1
|
Arnal M, Robert-Granié C, Ducrocq V, Larroque H. Validation of single-step genomic BLUP random regression test-day models and SNP effects analysis on milk yield in French Saanen goats. J Dairy Sci 2023:S0022-0302(23)00210-2. [PMID: 37164843 DOI: 10.3168/jds.2022-22550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/04/2023] [Indexed: 05/12/2023]
Abstract
The shape of the lactation curve is linked to an animal's health, feed requirements, and milk production throughout the year. Random regression models (RRM) are widely used for genetic evaluation of total milk production throughout the lactation and for milk yield persistency. Genomic information used with the single-step genomic BLUP method (ssGBLUP) substantially improves the accuracy of genomic prediction of breeding values in the main dairy cattle breeds. The aim of this study was to implement an RRM using ssGBLUP for milk yield in Saanen dairy goats in France. The data set consisted of 7,904,246 test-day records from 1,308,307 lactations of Saanen goats collected in France between 2000 and 2017. The performance of this type of evaluation was assessed by applying a validation step with data targeting candidate bucks. The model was compared with a nongenomic evaluation and a traditional evaluation that use cumulated performance throughout the lactation model (LM). The incorporation of genomic information increased correlations between daughter yield deviations (DYD) and estimated breeding values (EBV) obtained with a partial data set for candidate bucks. The LM and the RRM had similar correlation between DYD and EBV. However, the RRM reduced overestimation of EBV and improved the slope of the regression of DYD on EBV obtained at birth. This study shows that a genomic evaluation from a ssGBLUP RRM is possible in dairy goats in France and that RRM performance is comparable to a LM but with the additional benefit of a genomic evaluation of persistency. Variance of adjacent SNPs was studied with LM and RRM following the ssGBLUP. Both approaches converged on approximately the same regions explaining more than 1% of total variance. Regions associated with persistency were also found.
Collapse
Affiliation(s)
- M Arnal
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326 Castanet-Tolosan, France; Institut de l'Elevage, Chemin de Borde Rouge, 31326 Castanet-Tolosan Cedex, France.
| | - C Robert-Granié
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326 Castanet-Tolosan, France
| | - V Ducrocq
- Université Paris-Saclay, INRAE, AgroParisTech, UMR GABI, 78350 Jouy-en-Josas, France
| | - H Larroque
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326 Castanet-Tolosan, France
| |
Collapse
|
2
|
Nilforooshan MA. A Note on the Conditioning of the H-1 Matrix Used in Single-Step GBLUP. Animals (Basel) 2022; 12:3208. [PMID: 36428435 PMCID: PMC9686757 DOI: 10.3390/ani12223208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The single-step genomic BLUP (ssGBLUP) is used worldwide for the simultaneous genetic evaluation of genotyped and non-genotyped animals. It is easily extendible to all BLUP models by replacing the pedigree-based additive genetic relationship matrix (A) with an augmented pedigree-genomic relationship matrix (H). Theoretically, H does not introduce any artificially inflated variance. However, inflated genetic variances have been observed due to the incomparability between the genomic relationship matrix (G) and A used in H. Usually, G is blended and tuned with A22 (the block of A for genotyped animals) to improve its numerical condition and compatibility. If deflation/inflation is still needed, a common approach is weighting G-1-A22-1 in the form of τG-1-ωA22-1, added to A-1 to form H-1. In some situations, this can violate the conditional properties upon which H is built. Different ways of weighting the H-1 components (A-1, G-1, A22-1, and H-1 itself) were studied to avoid/minimise the violations of the conditional properties of H. Data were simulated on ten populations and twenty generations. Responses to weighting different components of H-1 were measured in terms of the regression of phenotypes on the estimated breeding values (the lower the slope, the higher the inflation) and the correlation between phenotypes and the estimated breeding values (predictive ability). Increasing the weight on H-1 increased the inflation. The responses to weighting G-1 were similar to those for H-1. Increasing the weight on A-1 (together with A22-1) was not influential and slightly increased the inflation. Predictive ability is a direct function of the slope of the regression line and followed similar trends. Responses to weighting G-1-A22-1 depend on the inflation/deflation of evaluations from A-1 to H-1 and the compatibility of the two matrices with the heritability used in the model. One possibility is a combination of weighting G-1-A22-1 and weighting H-1. Given recent advances in ssGBLUP, conditioning H-1 might become an interim solution from the past and then not be needed in the future.
