1
|
Wang X, Wang L, Wei X, Xu C, Cavender G, Lin W, Sun S. Invited review: Advances in yogurt development-Microbiological safety, quality, functionality, sensory evaluation, and consumer perceptions across different dairy and plant-based alternative sources. J Dairy Sci 2025; 108:33-58. [PMID: 39369892 DOI: 10.3168/jds.2024-25322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024]
Abstract
Yogurt, as a globally prevalent fermented dairy product, is renowned for its substantial nutritional value and a myriad of health benefits, particularly pertaining to the digestive system. This narrative review elucidates the latest advancements in yogurt development from 2019 to 2024, addressing aspects of microbiological safety, quality, functionality, sensory evaluation, and consumer perceptions across diverse protein sources. The intrinsic quality of yogurt is notably influenced by its primary ingredient, milk, traditionally derived from animals such as cows, goats, and sheep. In recent years, plant-based yogurt (PBY) have emerged as a popular alternative to traditional dairy yogurts, that are made from plant sources and offer similar textures and flavors, catering to those seeking nondairy options. This discussion encompasses the advantages and limitations of various sources and explores methodologies to enhance yogurt quality using these diverse sources. Ensuring the microbiological safety of yogurt is thus paramount to its quality, as it involves both preventing the presence of harmful pathogens and managing spoilage to maintain freshness. This article encapsulates the potential hazards and corresponding antibacterial strategies that safeguard yogurt consumption. These strategies include the use of natural preservatives, advancements in packaging technologies, and the implementation of stringent hygiene practices throughout the production process. Moreover, the quality of yogurt is dependent not only on the source but also on the fermentation process and additional ingredients used. By addressing both the prevention of pathogen contamination and the control of spoilage organisms, this article explores comprehensive approaches but also examines the use of high-quality starter cultures, the role of prebiotics in enhancing probiotic efficacy, and genetic advancements, as well as improvements in the overall nutritional profile and shelf life of yogurt. Techniques to improve texture, flavor, and nutrient content are also discussed, providing a comprehensive overview of current quality enhancement methods. This analysis delves into the intricate mechanisms underpinning probiotic development, including the roles of prebiotics, supplementary starter cultures, and genetic factors that facilitate probiotic proliferation. These benefits include improved digestive health, enhanced immune function, and potential reductions in the risk of certain chronic diseases. Beyond quality and functionality, the sensory evaluation of yogurt remains crucial for consumer acceptance. In recent years, the incorporation of diverse additional ingredients into yogurt has been observed, aimed at augmenting its sensory attributes. This examination reveals these ingredients and their respective functions, such as natural flavorings, sweeteners, and texturizing agents, with the ultimate goal of enhancing overall consumer satisfaction. Consumer preferences exert a profound influence on yogurt production, rendering the understanding of customer opinions essential for devising competitive industry strategies. This article consolidates consumer feedback and preferences, striving to elevate yogurt quality and promote dietary diversity. The analysis includes trends such as the growing demand for organic and nondairy yogurts, the importance of sustainable practices, and the impact of marketing and packaging on consumer choices. This comprehensive overview serves as a valuable reference for the dairy industry and researchers dedicated to the advancement of yogurt development.
Collapse
Affiliation(s)
- Xiaojun Wang
- Yantai Key Laboratory of Special Medical Food, School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong, 264003, China
| | - Linlin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100085, China
| | - Xinyao Wei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350014, China
| | - Changmou Xu
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - George Cavender
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634
| | - Walker Lin
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695
| | - Shengqian Sun
- Yantai Key Laboratory of Special Medical Food, School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong, 264003, China.
