1
|
Sartori L, Sellera FP, Silva-Pereira TT, Fuga B, Fuentes-Castillo D, Dropa M, Moura Q, Fernandes MR, Rodrigues L, Esposito F, Sano E, Aleman MAR, Gregory L, Lincopan N. Gut colonization by extended-spectrum β-lactamase-producing Escherichia coli in dairy herd in Brazil: successful dissemination of a One Health clone. Vet Res Commun 2024; 48:3355-3363. [PMID: 38972932 DOI: 10.1007/s11259-024-10456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
The overuse of antimicrobials in livestock has contributed to the emergence and selection of clinically relevant multidrug-resistant bacteria. In Brazil, there is no conclusive information on the occurrence of Escherichia coli producing extended-spectrum β-lactamase (ESβL) in cattle breeding, which is an important sector of agribusiness in this country. Herein, we investigated the presence of ESβL-positive E. coli strains in dairy cattle from a commercial farm with routine practice of therapeutic cephalosporins. Ninety-five rectal swab samples were collected from healthy dairy calves and cows under treatment with ceftiofur. Samples were screened for the presence of ESβL producers, and positive isolates were identified by MALDI-TOF, with subsequent screening for genes encoding ESβL variants by PCR and sequencing. The presence of ESβL (CTX-M-15)-producing E. coli was confirmed in calves, and lactating and dry cows. Most ESβL strains with genetic homologies ≥ 90% were grouped into two major PFGE clusters, confirming the suscessful expansion of clonally related lineages in animals from different lactating cycles, on the same property. Four representatives CTX-M-15-positive E. coli strains had their genomes sequenced, belonging to the clonal complex (CC) 23 and sequence type (ST) 90. A phylogeographical landscape of ST90 was performed revealing a global One Health linkage. Our results highlight the intestinal microbiota of dairy cattle as a hotspot for the spread of critical priority ESβL-producing E. coli and demonstrate that ST90 is an international clone genomically adapted to human and animal hosts, which deserve additional investigation to determine its zoonotic potential and impact in food chain.
Collapse
Affiliation(s)
- Luciana Sartori
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Taiana T Silva-Pereira
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Milena Dropa
- MicroRes Laboratory, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Quézia Moura
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Federal Institute of Espírito Santo, Vila Velha, Brazil
| | - Miriam R Fernandes
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Larissa Rodrigues
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Mario A R Aleman
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Lilian Gregory
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil.
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Virulence determinants and antimicrobial resistance of E. coli isolated from bovine clinical mastitis in some selected dairy farms of Bangladesh. Saudi J Biol Sci 2021; 28:6317-6323. [PMID: 34759751 PMCID: PMC8568714 DOI: 10.1016/j.sjbs.2021.06.099] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/06/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
E. coli is one of the major significant pathogens causing mastitis, the most complex and costly diseases in the dairy industry worldwide. Present study was undertaken to isolate, detect the virulence factors, phylogroup, antimicrobial susceptibility and antimicrobial resistance genes in E. coli from cows with clinical mastitis. A total of 68 milk samples comprising 53 from clinical mastitis and 15 from apparently healthy cattle were collected from four different established dairy farms in Bangladesh. E. coli was isolated from the milk samples and identified by PCR targeting malB gene and sequencing of 16S rRNA gene. E. coli isolates were screened by PCR for the detection of major virulence genes (stx, eae and cdt) of diarrheagenic E. coli followed by phylogenetic grouping. Antimicrobial susceptibility of the E. coli isolates was determined by disk diffusion test and E. coli showing resistance was further screened for the presence of antimicrobial resistance genes. E. coli was isolated from 35.8% of the mastitis milk samples but none from the apparently healthy cattle milk. All the E. coli isolates were negative for stx, eae and cdt genes and belonged to the phylogenetic groups A and B1 which comprising of commensal E. coli. Antibiotic sensitivity testing revealed 84.2% (16/19) of the isolates as multidrug resistant. Highest resistance was observed against amoxicillin (94.5%) followed by ampicillin (89.5%) and tetracycline (89.5%). E. coli were found resistant against all the classes of antimicrobials used at the farm level. Tetracycline resistance gene (tetA) was detected in 100% of the tetracycline resistant E. coli and blaTEM-1 was present in 38.9% of the E. coli isolates. Findings of this study indicate a potential threat of developing antimicrobial resistance in commensal E. coli and their association with clinical mastitis. Occurrence of multidrug resistant E. coli might be responsible for the failure of antibiotic therapies in clinical mastitis as well as pose potential threat of transmitting and development of antibiotic resistance in human.