Collapse
|
3
|
Genomic Selection in Chinese Holsteins Using Regularized Regression Models for Feature Selection of Whole Genome Sequencing Data. Animals (Basel) 2022; 12:ani12182419. [PMID: 36139283 PMCID: PMC9495168 DOI: 10.3390/ani12182419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Genomic selection (GS) is increasingly widely used in animal breeding, owing to its high efficiency in the genetic improvement of economic traits. In China, GS has been implemented for genetic evaluation of young bulls in dairy cattle breeding programs since 2012. GS is commonly based on single nucleotide polymorphism (SNP) chips. The cost of whole genome sequencing (WGS) has decreased tremendously in recent years, allowing increased studies of WGS-based GS. In this study, based on the imputed WGS data of approximately 8000 Chinese Holsteins, we investigated the performance of GS of milk production traits using the feature selection method of regularized regression. The results showed that WGS-based GS using regularized regression models and the commonly used linear mixed models achieved comparable prediction accuracies. For milk and protein yields, GS using a combination of SNPs selected with a regularized regression model and 50K SNP chip data achieved the best prediction performance, and GS using SNPs selected with a linear mixed model combined with 50K SNP chip data performed best for fat yield. The proposed method of GS based on WGS data, i.e., feature selection using regularization regression models, provides a valuable novel strategy for genomic selection. Abstract Genomic selection (GS) is an efficient method to improve genetically economic traits. Feature selection is an important method for GS based on whole-genome sequencing (WGS) data. We investigated the prediction performance of GS of milk production traits using imputed WGS data on 7957 Chinese Holsteins. We used two regularized regression models, least absolute shrinkage and selection operator (LASSO) and elastic net (EN) for feature selection. For comparison, we performed genome-wide association studies based on a linear mixed model (LMM), and the N single nucleotide polymorphisms (SNPs) with the lowest p-values were selected (LMMLASSO and LMMEN), where N was the number of non-zero effect SNPs selected by LASSO or EN. GS was conducted using a genomic best linear unbiased prediction (GBLUP) model and several sets of SNPs: (1) selected WGS SNPs; (2) 50K SNP chip data; (3) WGS data; and (4) a combined set of selected WGS SNPs and 50K SNP chip data. The results showed that the prediction accuracies of GS with features selected using LASSO or EN were comparable to those using features selected with LMMLASSO or LMMEN. For milk and protein yields, GS using a combination of SNPs selected with LASSO and 50K SNP chip data achieved the best prediction performance, and GS using SNPs selected with LMMLASSO combined with 50K SNP chip data performed best for fat yield. The proposed method, feature selection using regularization regression models, provides a valuable novel strategy for WGS-based GS.
Collapse
|
4
|
Gutiérrez-Reinoso MA, Aponte PM, García-Herreros M. A review of inbreeding depression in dairy cattle: current status, emerging control strategies, and future prospects. J DAIRY RES 2022; 89:1-10. [PMID: 35225176 DOI: 10.1017/s0022029922000188] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dairy cattle breeding has historically focused on relatively small numbers of elite bulls as sires of sons. In recent years, even if generation intervals were reduced and more diverse sires of sons could have been selected, genomic selection has not fundamentally changed the fact that a large number of individuals are being analyzed. However, a relatively small number of elite bulls are still siring those animals. Therefore inbreeding-derived negative consequences in the gene pool have brought concern. The detrimental effects of non-additive genetic changes such as inbreeding depression and dominance have been widely disseminated while seriously affecting bioeconomically important parameters because of an antagonistic relationship between dairy production and reproductive traits. Therefore, the estimation of benefits and limitations of inbreeding and variance of the selection response deserves to be evaluated and discussed to preserve genetic variability, a significant concern in the selection of individuals for reproduction and production. Short-term strategies for genetic merit improvement through modern breeding programs have severely lowered high-producing dairy cattle fertility potential. Since the current selection programs potentially increase long-term costs, genetic diversity has decreased globally as a consequence. Therefore, a greater understanding of the potential that selection programs have for supporting long-term genetic sustainability and genetic diversity among dairy cattle populations should be prioritized in managing farm profitability. The present review provides a broad approach to current inbreeding-derived problems, identifying critical points to be solved and possible alternative strategies to control selection against homozygous haplotypes while maintaining sustained selection pressure. Moreover, this manuscript explores future perspectives, emphasizing theoretical applications and critical points, and strategies to avoid the adverse effects of inbreeding in dairy cattle. Finally, this review provides an overview of challenges that will soon require multidisciplinary approaches to managing dairy cattle populations, intending to combine increases in productive trait phenotypes with improvements in reproductive, health, welfare, linear conformation, and adaptability traits into the foreseeable future.