| |
Collapse
|
2
|
Brown SRB, Gensler CA, Sun L, D'Amico DJ. Evaluating the Efficacy of Ɛ-poly-lysine, Hydrogen Peroxide, and Lauric Arginate to Inhibit Listeria monocytogenes Biofilm Formation and Inactivate Mature Biofilms. J Food Prot 2024; 87:100399. [PMID: 39510503 DOI: 10.1016/j.jfp.2024.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Preventing the introduction of Listeria monocytogenes, subsequent biofilm formation, and persistence in food processing environments is important for reducing the risk of cross-contamination of ready-to-eat foods. This study determined the effect of Ɛ-poly-lysine (EPL), hydrogen peroxide (HP), and lauric arginate (LAE) on L. monocytogenes biofilm formation and the inactivation of mature biofilms. For inhibition studies, biofilms of L. monocytogenes Scott A (serotype 4b) and 2014L-6025 (serotype 1/2b) were developed separately at 37 °C for 48 h in the presence of sub-inhibitory concentrations (SIC) of either EPL (10 ppm), HP (2 ppm), or LAE (1.5 ppm) on polystyrene plates and stainless-steel rounds. Inactivation was determined by exposing mature biofilms on each surface to each antimicrobial at their minimum bactericidal concentration (MBC), 10xMBC, or 100xMBC for 24 h at 37 °C. The presence of these antimicrobials at SIC did not inhibit biofilm formation on either surface and their effect on mature biofilms varied by strain and surface. Application of EPL at 1xMBC (100 ppm) for 24 h resulted in greater reductions in counts of both strains on polystyrene than HP (40 ppm) and LAE (5 ppm) under the same conditions at 1xMBC (P ≤ 0.0243). Exposure of mature biofilms to LAE at 10xMBC (50 ppm) for 1 h was more effective in reducing counts on polystyrene than HP at 10xMBC (400 ppm) for the same duration (P ≤ 0.0136), and both HP and LAE applied at 100xMBC (4,000 and 500 ppm, respectively) for 24 h more effectively inactivated mature biofilms of L. monocytogenes Scott A on polystyrene compared to EPL (10,000 ppm) (P ≤ 0.0307). Application of LAE at 10xMBC for 24 h was more effective at inactivating strain Scott A on stainless steel compared to 10xMBC of EPL (1,000 ppm) or HP (P ≤ 0.0430). Future studies are needed to determine the efficacy of these and other antimicrobials on additional strains and serotypes of L. monocytogenes at temperatures relevant to food production and storage.
Collapse
Affiliation(s)
- Stephanie R B Brown
- Dept. of Animal Science, University of Connecticut, 302B Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT 06269-4163, USA
| | - Catherine A Gensler
- Dept. of Animal Science, University of Connecticut, 302B Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT 06269-4163, USA
| | - Lang Sun
- Dept. of Animal Science, University of Connecticut, 302B Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT 06269-4163, USA
| | - Dennis J D'Amico
- Dept. of Animal Science, University of Connecticut, 302B Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT 06269-4163, USA.
| |
Collapse
|
3
|
Brown SRB, Sun L, Gensler CA, D'Amico DJ. The Impact of Subinhibitory Concentrations of Ɛ-polylysine, Hydrogen Peroxide, and Lauric Arginate on Listeria monocytogenes Virulence. J Food Prot 2024; 87:100385. [PMID: 39427815 DOI: 10.1016/j.jfp.2024.100385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Recent studies on the use of plant-derived and other bioactive compounds and antimicrobials in food have challenged the idea that exposure to antimicrobials at sublethal or subinhibitory concentrations (SICs) increases the virulence potential of bacterial pathogens including Listeria monocytogenes. The objective of this study was to determine the effect of exposure to SICs of Ɛ-polylysine (EPL), hydrogen peroxide (HP), and lauric arginate (LAE) on L. monocytogenes virulence. For all assays, L. monocytogenes strains Scott A and 2014L-6025 were grown to mid-log phase in the presence of SICs of EPL, HP, or LAE. Motility was determined by spot inoculating cultures on soft brain heart infusion agar (0.3% agar). Cultures grown in SICs of antimicrobials were also inoculated onto Caco-2 cells (10:1 MOI) to determine the effects on subsequent adhesion and invasion. Last, the relative expression of key virulence genes (prfA, plcB, hlyA, actA, inlA, inlB, sigB, and virR) following growth in SICs was determined by RT-qPCR. Results indicate that L. monocytogenes growth in the presence of SICs of EPL, HP, or LAE did not affect the motility, adhesion, or invasion capacity of either strain. Changes in gene expression were observed for both L. monocytogenes strains. More specifically, SICs of EPL and LAE reduced hlyA expression in Scott A, whereas SICs of EPL and HP increased the expression of virR. The upregulation of sigB and actA in the presence of EPL and LAE, respectively, was observed in strain 2014L-6025. These findings indicate that exposure to SICs of these antimicrobials has varying effects on L. monocytogenes that differ by strain. Although no phenotypic effects were observed in terms of motility, adhesion, and invasion, the observed changes in virulence gene expression warrant further investigation.