Collapse
|
3
|
Navarro A, van der Ploeg C, Rogé A, Licona-Moreno D, Delgado G, Morales-Espinosa R, Cravioto A, Eslava C. Diversity of Potentially Pathogenic Escherichia coli O104 and O9 Serogroups Isolated before 2011 from Fecal Samples from Children from Different Geographic Regions. Microorganisms 2021; 9:2227. [PMID: 34835353 PMCID: PMC8619403 DOI: 10.3390/microorganisms9112227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
In 2011, an outbreak of hemorrhagic colitis and hemolytic uremic syndrome (HUS) was reported in Europe that was related to a hybrid STEAEC of Escherichia coli (E. coli) O104:H4 strain. The current study aimed to analyze strains of E. coli O104 and O9 isolated before 2011. The study included 47 strains isolated from children with and without diarrhea between 1986 and 2009 from different geographic regions, as well as seven reference strains. Serotyping was carried out on 188 anti-O and 53 anti-H sera. PCR was used to identify DEC genes and phylogenetic groups. Resistance profiles to antimicrobials were determined by diffusion in agar, while PFGE was used to analyze genomic similarity. Five serotypes of E. coli O104 and nine of O9 were identified, as well as an antigenic cross-reaction with one anti-E. coli O9 serum. E. coli O104 and O9 presented diarrheagenic E. coli (DEC) genes in different combinations and were located in commensal phylogenetic groups with different antimicrobial resistance. PFGE showed that O104:H4 and O9:(H4, NM) strains from SSI, Bangladesh and México belong to a diverse group located in the same subgroup. E. coli O104 and O9 were classified as commensal strains containing DEC genes. The groups were genetically diverse with pathogenic potential making continued epidemiologic surveillance important.
Collapse
Affiliation(s)
- Armando Navarro
- Public Health Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, México City 04510, Mexico;
| | - Claudia van der Ploeg
- Servicio de Antígenos y Antisueros, Instituto Nacional de Producción de Biológicos (INPB)—ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (C.v.d.P.); (A.R.)
| | - Ariel Rogé
- Servicio de Antígenos y Antisueros, Instituto Nacional de Producción de Biológicos (INPB)—ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina; (C.v.d.P.); (A.R.)
| | - Delia Licona-Moreno
- Public Health Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, México City 04510, Mexico;
| | - Gabriela Delgado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City 04510, Mexico; (G.D.); (R.M.-E.)
| | - Rosario Morales-Espinosa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City 04510, Mexico; (G.D.); (R.M.-E.)
