCOC (24.02 versus 2.60), NGE (3.42 versus 0.36), and PGE (30.54% versus 3.46%). Overall, the results of this study reveal that in vitro embryo production traits are heritable with low to high heritability, and the count traits (NCOC, NCLV, and NGE) and proportion traits (PCLV and PGE) reflect different aspects of in vitro embryo production and should be incorporated into genetic selection for improving the embryo production efficiency of dairy cattle.
Collapse
Affiliation(s)
- Yuechuan Huang
- State Key Laboratory of Farm Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproductive of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (H.Z.)
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hailiang Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproductive of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (H.Z.)
| | - Cheng Mei
- Dongying Auatasia Modern Animal Husbandry Co., Ltd., Dongying 257300, China; (C.M.); (M.Y.)
| | - Minglu Yang
- Dongying Auatasia Modern Animal Husbandry Co., Ltd., Dongying 257300, China; (C.M.); (M.Y.)
| | - Shanjiang Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Huabin Zhu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Yachun Wang
- State Key Laboratory of Farm Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproductive of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (H.Z.)
| |
Collapse
|
5
|
Rocha RDFB, Garcia AO, Otto PI, Dos Santos MG, da Silva MVB, Martins MF, Machado MA, Panetto JCDC, Guimarães SEF. Single-step genome-wide association studies and post-GWAS analyses for the number of oocytes and embryos in Gir cattle. Mamm Genome 2023:10.1007/s00335-023-10009-0. [PMID: 37438444 DOI: 10.1007/s00335-023-10009-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
Genome-Wide Association Studies (GWAS) are used for identification of quantitate trait loci (QTL) and genes associated with several traits. We aimed to identify genomic regions, genes, and biological processes associated with number of total and viable oocytes, and number of embryos in Gir dairy cattle. A dataset with 17,526 follicular aspirations, including the following traits: number of viable oocytes (VO), number of total oocytes (TO), and number of embryos (EMBR) from 1641 Gir donors was provided by five different stock farms. A genotype file with 2093 animals and 395,524 SNP markers was used to perform a single-step GWAS analysis for each trait. The top 10 windows with the highest percentage of additive genetic variance explained by 100 adjacent SNPs were selected. The genomic regions identified in our work were overlapped with QTLs from QTL database on chromosomes 1, 2, 5, 6, 7, 8, 9, 13, 17, 18, 20, 21, 22, 24, and 29. These QTLs were classified as External, Health, Meat and carcass, Production or Reproduction traits, and about 38% were related to Reproduction. In total, 117 genes were identified, of which 111 were protein-coding genes. Exclusively associations were observed for 42 genes with EMBR, and 1 with TO. Also, 42 genes were in common between VO and TO, 28 between VO and EMBR, and four genes were in common among all traits. In conclusion, great part of the identified genes plays a functional role in initial embryo development or general cell functions. The protein-coding genes ARNT, EGR1, HIF1A, AHR, and PAX2 are good markers for the production of oocytes and embryos in Gir cattle.
Collapse
Affiliation(s)
| | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
6
|
Zoda A, Ogawa S, Kagawa R, Tsukahara H, Obinata R, Urakawa M, Oono Y. Single-Step Genomic Prediction of Superovulatory Response Traits in Japanese Black Donor Cows. BIOLOGY 2023; 12:biology12050718. [PMID: 37237533 DOI: 10.3390/biology12050718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
We assessed the performance of single-step genomic prediction of breeding values for superovulatory response traits in Japanese Black donor cows. A total of 25,332 records of the total number of embryos and oocytes (TNE) and the number of good embryos (NGE) per flush for 1874 Japanese Black donor cows were collected during 2008 and 2022. Genotype information on 36,426 autosomal single-nucleotide polymorphisms (SNPs) for 575 out of the 1,874 cows was used. Breeding values were predicted exploiting a two-trait repeatability animal model. Two genetic relationship matrices were used, one based on pedigree information (A matrix) and the other considering both pedigree and SNP marker genotype information (H matrix). Estimated heritabilities of TNE and NGE were 0.18 and 0.11, respectively, when using the H matrix, which were both slightly lower than when using the A matrix (0.26 for TNE and 0.16 for NGE). Estimated genetic correlations between the traits were 0.61 and 0.66 when using H and A matrices, respectively. When the variance components were the same in breeding value prediction, the mean reliability was greater when using the H matrix than when using the A matrix. This advantage seems more prominent for cows with low reliability when using the A matrix. The results imply that introducing single-step genomic prediction could boost the rate of genetic improvement of superovulatory response traits, but efforts should be made to maintain genetic diversity when performing selection.