Collapse
Affiliation(s)
- Stephanie R B Brown
- Dept. of Animal Science, University of Connecticut, Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs CT, 06269-4163, USA
| | - Lang Sun
- Dept. of Animal Science, University of Connecticut, Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs CT, 06269-4163, USA
| | - Catherine A Gensler
- Dept. of Animal Science, University of Connecticut, Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs CT, 06269-4163, USA
| | - Dennis J D'Amico
- Dept. of Animal Science, University of Connecticut, Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs CT, 06269-4163, USA.
| |
Collapse
|
4
|
Ma Y, Ma Y, Chi L, Wang S, Zhang D, Xiang Q. Lauric arginate ethyl ester: An update on the antimicrobial potential and application in the food systems. Front Microbiol 2023; 14:1125808. [PMID: 36910208 PMCID: PMC9995605 DOI: 10.3389/fmicb.2023.1125808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Lauric arginate ethyl ester (LAE), a cationic surfactant with low toxicity, displays excellent antimicrobial activity against a broad range of microorganisms. LAE has been approved as generally recognized as safe (GRAS) for widespread application in certain foods at a maximum concentration of 200 ppm. In this context, extensive research has been carried out on the application of LAE in food preservation for improving the microbiological safety and quality characteristics of various food products. This study aims to present a general review of recent research progress on the antimicrobial efficacy of LAE and its application in the food industry. It covers the physicochemical properties, antimicrobial efficacy of LAE, and the underlying mechanism of its action. This review also summarizes the application of LAE in various foods products as well as its influence on the nutritional and sensory properties of such foods. Additionally, the main factors influencing the antimicrobial efficacy of LAE are reviewed in this work, and combination strategies are provided to enhance the antimicrobial potency of LAE. Finally, the concluding remarks and possible recommendations for the future research are also presented in this review. In summary, LAE has the great potential application in the food industry. Overall, the present review intends to improve the application of LAE in food preservation.
Collapse
Affiliation(s)
- Yunfang Ma
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Yanqing Ma
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Lei Chi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Shaodan Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Dianhe Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| |
Collapse
|
5
|
Huerta-González L, López-Valdez F, Luna-Suárez S. The potential use of acylglycerols on the thermal inactivation of lactic acid bacteria for the manufacture of long-life fermented products. BMC Microbiol 2022; 22:283. [PMID: 36435751 PMCID: PMC9701366 DOI: 10.1186/s12866-022-02694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/07/2022] [Indexed: 11/28/2022] Open
Abstract
The effect of acylglycerols on the thermal inactivation of lactic acid bacteria used in the production of fermented products was studied. The starting point was the observation of an increase in thermal sensitivity in the presence of an emulsifier based on mono- and diacylglycerols in the culture medium. Analysis of the emulsifier showed that monoacylglycerols were the compounds responsible for this effect, with monopalmitin being the main contributor. Monostearin, on the other hand, showed significantly less potentiating effect. Interestingly, monoacylglycerols showed a greater bactericidal effect when used individually than when used in combination. On the other hand, the rate of thermal inactivation observed in reconstituted skim milk emulsions was lower than in peptone water emulsions, showing that the presence of proteins and colloidal particles increased the resistance of bacteria to heat treatment. With respect to pH values, a reduction in pH from 6.6 to 5.5 promoted an increase in the rate of thermal death. However, at pH = 5.5, the enhancing bactericidal effect was only detectable when the heat treatment was performed at low temperatures but not at high temperatures. This finding is of interest, since it will allow the design of moderate heat treatments, combining the use of temperature with the addition of acylglycerols, to prolong the shelf life of products fermented with lactic acid bacteria, and minimizing the destruction of desirable compounds that were obtained by the fermentation process.