| | - Alejandro Cravioto
- Faculty of Medicine, Universidad Nacional Autónoma de México, México City 04510, Mexico;
| | - Carlos Eslava
- Peripheral Unit of Basic and Clinical Research in Infectious Diseases, Public Health Department, Research Division, Faculty of Medicine Universidad Nacional Autónoma de México, Bacterial Pathogenicity Laboratory, Hemato-Oncology and Research Unit, Children’s Hospital of Mexico Federico Gómez, Dr. Márquez 162, Col. De los Doctores, México City 06720, Mexico;
| |
Collapse
|
4
|
Abboud Z, Galuppo L, Tolone M, Vitale M, Puleio R, Osman M, Loria GR, Hamze M. Molecular Characterization of Antimicrobial Resistance and Virulence Genes of Bacterial Pathogens from Bovine and Caprine Mastitis in Northern Lebanon. Microorganisms 2021; 9:1148. [PMID: 34071800 PMCID: PMC8228836 DOI: 10.3390/microorganisms9061148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Mastitis is an infectious disease encountered in dairy animals worldwide that is currently a growing concern in Lebanon. This study aimed at investigating the etiology of the main mastitis-causing pathogens in Northern Lebanon, determining their antimicrobial susceptibility profiles, and identifying their antimicrobial resistance (AMR) genes. A total of 101 quarter milk samples were collected from 77 cows and 11 goats presenting symptoms of mastitis on 45 dairy farms. Bacterial identification was carried out through matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Antimicrobial susceptibility was tested by disc diffusion and broth microdilution methods. Molecular characterization included polymerase chain reaction (PCR) screening for genes encoding extended-spectrum beta-lactamases (ESBLs) and plasmid-mediated AmpC among Enterobacterales isolates, and virulence factors among Staphylococcus isolates. Escherichia coli isolates were subjected to phylogenetic typing by a quadruplex PCR method. The most frequently identified species were Streptococcus uberis (19.2%), Streptococcus agalactiae (15.1%), E. coli (12.3%), and Staphylococcus aureus (10.96%). Gram-positive bacteria were resistant to macrolides and tetracycline, whereas gram-negative bacteria displayed resistance to ampicillin and tetracycline. Two ESBL genes, blaTEM (83.3%) and blaOXA (16.7%), and one AmpC beta-lactamase gene, blaCMY-II (16.7%), were detected among six E. coli isolates, which mainly belonged to phylogenetic group B1. Among Staphylococcus spp., the mecA gene was present in three isolates. Furthermore, four isolates contained at least one toxin gene, and all S. aureus isolates carried the ica operon. These findings revealed the alarming risk of AMR in the Lebanese dairy chain and the importance of monitoring antimicrobial usage.
Collapse
Affiliation(s)
- Zahie Abboud
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli P.O. Box 146404, Lebanon;
| | - Lucia Galuppo
- Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90129 Palermo, Italy; (L.G.); (M.V.); (R.P.)
| | - Marco Tolone
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Maria Vitale
- Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90129 Palermo, Italy; (L.G.); (M.V.); (R.P.)
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90129 Palermo, Italy; (L.G.); (M.V.); (R.P.)
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli P.O. Box 146404, Lebanon;
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Guido Ruggero Loria
- Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90129 Palermo, Italy; (L.G.); (M.V.); (R.P.)
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli P.O. Box 146404, Lebanon;
| |
Collapse
|
5
|
Giacometti F, Pezzi A, Galletti G, Tamba M, Merialdi G, Piva S, Serraino A, Rubini S. Antimicrobial resistance patterns in Salmonella enterica subsp. enterica and Escherichia coli isolated from bivalve molluscs and marine environment. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107590] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Antimicrobial Susceptibility of Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli Isolated from Mastitic Dairy Cattle in Ukraine. Antibiotics (Basel) 2020; 9:antibiotics9080469. [PMID: 32752205 PMCID: PMC7459615 DOI: 10.3390/antibiotics9080469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022] Open
Abstract
Bovine mastitis is the predominant cause for antimicrobial use on dairy farms and is a major source of economic losses in the dairy industry. In this study, the antimicrobial susceptibility profiles of common mastitis-causing pathogens, Staphylococcus aureus (n = 62), Streptococcus agalactiae (n = 46), and Escherichia coli (n = 129), were determined for dairy cattle with mastitis across 142 Ukrainian farms. The results showed that there were more gentamicin resistant S. aureus isolates (16.95%) identified in this study than previously reported for Ukrainian dairy cattle. Moreover, low levels of amoxicillin susceptibly (13.51%) were observed for St. agalactiae, which contrasted a previous study showing susceptibility levels of >50%. St. agalactiae resistance to tetracycline was observed in 80% of the isolates. Cephalosporin use was most ineffective against E. coli, with 43.27–56% of the isolates exhibiting this resistant trait. Overall, this study performed a preliminary analysis of antimicrobial resistance on mastitis isolates from Ukrainian farms. However, given the limited numbers of the isolates tested in this study and that the publications on antimicrobial resistance in animal husbandry of Ukraine are very few, more extensive investigations are needed to comprehensively examine susceptibility patterns of mastitis-causing pathogens in dairy cattle in Ukraine.