Collapse
Affiliation(s)
- Atsushi Zoda
- Research and Development Group, Zen-noh Embryo Transfer Center, Kamishihoro 080-1407, Japan
| | - Shinichiro Ogawa
- Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0901, Japan
| | - Rino Kagawa
- Research and Development Group, Zen-noh Embryo Transfer Center, Kamishihoro 080-1407, Japan
| | - Hayato Tsukahara
- Research and Development Group, Zen-noh Embryo Transfer Center, Kamishihoro 080-1407, Japan
| | - Rui Obinata
- Research and Development Group, Zen-noh Embryo Transfer Center, Kamishihoro 080-1407, Japan
| | - Manami Urakawa
- Research and Development Group, Zen-noh Embryo Transfer Center, Kamishihoro 080-1407, Japan
| | - Yoshio Oono
- Research and Development Group, Zen-noh Embryo Transfer Center, Kamishihoro 080-1407, Japan
| |
Collapse
|
7
|
Rocha RDFB, Garcia AO, Otto PI, da Silva MVB, Martins MF, Machado MA, Panetto JCDC, Guimarães SEF. Runs of homozygosity and signatures of selection for number of oocytes and embryos in the Gir Indicine cattle. Mamm Genome 2023:10.1007/s00335-023-09989-w. [PMID: 37000236 DOI: 10.1007/s00335-023-09989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/11/2023] [Indexed: 04/01/2023]
Abstract
Runs of homozygosity (ROH) and signatures of selection are the results of selection processes in livestock species that have been shown to affect several traits in cattle. The aim of the current work was to verify the profile of ROH and inbreeding depression in the number of total (TO) and viable oocytes (VO) and the number of embryos (EMBR) in Gir Indicine cattle. In addition, we aim to identify signatures of selection, genes, and enriched regions between Gir subpopulations sorted by breeding value for these traits. The genotype file contained 2093 animals and 420,718 SNP markers. Breeding values used to sort Gir animals were previously obtained. ROH and signature of selection analyses were performed using PLINK software, followed by ROH-based (FROH) and pedigree-based inbreeding (Fped) and a search for genes and their functions. An average of 50 ± 8.59 ROHs were found per animal. ROHs were separated into classes according to size, ranging from 1 to 2 Mb (ROH1-2Mb: 58.17%), representing ancient inbreeding, ROH2-4Mb (22.74%), ROH4-8Mb (11.34%), ROH8-16Mb (5.51%), and ROH>16Mb (2.24%). Combining our results, we conclude that the increase in general FROH and Fped significantly decreases TO and VO; however, in different chromosomes traits can increase or decrease with FROH. In the analysis for signatures of selection, we identified 15 genes from 47 significant genomic regions, indicating differences in populations with high and low breeding value for the three traits.
Collapse
Affiliation(s)
| | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, Rio Grande Do Sul, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Bayesian estimation of genetic parameters for superovulatory response traits in Japanese Black donor cows using count data models. Theriogenology 2022; 190:38-45. [DOI: 10.1016/j.theriogenology.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/20/2022]
|
9
|
Chumchai R, Ratsiri T, Ratchamak R, Vongpralub T, Boonkum W, Chankitisakul V. Ovarian responses and FSH profiles at superovulation with a single epidural administration of gonadotropin in the Thai-Holstein crossbreed. Anim Reprod 2021; 18:e20210053. [PMID: 34840611 PMCID: PMC8607850 DOI: 10.1590/1984-3143-ar2021-0053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
The conventional method of ovarian superstimulation requires multiple injections of gonadotropins which is time-consuming and may be stressful for the cows. This study was designed to determine whether a single epidural injection of FSH (EI group) would induce the superovulatory response in the Thai-Holstein crossbreed and evaluate FSH plasma hormone concentrations. Eight cows (replication = 3; n=24) were assigned to one of 2 treatments in switch back design. Control group (n=12): cows were received 400 mg FSH twice daily by intramuscularly for 4 days (80, 80, 60, 60, 40, 40, 20 and 20 mg), EI group (n=12): cows were received 400 mg FSH by single epidural injection. Data were collected in term of ovarian follicle responses, superovulatory responses, ova/embryo collection. FSH concentrations were examined using ELISA. The total follicular responses during oestrus were not different between treatments; however, the large follicles were less frequent (P < 0.01) while the medium follicle sizes were higher (P < 0.05) in the EI group. The plasma concentration of FSH in EI was dramatically increased within 2 hours before decreasing sharply thereafter (P < 0.01) and did not remain above baseline after 10 hours of administration. The embryo quality was better in the control than the EI groups (P < 0.05). Interestingly, the number of ovulation cysts in the EI group was 50%. The ovarian responses and embryo quality in the cows with cysts were worse compared with the non-cyst groups (P < 0.05). In conclusion, alternative protocols decreased the superovulatory response and increased poor embryo quality in Thai-Holstein crossbred. Also, the incidence of ovarian follicular cysts is higher in the EI group.