Collapse
Affiliation(s)
- Luis Huerta-González
- Food Biotechnology & Agricultural Biotechnology Labs. Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (CIBA-IPN). Tepetitla de Lardizábal, Tlaxcala, 90700, México.
| | - Fernando López-Valdez
- Food Biotechnology & Agricultural Biotechnology Labs. Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (CIBA-IPN). Tepetitla de Lardizábal, Tlaxcala, 90700, México
| | - Silvia Luna-Suárez
- Food Biotechnology & Agricultural Biotechnology Labs. Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (CIBA-IPN). Tepetitla de Lardizábal, Tlaxcala, 90700, México
| |
Collapse
|
6
|
Takhar SR, Ibarra-Sánchez LA, Miller MJ. Effect of antimicrobial treatments applied individually and in combination on the growth of Listeria monocytogenes in Queso Fresco at 3 different temperatures. JDS COMMUNICATIONS 2022; 3:307-311. [PMID: 36340902 PMCID: PMC9623663 DOI: 10.3168/jdsc.2022-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/07/2022] [Indexed: 12/02/2022]
Abstract
A combination of antimicrobial treatments provides a more effective approach against L. monocytogenes growth in QF. PlyP100 + NIS was the most effective treatment for L. monocytogenes growth in QF. Listeria monocytogenes can grow up to dangerously high levels regardless of the storage temperature in untreated QF. EPL + LAE are good candidates to further evaluate for improving safety of QF during cold storage. Temperature abuse dramatically reduces the effectiveness of the tested antilisterials in QF.
Queso fresco (QF), a fresh soft cheese, is one of the most popular Hispanic cheeses in the United States and is frequently associated with Listeria monocytogenes outbreaks. Listeria monocytogenes can grow and thrive at room temperature as well as refrigeration temperatures. A combination of antimicrobial agents provides a larger spectrum of listeriostatic and listeriocidal activity resulting in a more effective approach toward the control of L. monocytogenes. In this study, we evaluated the efficacy of 3 Food and Drug Administration-approved generally recognized as safe (GRAS) antimicrobials, nisin (NIS), lauric arginate ethyl ester (LAE), and ε-polylysine (EPL), and the endolysin PlyP100 individually and in combination for control of L. monocytogenes in QF at 4°C, 7°C, and 10°C. Additionally, growth curves of L. monocytogenes were obtained in BHI broth and QF at these temperatures. In order for an antimicrobial to be considered a postlethality treatment for L. monocytogenes, it should not allow an increase of more than 2-log over the product's shelf life. Three treatments, PlyP100, PlyP100 + NIS, and EPL + LAE, effectively kept the pathogen below the 2 log growth threshold at 4°C. However, at 7°C and 10°C, none of the antimicrobial treatments could inhibit L. monocytogenes growth (i.e., <2 log). Overall, our results suggest the importance of considering the effect of cold storage temperatures above 4°C on the antilisterial efficacy of antimicrobial treatments in QF.