Collapse
|
7
|
Lan T, Liu H, Meng L, Xing M, Dong L, Gu M, Wang J, Zheng N. Antimicrobial susceptibility, phylotypes, and virulence genes of Escherichia coli from clinical bovine mastitis in five provinces of China. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1736009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Tu Lan
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Huimin Liu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Lu Meng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Mengru Xing
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Lei Dong
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Mei Gu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Guerra ST, Orsi H, Joaquim SF, Guimarães FF, Lopes BC, Dalanezi FM, Leite DS, Langoni H, Pantoja JCF, Rall VLM, Hernandes RT, Lucheis SB, Ribeiro MG. Short communication: Investigation of extra-intestinal pathogenic Escherichia coli virulence genes, bacterial motility, and multidrug resistance pattern of strains isolated from dairy cows with different severity scores of clinical mastitis. J Dairy Sci 2020; 103:3606-3614. [PMID: 32037173 DOI: 10.3168/jds.2019-17477] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/03/2019] [Indexed: 02/01/2023]
Abstract
Escherichia coli is a major pathogen involved in the etiology of environmentally derived bovine mastitis and is characterized by a variety of virulence factors (VF). Mammary infections with E. coli have shown a wide range of clinical signs, causing changes in milk (score 1, or mild), abnormal appearance of milk and udder inflammation (score 2, or moderate), and abnormalities in milk, udder inflammation, and systemic signs of illness (score 3, or severe). Nevertheless, to date, the profile of the genes related to the virulence of the pathogen in mammary infections and the severity scores of cases have not been thoroughly elucidated. Therefore, a panel of 18 virulence-encoding genes associated with extra-enteric pathogenicity of E. coli (ExPEC) were investigated in addition to in vitro swimming and swarming motility profiles and antimicrobial susceptibility/resistance patterns among 114 E. coli strains isolated from cows with clinical mastitis and different severity scores. Of 114 clinical cases, 39.5, 54.4, and 6.1% were mild, moderate, and severe, respectively. The main genes related to VF harbored by isolates were adhesins (fimH 100%; ecpA 64.0%, fimA 31.6%), serum resistance (traT 81.6%; ompT 35.1%), siderophores (irp2 9.6%), and hemolysin (hlyA 7%). Among the isolates studied, 99.1% showed in vitro resistance to bacitracin and cloxacillin, and 98.2% to lincosamin. Of the total isolates, 98.2% were considered multidrug resistant based on the multiple antimicrobial resistance index. No significant difference was observed between mean swimming (13.8 mm) and swarming (13.5 mm) motility, as well as severity scores of clinical mastitis and the ExPEC genes studied. The isolation of strains resistant to various antimicrobials, even though tested only in vitro, highlights the importance of rational use of antimicrobials for mastitis treatment. The high prevalence of the genes related to serum resistance (traT and ompT) and adhesion (ecpA) of the pathogen, in addition to main associations between the genes fimH, ecpA, and traT among cows with severity scores of 1 (15%) and 2 (22.6%), indicates that the genes traT, ecpA, and ompT could be further studied as biomarkers of ExPEC for clinical intramammary infections. In addition, the ExPEC genes ompT (protectin), ibe10 (invasin), and ecpA (adhesin) were investigated for the first time among cows with mastitis, where scores of clinical severity were assessed. Results of this study contribute to the characterization of virulence mechanisms and antimicrobial resistance profile of ExPEC variants that affect dairy cows with different scores of clinical mastitis.