Collapse
Affiliation(s)
- Rujira Chumchai
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Thanaporn Ratsiri
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Ruthaiporn Ratchamak
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Thevin Vongpralub
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.,The Research and Development Network Center of Animal Breeding and Omics, Khon Kaen University, Khon Kaen, Thailand
| | - Vibuntita Chankitisakul
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.,The Research and Development Network Center of Animal Breeding and Omics, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
10
|
Zoda A, Urakawa M, Oono Y, Ogawa S, Satoh M. Estimation of genetic parameters for superovulatory response traits in Japanese Black cows. J Anim Sci 2021; 99:6383484. [PMID: 34618902 PMCID: PMC8557630 DOI: 10.1093/jas/skab265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/20/2021] [Indexed: 01/25/2023] Open
Abstract
The aim of this study was to estimate genetic parameters for superovulatory response traits in order to explore the possibility of genetic improvement in Japanese Black cows. We analyzed 19 155 records of the total number of embryos and oocytes (TNE) and the number of good embryos (NGE) collected from 1532 donor cows between 2008 and 2018. A two-trait repeatability animal model analysis was performed for both. Because records of TNE and NGE did not follow a normal distribution, the records were analyzed following no, logarithmic, or Anscombe transformation. Without transformation, the heritability estimates were 0.26 for TNE and 0.17 for NGE. With logarithmic transformation, they were 0.22 for TNE and 0.18 for NGE. With Anscombe transformation, they were 0.26 for TNE and 0.18 for NGE. All analyses gave similar genetic correlations between TNE and NGE, ranging from 0.60 to 0.71. Spearman’s rank correlation coefficient between breeding values of cows with more than 10 records was ≥0.95 with both transformations. Thus, the genetic improvement of TNE and NGE of donor cows could be possible in Japanese Black cattle.
Collapse
Affiliation(s)
- Atsushi Zoda
- Research and Development Group, Zen-noh Embryo Transfer Center, Kamishihoro, Hokkaido, 080-1407, Japan.,Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Manami Urakawa
- Research and Development Group, Zen-noh Embryo Transfer Center, Kamishihoro, Hokkaido, 080-1407, Japan
| | - Yoshio Oono
- Research and Development Group, Zen-noh Embryo Transfer Center, Kamishihoro, Hokkaido, 080-1407, Japan
| | - Shinichiro Ogawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Masahiro Satoh
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
11
|
Crowe AD, Lonergan P, Butler ST. Invited review: Use of assisted reproduction techniques to accelerate genetic gain and increase value of beef production in dairy herds. J Dairy Sci 2021; 104:12189-12206. [PMID: 34538485 DOI: 10.3168/jds.2021-20281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/02/2021] [Indexed: 11/19/2022]
Abstract
The contribution of the calf enterprise to the profit of the dairy farm is generally considered small, with beef bull selection on dairy farms often not considered a high priority. However, this is likely to change in the future as the rapid rate of expansion of the dairy herd in some countries is set to plateau and improvements in dairy herd fertility combine to reduce the proportion of dairy breed calves required on dairy farms. This presents the opportunity to increase the proportion of beef breed calves born, increasing both the value of calf sales and the marketability of the calves. Beef embryos could become a new breeding tool for dairies as producers need to reassess their breeding policy as a consequence of welfare concerns and poor calf prices. Assisted reproductive technologies can contribute to accelerated genetic gain by allowing an increased number of offspring to be produced from genetically elite dams. There are the following 3 general classes of donor females of interest to an integrated dairy-beef system: (1) elite dairy dams, from which oocytes are recovered from live females using ovum pick-up and fertilized in vitro with semen from elite dairy bulls; (2) elite beef dams, where the oocytes are recovered from live females using ovum pick-up and fertilized with semen from elite beef bulls; and (3) commercial beef dams (≥50% beef genetics), where ovaries are collected from the abattoir postslaughter, and oocytes are fertilized with semen from elite beef bulls that are suitable for use on dairy cows (resulting embryo with ≥75% beef genetics). The expected benefits of these collective developments include accelerated genetic gain for milk and beef production in addition to transformation of the dairy herd calf crop to a combination of good genetic merit dairy female calves and premium-quality beef calves. The aim of this review is to describe how these technologies can be harnessed to intensively select for genetic improvement in both dairy breed and beef breed bulls suitable for use in the dairy herd.
Collapse
Affiliation(s)
- Alan D Crowe
- School of Agriculture and Food Science, University College Dublin, D04 N2E5 Ireland; Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, D04 N2E5 Ireland.
| | - Stephen T Butler
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Ireland.