Collapse
|
7
|
Hales BR, Walsh MK, Bastarrachea LJ. Synergistic effect of high‐intensity ultrasound,
UV‐A
light, and natural preservatives on microbial inactivation in milk. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bryce R. Hales
- Department of Nutrition, Dietetics and Food Sciences Utah State University Logan Utah USA
| | - Marie K. Walsh
- Department of Nutrition, Dietetics and Food Sciences Utah State University Logan Utah USA
| | - Luis J. Bastarrachea
- Department of Nutrition, Dietetics and Food Sciences Utah State University Logan Utah USA
| |
Collapse
|
8
|
Flynn BT, Kozak SM, Lawton MR, Alcaine SD. Lactose oxidase: An enzymatic approach to inhibit Listeria monocytogenes in milk. J Dairy Sci 2021; 104:10594-10608. [PMID: 34334205 DOI: 10.3168/jds.2021-20450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
Listeria monocytogenes is a ubiquitous pathogen that can cause morbidity and mortality in immunocompromised individuals. Growth of L. monocytogenes is possible at refrigeration temperatures due to its psychrotrophic nature. The use of antimicrobials in dairy products is a potential way to control L. monocytogenes growth in processes with no thermal kill step, thereby enhancing the safety of such products. Microbial-based enzymes offer a clean-label approach for control of L. monocytogenes outgrowth. Lactose oxidase (LO) is a microbial-derived enzyme with antimicrobial properties. It oxidizes lactose into lactobionic acid and reduces oxygen, generating H2O2. This study investigated the effects of LO in UHT skim milk using different L. monocytogenes contamination scenarios. These LO treatments were then applied to raw milk with various modifications; higher levels of LO as well as supplementation with thiocyanate were added to activate the lactoperoxidase system, a natural antimicrobial system present in milk. In UHT skim milk, concentrations of 0.0060, 0.012, and 0.12 g/L LO each reduced L. monocytogenes counts to below the limit of detection between 14 and 21 d of refrigerated storage, dependent on the concentration of LO. In the 48-h trials in UHT skim milk, LO treatments were effective in a concentration-dependent fashion. The highest concentration of LO in the 21-d trials, 0.12 g/L, did not show great inhibition over 48 h, so concentrations were increased for these experiments. In the lower inoculum, after 48 h, a 12 g/L LO treatment reached levels of 1.7 log cfu/mL, a reduction of 1.3 log cfu/mL from the initial inoculum, whereas the control grew out to approximately 4 log cfu/mL, an increase of 1 log cfu/mL from the inoculum on d 0. When a higher challenge inoculum of 5 log cfu/mL was used, the 0.12 g/L and 1.2 g/L treatments reduced the levels by 0.2 to 0.3 log cfu/mL below the initial inoculum and the 12 g/L treatment by >1 log cfu/mL below the initial inoculum by hour 48 of storage at refrigeration temperatures. After the efficacy of LO was determined in UHT skim milk, LO treatments were applied to raw milk. Concentrations of LO were increased, and the addition of thiocyanate was investigated to supplement the effect of the lactoperoxidase system against L. monocytogenes. When raw milk was inoculated with 2 log cfu/mL, 1.2 g/L LO alone and combined with sodium thiocyanate reduced ~0.8 log cfu/mL from the initial inoculum on d 7 of storage, whereas the control grew out to >1 log cfu/mL from the initial inoculum. Furthermore, in the higher inoculum, 1.2 g/L LO combined with sodium thiocyanate reduced L. monocytogenes counts from the initial inoculum by >1 log cfu/mL, whereas the control grew out 2 log cfu/mL from the initial inoculum. Results from this study suggest that LO is inhibitory against L. monocytogenes in UHT skim milk and in raw milk. Therefore, LO may be an effective treatment to prevent L. monocytogenes outgrowth, increase the safety of raw milk, and be used as an effective agent to prevent L. monocytogenes proliferation in fresh cheese and other dairy products. This enzymatic approach is a novel application to control the foodborne pathogen L. monocytogenes in dairy products.