Collapse
Affiliation(s)
- Simony T Guerra
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, Sao Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Henrique Orsi
- Department of Microbiology and Immunology, Sao Paulo State University, Botucatu, SP 18618 689, Brazil
| | - Sâmea F Joaquim
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, Sao Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Felipe F Guimarães
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, Sao Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Bruna C Lopes
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, Sao Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Felipe M Dalanezi
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, Sao Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Domingos S Leite
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, SP 13083 970, Brazil
| | - Helio Langoni
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, Sao Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Jose C F Pantoja
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, Sao Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Vera L M Rall
- Department of Microbiology and Immunology, Sao Paulo State University, Botucatu, SP 18618 689, Brazil
| | - Rodrigo T Hernandes
- Department of Microbiology and Immunology, Sao Paulo State University, Botucatu, SP 18618 689, Brazil
| | - Simone B Lucheis
- Paulista Agency of Agribusiness Technology, Bauru, SP 17030 000, Brazil
| | - Márcio G Ribeiro
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, Sao Paulo State University, Botucatu, SP 18618 681, Brazil.
| |
Collapse
|
9
|
Leso L, Barbari M, Lopes MA, Damasceno FA, Galama P, Taraba JL, Kuipers A. Invited review: Compost-bedded pack barns for dairy cows. J Dairy Sci 2019; 103:1072-1099. [PMID: 31837797 DOI: 10.3168/jds.2019-16864] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/21/2019] [Indexed: 11/19/2022]
Abstract
Compost-bedded pack barns (CBP) are receiving increasing attention as a housing system for dairy cows that has potential to improve animal welfare. This article reviews current scientific knowledge about CBP with the aim of providing a comprehensive tool for producers and researchers using this housing system. In CBP, cows are provided with an open bedded pack area rather than the individual stalls and concrete alleys found in freestall systems. The bedded pack, a mixture of organic bedding and cattle excreta, is cultivated frequently (1-3 times per day) to incorporate fresh manure and air into the pack, thus promoting an aerobic composting process. To function well, CBP generally require a large area per cow. Optimal animal densities over the bedded area range from 7.4 to more than 15 m2/cow depending on several factors, including climate, bedding, pack management, and cow characteristics. Studies have indicated that CBP, compared with conventional systems such as freestall barns, have the potential to improve the welfare of dairy cows. In particular, the main reported benefits include improved comfort during resting, better foot and leg health, and more natural animal behavior. Research has also indicated that adequate udder health can be achieved in CBP. However, because the bedded pack has been shown to contain high bacterial concentrations, proper management is essential to maintain adequate cow cleanliness and reduce the risk of mastitis. Controlling pack moisture is consistently indicated as the most important issue with CBP. Especially under cold and humid weather conditions, large amounts of bedding may be necessary to keep the pack adequately dry and comfortable for the cows. Nevertheless, the improvements in cow health may offset the higher costs of bedding.
Collapse
Affiliation(s)
- L Leso
- Department of Agriculture, Food, Environment and Forestry, University of Florence, IT50145 Firenze, Italy
| | - M Barbari
- Department of Agriculture, Food, Environment and Forestry, University of Florence, IT50145 Firenze, Italy.
| | - M A Lopes
- Department of Veterinary Medicine, Federal University of Lavras, Campus UFLA-DMV, 37200-000, Lavras, MG, Brazil
| | - F A Damasceno
- Department of Engineering, Federal University of Lavras, Campus UFLA-DMV, 37200-000, Lavras, MG, Brazil
| | - P Galama
- Livestock Research, Wageningen University and Research Centre, 8219 PH Lelystad, the Netherlands
| | - J L Taraba
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington 40546
| | - A Kuipers
- Livestock Research, Wageningen University and Research Centre, 8219 PH Lelystad, the Netherlands
| |
Collapse
|