| |
Collapse
|
12
|
Adamczyk K, Jagusiak W, Węglarz A. Associations between the breeding values of Holstein-Friesian bulls and longevity and culling reasons of their daughters. Animal 2021; 15:100204. [PMID: 34029794 DOI: 10.1016/j.animal.2021.100204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/02/2023] Open
Abstract
Taking into account functional traits in the breeding practice should lead to a longer productive life of cows. However, despite the increased contribution of these traits in bull selection indices, their daughters are frequently culled as early as the 2nd or 3rd lactation. The problem is whether and to what extent the genetic potential of animals is realized in the production practice. Therefore, the purpose of this study was to determine the associations between the breeding value (BV) of bulls and their daughters for cow longevity and culling reasons in the Holstein-Friesian cattle population in Poland. Data for 532 062 cows culled in 2012, 2015, and 2018 were analyzed. A majority of 5 045 cow sires originated from Poland, Germany, France, the Netherlands, and the United States. The highest variation in the contribution of culling reasons was for the cows culled at the age of 2-4 years. The contribution of the culling reasons, analyzed in relation to the cow culling age, remained similar and the only exception was culling because of old age, for which a significant increase was observed only for the culling age of at least 9 years (13.8%), which was reached by only 7.3% of the cows. The sires were characterized by generally high BV for conformation and reproductive traits. However, they had, at most, the average genetic potential for functional longevity. There were a number of beneficial associations found between the BV of bulls and the distribution of culling reasons in their daughters. For example, it concerns relations between the somatic cell score in milk and culling due to udder diseases and low milk yield, between the interval from calving to first insemination and low milk yield, between the protein yield and old age, or between the BV for certain conformation traits (size, udder) and cow culling due to age. In these cases, as the BV increased for a given trait, the contribution of the corresponding cow culling reason tended to decrease. Our study showed that it seems reasonable to consider Holstein-Friesian cows aged at least 9 years at culling to be long-living animals. This is primarily evidenced by the rapid increase in the culling due to old age in relation to younger cows. Nowadays the above age limit can be suggested as a criterion of longevity for Holstein-Friesian cows but the criterion should be updated to the relation genotype-environment-economy that tends to change over time.
Collapse
Affiliation(s)
- K Adamczyk
- Department of Animal Genetics, Breeding and Ethology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland.
| | - W Jagusiak
- Department of Animal Genetics, Breeding and Ethology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - A Węglarz
- Department of Animal Genetics, Breeding and Ethology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| |
Collapse
|
13
|
Shao B, Sun H, Ahmad MJ, Ghanem N, Abdel-Shafy H, Du C, Deng T, Mansoor S, Zhou Y, Yang Y, Zhang S, Yang L, Hua G. Genetic Features of Reproductive Traits in Bovine and Buffalo: Lessons From Bovine to Buffalo. Front Genet 2021; 12:617128. [PMID: 33833774 PMCID: PMC8021858 DOI: 10.3389/fgene.2021.617128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Bovine and buffalo are important livestock species that have contributed to human lives for more than 1000 years. Improving fertility is very important to reduce the cost of production. In the current review, we classified reproductive traits into three categories: ovulation, breeding, and calving related traits. We systematically summarized the heritability estimates, molecular markers, and genomic selection (GS) for reproductive traits of bovine and buffalo. This review aimed to compile the heritability and genome-wide association studies (GWASs) related to reproductive traits in both bovine and buffalos and tried to highlight the possible disciplines which should benefit buffalo breeding. The estimates of heritability of reproductive traits ranged were from 0 to 0.57 and there were wide differences between the populations. For some specific traits, such as age of puberty (AOP) and calving difficulty (CD), the majority beef population presents relatively higher heritability than dairy cattle. Compared to bovine, genetic studies for buffalo reproductive traits are limited for age at first calving and calving interval traits. Several quantitative trait loci (QTLs), candidate genes, and SNPs associated with bovine reproductive traits were screened and identified by candidate gene methods and/or GWASs. The IGF1 and LEP pathways in addition to non-coding RNAs are highlighted due to their crucial relevance with reproductive traits. The distribution of QTLs related to various traits showed a great differences. Few GWAS have been performed so far on buffalo age at first calving, calving interval, and days open traits. In addition, we summarized the GS studies on bovine and buffalo reproductive traits and compared the accuracy between different reports. Taken together, GWAS and candidate gene approaches can help to understand the molecular genetic mechanisms of complex traits. Recently, GS has been used extensively and can be performed on multiple traits to improve the accuracy of prediction even for traits with low heritability, and can be combined with multi-omics for further analysis.
Collapse
Affiliation(s)
- Baoshun Shao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Sun
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Jamil Ahmad
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nasser Ghanem
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Chao Du
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingxian Deng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Yang Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| | - Yifen Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Shujun Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| |
Collapse
|
14
|
Luo H, Li X, Hu L, Xu W, Chu Q, Liu A, Guo G, Liu L, Brito LF, Wang Y. Genomic analyses and biological validation of candidate genes for rectal temperature as an indicator of heat stress in Holstein cattle. J Dairy Sci 2021; 104:4441-4451. [PMID: 33589260 DOI: 10.3168/jds.2020-18725] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/15/2020] [Indexed: 12/26/2022]
Abstract
Heat stress is a major cause of welfare issues and economic losses to the worldwide dairy cattle industry. Genetic selection for heat tolerance has a great potential to positively affect the dairy industry, as the gains are permanent and cumulative over generations. Rectal temperature (RT) is hypothesized to be a good indicator trait of heat tolerance. Therefore, this study investigated the genetic architecture of RT by estimating genetic parameters, performing genome-wide association studies, and biologically validating potential candidate genes identified to be related to RT in Holstein cattle. A total of 33,013 RT records from 7,598 cows were used in this study. In addition, 1,114 cows were genotyped using the Illumina 150K Bovine BeadChip (Illumina, San Diego, CA). Rectal temperature measurements taken in the morning (AMRT) and in the afternoon (PMRT) are moderately heritable traits, with estimates of 0.09 ± 0.02 and 0.04 ± 0.01, respectively. These 2 traits are also highly genetically correlated (r = 0.90 ± 0.08). A total of 10 SNPs (located on BTA3, BTA4, BTA8, BTA13, BTA14, and BTA29) were found to be significantly associated with AMRT and PMRT. Subsequently, gene expression analyses were performed to validate the key functional genes identified (SPAG17, FAM107B, TSNARE1, RALYL, and PHRF1). This was done through in vitro exposure of peripheral blood mononuclear cells (PBMC) to different temperatures (37°C, 39°C, and 42°C). The relative mRNA expression of 2 genes, FAM107B and PHRF1, significantly changed between the control and heat stressed PBMC. In summary, RT is heritable, and enough genetic variability exists to enable genetic improvement of heat tolerance in Holstein cattle. Important genomic regions were identified and biologically validated; FAM107B and PHRF1 are the main candidate genes identified to influence heat stress response in dairy cattle.