Collapse
Affiliation(s)
- Brenna T Flynn
- Department of Food Science, Cornell University, Ithaca, NY 14853
| | - Sarah M Kozak
- Department of Food Science, Cornell University, Ithaca, NY 14853
| | - Marie R Lawton
- Department of Food Science, Cornell University, Ithaca, NY 14853
| | - Samuel D Alcaine
- Department of Food Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
9
|
Flynn B, deRiancho D, Lawton MR, Alcaine SD. Evaluation of Lactose Oxidase as an Enzyme-Based Antimicrobial for Control of L. monocytogenes in Fresh Cheese. Foods 2021; 10:1471. [PMID: 34201990 PMCID: PMC8307525 DOI: 10.3390/foods10071471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous pathogen that can cause morbidity and mortality in the elderly, immune compromised, and the fetuses of pregnant women. The intrinsic properties of fresh cheese-high water activity (aW), low salt content, and near-neutral pH-make it susceptible to L. monocytogenes contamination and growth at various points in the production process. The aim of this study was to investigate the ability of lactose oxidase (LO), a naturally derived enzyme, to inhibit the growth of L. monocytogenes in fresh cheese during various points of the production process. Lab-scale queso fresco was produced and inoculated with L. monocytogenes at final concentrations of 1 log CFU/mL and 1 CFU/100 mL. LO and LO sodium thiocyanate (TCN) combinations were incorporated into the milk or topically applied to the finished cheese product in varying concentration levels. A positive control and negative control were included for all experiments. When L. monocytogenes was inoculated into the milk used for the cheese-making process, by day 28, the positive control grew to above 7 log CFU/g, while the 0.6 g/L treatment (LO and LO + TCN) fell below the limit of detection (LOD) of 1.3 log CFU/g. In the lower inoculum, the positive control grew to above 7 log CFU/g, and the treatment groups fell below the LOD by day 21 and continued through day 28 of storage. For surface application, outgrowth occurred with the treatments in the higher inoculum, but some inhibition was observed. In the lower inoculum, the higher LO and LO-TCN concentrations (0.6 g/L) reduced L. monocytogenes counts to below the LOD, while the control grew out to above 7 log CFU/g, which is a >5 log difference between the control and the treatment. These results suggest that LO could be leveraged as an effective control for L. monocytogenes in a fresh cheese.
Collapse
Affiliation(s)
| | | | | | - Samuel D. Alcaine
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (B.F.); (D.d.); (M.R.L.)
| |
Collapse
|
10
|
Makki G, Alcaine SD. Evaluation of lactose oxidase as enzymatic antifungal control for Penicillium spoilage in yogurt. J Dairy Sci 2021; 104:5208-5217. [PMID: 33685681 DOI: 10.3168/jds.2020-19602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/23/2021] [Indexed: 11/19/2022]
Abstract
In this study, we investigated the antifungal activity of lactose oxidase (LO) as a potential biopreservative in dairy products. Our study objectives were to screen antifungal activity of LO against common mold strains, to detect the minimum inhibitory level of LO against the same strains, and to understand how LO affects the pH and lactic acid bacteria (LAB) counts in set yogurt. Five mold strains (Penicillium chrysogenum, Penicillium citrinum, Penicillium commune, Penicillium decumbens, and Penicillium roqueforti) were used throughout study. These strains were previously isolated from dairy manufacturing plants. Throughout the study, yogurts were stored at 21 ± 2°C for 14 d. Antifungal activity of LO was screened using 2 enzyme levels (1.2 and 12 g/L LO) against selected strains on the surface of a miniature laboratory set-yogurt model. For all tested strains, no visible mold growth was detected on the surface of yogurts covered with LO compared with control yogurt without LO. The minimum inhibitory level of LO against each strain was further investigated using 4 enzyme levels (0.12, 0.48, 0.84, and 1.2 g/L LO) on the miniature laboratory set-yogurt model. We detected 0.84 g/L LO as the minimum level inhibiting visible hyphal growth across strains. The minimum inhibitory level of LO varied for each individual strain. To study the effect of LO on the pH of yogurt, miniature laboratory set-yogurt models were covered with different enzyme levels (0.12, 0.48, 0.84, 1.2, and 12 g/L LO). At d 14, a difference was detected comparing pH values of treatments to control with no LO. Commercial low-fat set yogurt was used to study the effect of LO on LAB survival when yogurt surface was covered with 0.84 g/L LO under the same experimental conditions. Control with no LO was included. At d 14, 3 levels of catalase were added (0, 0.01, and 0.1%) to each treatment. To enumerate LAB, homogenized samples were plated on de Man, Rogosa, and Sharpe agar and incubated. Yogurts with 0.84 g/L LO had lower LAB counts compared with control yogurts, and catalase level did not have a significant effect on LAB counts. Our results demonstrated potential antifungal efficacy of LO against common spoilage organisms in dairy products with residual lactose and relatively low pH. Manufacturers should establish efficacy of LO against mold strains of interest and determine the effects of LO on organoleptic properties and LAB survival in set yogurt.