Collapse
Affiliation(s)
- Hanpeng Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xiang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Lirong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Wei Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - Aoxing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China; Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Gang Guo
- Beijing Sunlon Livestock Development Company Limited, 100029, Beijing, China
| | - Lin Liu
- Beijing Dairy Cattle Center, 100192, Beijing, China
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
15
|
Hansen PJ. The incompletely fulfilled promise of embryo transfer in cattle-why aren't pregnancy rates greater and what can we do about it? J Anim Sci 2020; 98:skaa288. [PMID: 33141879 PMCID: PMC7608916 DOI: 10.1093/jas/skaa288] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Typically, bovine embryos are transferred into recipient females about day 7 after estrus or anticipated ovulation, when the embryo has reached the blastocyst stage of development. All the biological and technical causes for failure of a female to produce a blastocyst 7 d after natural or artificial insemination (AI) are avoided when a blastocyst-stage embryo is transferred into the female. It is reasonable to expect, therefore, that pregnancy success would be higher for embryo transfer (ET) recipients than for inseminated females. This expectation is not usually met unless the recipient is exposed to heat stress or is classified as a repeat-breeder female. Rather, pregnancy success is generally similar for ET and AI. The implication is that either one or more of the technical aspects of ET have not yet been optimized or that underlying female fertility that causes an embryo to die before day 7 also causes it to die later in pregnancy. Improvements in pregnancy success after ET will depend upon making a better embryo, improving uterine receptivity, and forging new tools for production and transfer of embryos. Key to accelerating progress in improving pregnancy rates will be the identification of phenotypes or phenomes that allow the prediction of embryo competence for survival and maternal capacity to support embryonic development.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL
| |
Collapse
|
16
|
Jaton C, Schenkel FS, Chud TCS, Malchiodi F, Sargolzaei M, Price CA, Canovàs A, Baes C, Miglior F. Genetic and genomic analyses of embryo production in dairy cattle. Reprod Fertil Dev 2020; 32:50-55. [PMID: 32188557 DOI: 10.1071/rd19275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Canadian dairy industry has been using invivo and invitro assisted reproductive technologies to produce embryos. Technological improvements have helped increase the number and quality of embryos produced, but genetic and genomic tools for improving these traits have yet to be assessed for the Canadian Holstein population. Genetic parameters and a genome-wide association study were performed in Canadian Holstein for the total number of embryos (NE) and the number of viable embryos (VE). Results showed potential for genetic selection for both NE and VE, with heritability estimates (± s.e.) of approximately 0.15±0.01. Genetic correlations between the number of embryos produced using different procedures (invivo and invitro) suggested that a similar number of embryos should be expected from a donor regardless of the procedure used. A region on chromosome 11 of the bovine genome was found to be significantly associated with the number of embryos, indicating a potential regulatory role of this region on embryo production. Overall, these findings are of interest for the Canadian dairy industry because they provide useful information for breeders that are interested in producing embryos from the elite donors in their herds or in the population using assisted reproductive technologies.
Collapse
Affiliation(s)
- C Jaton
- The Semex Alliance, 5653 ON-6, Guelph, ON N1G 3Z2, Canada
| | - F S Schenkel
- Centre for Genetic Improvement of Livestock (CGIL), University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - T C S Chud
- Centre for Genetic Improvement of Livestock (CGIL), University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - F Malchiodi
- The Semex Alliance, 5653 ON-6, Guelph, ON N1G 3Z2, Canada
| | - M Sargolzaei
- Select Sires Inc., 11740 US-42, Plain City, OH 43064, USA
| | - C A Price
- Université de Montréal, Faculté de médecine vétérinaire, 3200 Rue Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - A Canovàs
- Centre for Genetic Improvement of Livestock (CGIL), University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - C Baes
- Centre for Genetic Improvement of Livestock (CGIL), University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - F Miglior
- Centre for Genetic Improvement of Livestock (CGIL), University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; and Ontario Genomics, 661 University Ave, Suite 490, Toronto, ON M5G 1M1, Canada; and Corresponding author.
| |
Collapse
|
17
|
Mikkola M, Hasler JF, Taponen J. Factors affecting embryo production in superovulated Bos taurus cattle. Reprod Fertil Dev 2020; 32:104-124. [PMID: 32188562 DOI: 10.1071/rd19279] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Despite a long history of bovine superovulation research, significant commercial applications did not start until the early 1970s. For some 20 years thereafter, superovulation represented the primary tool for the production of cattle embryos. In the early 1990s, commercial invitro production (IVP) was initiated in cattle. Although ovum pick-up and IVP are now commercially practiced on a wide scale, superovulation and embryo recovery by flushing remain a widespread and very effective approach to the production of cattle embryos. This review covers both the history and the effects of multiple factors on superovulation in Bos taurus cattle. There are three general protocols for suitable pre-FSH programming of donors so that gonadotrophin-responsive follicles are available. Superovulation protocols vary widely based on the FSH source, the diluent used, the number and timing of FSH injections and the timing and utilisation of various prostaglandins, controlled internal progesterone releasing devices, gonadotrophin-releasing hormone, and other means of controlling follicular development and ovulation. The number of oocytes that can be stimulated to grow and ovulate within any given donor can be estimated by either ultrasound-guided sonography or by measuring concentrations of anti-Müllerian hormone in the blood. Animal-related factors that can influence the efficacy of superovulation include cattle breed, age, parity, genetics, lactational status and reproductive history. In addition, nutrition, stress, season, climate, weather and several semen factors are discussed.
Collapse
Affiliation(s)
- M Mikkola
- Geno SA, Store Ree AI Station, Ekebergveien 54, 2335 Stange, Norway; and University of Helsinki, Department of Production Animal Medicine, FIN-04920 Saarentaus, Finland; and Corresponding author.
| | - J F Hasler
- Vetoquinol USA, 4250N Sylvania Avenue, Fort Worth, TX 76137, USA
| | - J Taponen
- University of Helsinki, Department of Production Animal Medicine, FIN-04920 Saarentaus, Finland
| |
Collapse
|
18
|
Vries AD, Kaniyamattam K. A review of simulation analyses of economics and genetics for the use of in-vitro produced embryos and artificial insemination in dairy herds. Anim Reprod 2020; 17:e20200020. [PMID: 33029212 PMCID: PMC7534553 DOI: 10.1590/1984-3143-ar2020-0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The use of in-vitro produced (IVP) embryo transfer (ET) in dairy herds is growing fast. Much of this growth is on dairy farms where the focus is on milk production and not on selling breeding stock. The value of implementing IVP-ET in a dairy herd arises from a higher genetic merit of the IVP-embryo, but the cost to produce a pregnancy with an IVP embryo is greater than the cost of artificial insemination (AI). The first objective of this study was to review estimates of the net benefit of using IVP-ET over AI in dairy herds using existing literature. Another objective was to show how much IVP-ET use in a herd is optimal. Most of the literature is based on simulation modeling, including our own work that focuses on the dairy industry in the USA. We found that the most profitable use of AI and IVP-ET is often a combination of the two. More IVP-ET should be used when the value of surplus calves is greater and the cost of IVP-ET is lower, among many other factors. In the future, use of IVP-ET will be further improved by more accurately identifying superior donors and recipients, reducing the generation interval, and achieving greater efficiency in embryo production.
Collapse
Affiliation(s)
- Albert De Vries
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Karun Kaniyamattam
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Comizzoli P. Integrating fertility preservation and cryo-banking into the conservation of rare and endangered deer species. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
More than 50 deer species live in diverse ecosystems around the world. Unfortunately, most of them are threatened or endangered because of over-hunting, poaching or habitat destruction. Protection of wild populations (in situ) and management of animal collections in zoos and breeding centres (ex situ) are complementary conservation efforts relying on multidisciplinary approaches. Reproductive biology of deer species is one of the critical areas that still needs to be thoroughly studied to ensure the success of in situ or ex situ programs. Interestingly, there is a vast diversity in reproductive traits within the deer family (from anatomy to breeding-season patterns). On the basis of this fundamental knowledge, adapted reproductive biotechnologies have been developed to enhance reproduction and preserve fertility of individuals. Early works on artificial insemination (AI), in vitro fertilisation (IVF), and germplasm freezing in the more common red deer, sika deer and white-tailed deer have been highly inspiring to projects aiming at saving endangered deer species. A few fawn births following AI or IVF using frozen semen have been reported in wild species (e.g. Eld’s deer, Rucervus eldii thamin); however, assisted reproductive techniques and cryo-banking are currently not integrated into the management of rare and endangered populations. Knowing that many deer populations are rapidly declining in situ and ex situ, there is now an urgent need for better strategies and more fertility preservation options. The objectives of the present article are to review (1) existing reproductive biotechnologies to preserve fertility of different deer species and (2) how to integrate these approaches into the management of rare and endangered populations to address conservation issues.