Collapse
Affiliation(s)
- Ghadeer Makki
- Department of Food Science and Technology, Cornell University, Ithaca, NY 14850
| | - Samuel D Alcaine
- Department of Food Science and Technology, Cornell University, Ithaca, NY 14850.
| |
Collapse
|
11
|
Robinson BR, D'Amico DJ. Hydrogen peroxide treatments for the control of Listeria monocytogenes on high-moisture soft cheese. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Sun L, Forauer EC, Brown SRB, D'Amico DJ. Application of bioactive glycolipids to control Listeria monocytogenes biofilms and as post-lethality contaminants in milk and cheese. Food Microbiol 2020; 95:103683. [PMID: 33397615 DOI: 10.1016/j.fm.2020.103683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/18/2022]
Abstract
Listeria monocytogenes can form persistent biofilms on food processing surfaces, resulting in cross-contamination of food products, including milk and milk products. Natural glycolipids are a promising intervention to control undesirable microbes due to their antimicrobial activity and low toxicity. This study aimed to determine the antimicrobial activity of glycolipids to control L. monocytogenes biofilms as well as in milk and on Queso Fresco. Application of a natural glycolipid product significantly reduced biofilm-associated L. monocytogenes on both polystyrene and stainless steel at concentrations as low as 45 mg/L. When added to UHT skim milk, a concentration of 1000 mg/L inhibited L. monocytogenes growth through 7 days of storage at 7 °C, and application of 1300 and 1500 mg/L reduced counts to levels below the limit of enumeration at day 21. In contrast, 2000 mg/L were necessary to inhibit growth through 7 days in whole milk. Glycolipid solutions at concentrations ≥10% reduced L. monocytogenes counts on Queso Fresco through 7 days when applied as a dip. Overall, natural glycolipids have potential as a natural alternative for the removal of biofilms and as an antimicrobial to control L. monocytogenes in milk and milk products with short shelf lives.
Collapse
Affiliation(s)
- Lang Sun
- Department of Animal Science, University of Connecticut, Agricultural Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT, 06269-4163, USA
| | - Emily C Forauer
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, U-3089, Storrs, CT, 06269-3089, USA
| | - Stephanie R B Brown
- Department of Animal Science, University of Connecticut, Agricultural Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT, 06269-4163, USA
| | - Dennis J D'Amico
- Department of Animal Science, University of Connecticut, Agricultural Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT, 06269-4163, USA.