Collapse
|
20
|
Abdollahi-Arpanahi R, Carvalho MR, Ribeiro ES, Peñagaricano F. Association of lipid-related genes implicated in conceptus elongation with female fertility traits in dairy cattle. J Dairy Sci 2019; 102:10020-10029. [PMID: 31477299 DOI: 10.3168/jds.2019-17068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/12/2019] [Indexed: 01/19/2023]
Abstract
Elongation of the preimplantation conceptus is a requirement for pregnancy success in ruminants, and failures in this process are highly associated with subfertility in dairy cattle. Identifying genetic markers that are related to early conceptus development and survival and utilizing these markers in selective breeding can improve the reproductive efficiency of dairy herds. Here, we evaluated the association of 1,679 SNP markers within or close to 183 candidate genes involved in lipid metabolism of the elongating conceptus with different fertility traits in US Holstein cattle. A total of 27,371 bulls with predicted transmitting ability records for daughter pregnancy rate, cow conception rate, and heifer conception rate were used as the discovery population. The associations found in the discovery population were validated using 2 female populations (1,122 heifers and 2,138 lactating cows) each with 4 fertility traits, including success to first insemination, number of services per conception, age at first conception for heifers, or days open for cows. Marker effects were estimated using a linear mixed model with SNP genotype as a linear covariate and a random polygenic effect. After multiple testing correction, 39 SNP flagging 27 candidate genes were associated with at least one fertility trait in the discovery population. Of these 39 markers, 3 SNP were validated in the heifer population and 4 SNP were validated in the cow population. The 3 SNP validated in heifers are located within or near genes CAT, MYOF, and RBP4, and the 4 SNP validated in lactating cows are located within or close to genes CHKA, GNAI1, and HMOX2. These validated genes seem to be relevant for reducing pregnancy losses, and the SNP within these genes are excellent candidates for inclusion in genomic tests to improve reproductive performance in dairy cattle.
Collapse
Affiliation(s)
| | - Murilo R Carvalho
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Eduardo S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville 32611; University of Florida Genetics Institute, University of Florida, Gainesville 32611.
| |
Collapse
|
21
|
Ma L, Cole J, Da Y, VanRaden P. Symposium review: Genetics, genome-wide association study, and genetic improvement of dairy fertility traits. J Dairy Sci 2019; 102:3735-3743. [DOI: 10.3168/jds.2018-15269] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022]
|
22
|
Hirayama H, Naito A, Fujii T, Sugimoto M, Takedomi T, Moriyasu S, Sakai H, Kageyama S. Effects of genetic background on responses to superovulation in Japanese Black cattle. J Vet Med Sci 2019; 81:373-378. [PMID: 30643104 PMCID: PMC6451901 DOI: 10.1292/jvms.18-0537] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We investigated the effects of genetic background on the responses to superovulation in Japanese Black cattle. The genotype frequencies of GRIA1 and FSHR relating to ovulation and follicular development in each of the major bloodlines-Tajiri, Fujiyoshi, and Kedaka-were analyzed. The Tajiri line had the lowest frequency of G allele homozygosity of c.710A>G in GRIA1 among the three bloodlines, and deviation from Hardy-Weinberg equilibrium was detected. Genotype frequencies of c.337C>G, c.871A>G, and c.1973C>G in FSHR were in Hardy-Weinberg equilibrium in all bloodlines. The results of generalized linear mixed-model analyses showed that farm, levels of plasma anti-Müllerian hormone (AMH) concentration, age in months, repeated superovulation, c.337C>G in FSHR, and bloodlines had significant effects on the responses to superovulation. The number of transferable embryos in the group heterozygous for c.337C>G in FSHR was significantly higher than that in the group homozygous for the C allele. The Kedaka line showed a significantly higher number of ova/embryos, fertilized embryos, and transferable embryos than the Tajiri and Fujiyoshi lines. The concentration of circulating AMH is a useful endocrine marker for antral follicle counts. This study revealed the effects of genetic background on the responses to superovulation using levels of plasma AMH concentration as a covariate. The prominent effect of genetic background on superovulation in the Kedaka line requires additional studies to confirm the genomic regions and polymorphisms that are involved in the trait.
Collapse
Affiliation(s)
- Hiroki Hirayama
- Department of Northern Biosphere Agriculture, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido 099-2493, Japan
| | - Akira Naito
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Shintoku, Hokkaido 081-0038, Japan
| | - Takashi Fujii
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Shintoku, Hokkaido 081-0038, Japan
| | - Masahito Sugimoto
- Dairy Cattle Research Unit, Dairy Research Center, Hokkaido Research Organization, Nakashibetsu, Hokkaido 086-1135, Japan
| | | | - Satoru Moriyasu
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Shintoku, Hokkaido 081-0038, Japan
| | - Hitomi Sakai
- Department of Northern Biosphere Agriculture, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido 099-2493, Japan
| | - Soichi Kageyama
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Shintoku, Hokkaido 081-0038, Japan
| |
Collapse
|
23
|
Jaton C, Schenkel F, Sargolzaei M, Cánova A, Malchiodi F, Price C, Baes C, Miglior F. Genome-wide association study and in silico functional analysis of the number of embryos produced by Holstein donors. J Dairy Sci 2018; 101:7248-7257. [DOI: 10.3168/jds.2017-13848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/05/2018] [Indexed: 11/19/2022]
|
24
|
Miglior F, Fleming A, Malchiodi F, Brito LF, Martin P, Baes CF. A 100-Year Review: Identification and genetic selection of economically important traits in dairy cattle. J Dairy Sci 2018; 100:10251-10271. [PMID: 29153164 DOI: 10.3168/jds.2017-12968] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/09/2017] [Indexed: 01/14/2023]
Abstract
Over the past 100 yr, the range of traits considered for genetic selection in dairy cattle populations has progressed to meet the demands of both industry and society. At the turn of the 20th century, dairy farmers were interested in increasing milk production; however, a systematic strategy for selection was not available. Organized milk performance recording took shape, followed quickly by conformation scoring. Methodological advances in both genetic theory and statistics around the middle of the century, together with technological innovations in computing, paved the way for powerful multitrait analyses. As more sophisticated analytical techniques for traits were developed and incorporated into selection programs, production began to increase rapidly, and the wheels of genetic progress began to turn. By the end of the century, the focus of selection had moved away from being purely production oriented toward a more balanced breeding goal. This shift occurred partly due to increasing health and fertility issues and partly due to societal pressure and welfare concerns. Traits encompassing longevity, fertility, calving, health, and workability have now been integrated into selection indices. Current research focuses on fitness, health, welfare, milk quality, and environmental sustainability, underlying the concentrated emphasis on a more comprehensive breeding goal. In the future, on-farm sensors, data loggers, precision measurement techniques, and other technological aids will provide even more data for use in selection, and the difficulty will lie not in measuring phenotypes but rather in choosing which traits to select for.
Collapse
Affiliation(s)
- Filippo Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Canadian Dairy Network, Guelph, Ontario, N1K 1E5, Canada.
| | - Allison Fleming
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Francesca Malchiodi
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Luiz F Brito
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Pauline Martin
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Christine F Baes
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
25
|
Cole J, VanRaden P. Symposium review: Possibilities in an age of genomics: The future of selection indices. J Dairy Sci 2018; 101:3686-3701. [DOI: 10.3168/jds.2017-13335] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/22/2017] [Indexed: 11/19/2022]
|
26
|
Kaniyamattam K, Block J, Hansen PJ, De Vries A. Economic and genetic performance of various combinations of in vitro-produced embryo transfers and artificial insemination in a dairy herd. J Dairy Sci 2017; 101:1540-1553. [PMID: 29153526 DOI: 10.3168/jds.2017-13475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/24/2017] [Indexed: 12/31/2022]
Abstract
The objective of this study was to find the optimal proportions of pregnancies from an in vitro-produced embryo transfer (IVP-ET) system and artificial insemination (AI) so that profitability is maximized over a range of prices for embryos and surplus dairy heifer calves. An existing stochastic, dynamic dairy model with genetic merits of 12 traits was adapted for scenarios where 0 to 100% of the eligible females in the herd were impregnated, in increments of 10%, using IVP-ET (ET0 to ET100, 11 scenarios). Oocytes were collected from the top donors selected for the trait lifetime net merit (NM$) and fertilized with sexed semen to produce IVP embryos. Due to their greater conception rates, first ranked were eligible heifer recipients based on lowest number of unsuccessful inseminations or embryo transfers, and then on age. Next, eligible cow recipients were ranked based on the greatest average estimated breeding values (EBV) of the traits cow conception rate and daughter pregnancy rate. Animals that were not recipients of IVP embryos received conventional semen through AI, except that the top 50% of heifers ranked for EBV of NM$ were inseminated with sexed semen for the first 2 AI. The economically optimal proportions of IVP-ET were determined using sensitivity analysis performed for 24 price sets involving 6 different selling prices of surplus dairy heifer calves at approximately 105 d of age and 4 different prices of IVP embryos. The model was run for 15 yr after the start of the IVP-ET program for each scenario. The mean ± standard error of true breeding values of NM$ of all cows in the herd in yr 15 was greater by $603 ± 2 per cow per year for ET100 when compared with ET0. The optimal proportion of IVP-ET ranged from ET100 (for surplus dairy heifer calves sold for ≥$300 along with an additional premium based on their EBV of NM$ and a ≤$100 embryo price) to as low as ET0 (surplus dairy heifer calves sold at $300 with a $200 embryo price). For the default assumptions, the profit/cow in yr 15 was greater by $337, $215, $116, and $69 compared with ET0 when embryo prices were $50, $100, $150, and $200. The optimal use of IVP-ET was 100, 100, 62, and 36% of all breedings for these embryo prices, respectively. At the input price of $165 for an IVP embryo, the difference in the net present value of yr 15 profit between ET40 (optimal scenario) and ET0 was $33 per cow. In conclusion, some use of IVP-ET was profitable for a wide range of IVP-ET prices and values of surplus dairy heifer calves.
Collapse
Affiliation(s)
| | - Jeremy Block
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - Albert De Vries
- Department of Animal Sciences, University of Florida, Gainesville 32611.
| |
Collapse
|