| |
Collapse
|
13
|
Stubbs TA, Galer CD. Symposium review: Recent advances in dairy food safety research: An overview of the National Dairy Council Listeria Consortium, industry identification, and funding of research gaps. J Dairy Sci 2019; 103:2906-2908. [PMID: 31668444 DOI: 10.3168/jds.2019-17337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/28/2019] [Indexed: 11/19/2022]
Abstract
Consumers should have confidence that dairy foods are safe to eat. The Food Safety Committee of the Innovation Center for US Dairy (IC), created in 2010 to help processors collectively improve practices and reduce risks in dairy foods, is an industry-wide food safety collaboration that aims to protect the public through its mission to "Strengthen manufacturing practices in all dairy processing facilities and advance science-based tools to diminish food safety risks that could compromise the reputation of the U.S. dairy industry." The IC Listeria Research Consortium, a subset of the IC Food Safety Committee, funds research directed at creating new tools and practices to control Listeria in finished products and in manufacturing plants. This synopsis summarizes a presentation on the work conducted by the IC Food Safety Committee and research funded by the IC Listeria Research Consortium that was part of a symposium highlighting recent scientific findings and potential practical approaches to better control Listeria using science-based tools.
Collapse
Affiliation(s)
- T A Stubbs
- National Dairy Council, 10255 West Higgins Road, Suite 900, Rosemont, IL 60018.
| | - C D Galer
- National Dairy Council, 10255 West Higgins Road, Suite 900, Rosemont, IL 60018.
| |
Collapse
|
14
|
Lara-Aguilar S, Alcaine SD. Short communication: Screening inhibition of dairy-relevant pathogens and spoilage microorganisms by lactose oxidase. J Dairy Sci 2019; 102:7807-7812. [DOI: 10.3168/jds.2019-16757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/24/2019] [Indexed: 01/26/2023]
|
15
|
Lara-Aguilar S, Alcaine SD. Lactose oxidase: A novel activator of the lactoperoxidase system in milk for improved shelf life. J Dairy Sci 2019; 102:1933-1942. [DOI: 10.3168/jds.2018-15537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/06/2018] [Indexed: 11/19/2022]
|
16
|
Bastarrachea LJ. Antimicrobial polypropylene with ε-poly(lysine): Effectiveness under UV-A light and food storage applications. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Melero B, Stessl B, Manso B, Wagner M, Esteban-Carbonero ÓJ, Hernández M, Rovira J, Rodriguez-Lázaro D. Listeria monocytogenes colonization in a newly established dairy processing facility. Int J Food Microbiol 2018; 289:64-71. [PMID: 30199737 DOI: 10.1016/j.ijfoodmicro.2018.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 11/25/2022]
Abstract
The presence and colonization of Listeria monocytogenes were investigated in a newly established dairy processing plant during a one-year period. A total of 250 non-food contact surfaces, 163 food contact surfaces, 46 personnel and 77 food samples were analyzed in two different buildings according to the cheese production chain. Initial steps, including salting, are performed in building I (old facility), while the final steps, including ripening, cutting and packaging, are performed in building II (new facility). Overall, 218 samples were collected from building I and 318 from building II. L. monocytogenes isolates were subtyped by PFGE and MLST, and a questionnaire about quality measures was completed. The overall prevalence of L. monocytogenes was 8.40%, and while the presence of the pathogen was observed just during the first sampling in building I, L. monocytogenes was found in building II at the third sampling event. The salting area in building I had the highest proportion of positive samples with the highest diversity of PFGE types. Moreover, L. monocytogenes PFGE type 3 (sequence type -ST- 204) was first detected in building II in the third visit, and spread through this building until the end of the study. The answers to the questionnaire implied that lack of hygienic barriers in specific parts of the facilities and uncontrolled personnel flow were the critical factors for the spread of L. monocytogenes within and between buildings. Knowledge of the patterns of L. monocytogenes colonization can help a more rational design of new cheesemaking facilities, and improve the food safety within current facilities.
Collapse
Affiliation(s)
- Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Beatrix Stessl
- Institute of Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Beatriz Manso
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Martin Wagner
- Institute of Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Austria
| | | | - Marta Hernández
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain; Laboratory of Molecular Biology and Microbiology, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | | |
Collapse
|
18
|
Brown SRB, Kozak SM, D’Amico DJ. Applications of Edible Coatings Formulated with Antimicrobials Inhibit Listeria monocytogenes Growth on Queso Fresco. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|