Collapse
Affiliation(s)
- Miguel A Gutiérrez-Reinoso
- Universidad Técnica de Cotopaxi, Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria (UTC), Latacunga, Ecuador
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán (UdeC), Chile
| | - Pedro M Aponte
- Universidad San Francisco de Quito (USFQ), Colegio de Ciencias Biológicas y Ambientales (COCIBA), Campus Cumbayá, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, iBioMed, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito, Ecuador
| | | |
Collapse
|
5
|
Buaban S, Lengnudum K, Boonkum W, Phakdeedindan P. Genome-wide association study on milk production and somatic cell score for Thai dairy cattle using weighted single-step approach with random regression test-day model. J Dairy Sci 2021; 105:468-494. [PMID: 34756438 DOI: 10.3168/jds.2020-19826] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 08/24/2021] [Indexed: 12/26/2022]
Abstract
Genome-wide association studies are a powerful tool to identify genomic regions and variants associated with phenotypes. However, only limited mutual confirmation from different studies is available. The objectives of this study were to identify genomic regions as well as genes and pathways associated with the first-lactation milk, fat, protein, and total solid yields; fat, protein, and total solid percentage; and somatic cell score (SCS) in a Thai dairy cattle population. Effects of SNPs were estimated by a weighted single-step GWAS, which back-solved the genomic breeding values predicted using single-step genomic BLUP (ssGBLUP) fitting a single-trait random regression test-day model. Genomic regions that explained at least 0.5% of the total genetic variance were selected for further analyses of candidate genes. Despite the small number of genotyped animals, genomic predictions led to an improvement in the accuracy over the traditional BLUP. Genomic predictions using weighted ssGBLUP were slightly better than the ssGBLUP. The genomic regions associated with milk production traits contained 210 candidate genes on 19 chromosomes [Bos taurus autosome (BTA) 1 to 7, 9, 11 to 16, 20 to 21, 26 to 27 and 29], whereas 21 candidate genes on 3 chromosomes (BTA 11, 16, and 21) were associated with SCS. Many genomic regions explained a small fraction of the genetic variance, indicating polygenic inheritance of the studied traits. Several candidate genes coincided with previous reports for milk production traits in Holstein cattle, especially a large region of genes on BTA14. We identified 141 and 5 novel genes related to milk production and SCS, respectively. These novel genes were also found to be functionally related to heat tolerance (e.g., SLC45A2, IRAG1, and LOC101902172), longevity (e.g., SYT10 and LOC101903327), and fertility (e.g., PAG1). These findings may be attributed to indirect selection in our population. Identified biological networks including intracellular cell transportation and protein catabolism implicate milk production, whereas the immunological pathways such as lymphocyte activation are closely related to SCS. Further studies are required to validate our findings before exploiting them in genomic selection.
Collapse
Affiliation(s)
- S Buaban
- Bureau of Animal Husbandry and Genetic Improvement, Department of Livestock Development, Pathum Thani 12000, Thailand
| | - K Lengnudum
- Bureau of Biotechnology in Livestock Production, Department of Livestock Development, Pathum Thani 12000, Thailand
| | - W Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - P Phakdeedindan
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Buaban S, Prempree S, Sumreddee P, Duangjinda M, Masuda Y. Genomic prediction of milk-production traits and somatic cell score using single-step genomic best linear unbiased predictor with random regression test-day model in Thai dairy cattle. J Dairy Sci 2021; 104:12713-12723. [PMID: 34538484 DOI: 10.3168/jds.2021-20263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Cow genotypes are expected to improve the accuracy of genomic estimated breeding values (GEBV) for young bulls in relatively small populations such as Thai Holstein-Friesian crossbred dairy cattle in Thailand. The objective of this study was to investigate the effect of cow genotypes on the predictive ability and individual accuracies of GEBV for young dairy bulls in Thailand. Test-day data included milk yield (n = 170,666), milk component traits (fat yield, protein yield, total solids yield, fat percentage, protein percentage, and total solids percentage; n = 160,526), and somatic cell score (n = 82,378) from 23,201, 82,378, and 13,737 (for milk yield, milk component traits, and SCS, respectively) cows calving between 1993 and 2017, respectively. Pedigree information included 51,128; 48,834; and 32,743 animals for milk yield, milk component traits, and somatic cell score, respectively. Additionally, 876, 868, and 632 pedigreed animals (for milk yield, milk component traits, and SCS, respectively) were genotyped (152 bulls and 724 cows), respectively, using Illumina Bovine SNP50 BeadChip. We cut off the data in the last 6 yr, and the validation animals were defined as genotyped bulls with no daughters in the truncated set. We calculated GEBV using a single-step random regression test-day model (SS-RR-TDM), in comparison with estimated breed value (EBV) based on the pedigree-based model used as the official method in Thailand (RR-TDM). Individual accuracies of GEBV were obtained by inverting the coefficient matrix of the mixed model equations, whereas validation accuracies were measured by the Pearson correlation between deregressed EBV from the full data set and (G)EBV predicted with the reduced data set. When only bull genotypes were used, on average, SS-RR-TDM increased individual accuracies by 0.22 and validation accuracies by 0.07, compared with RR-TDM. With cow genotypes, the additional increase was 0.02 for individual accuracies and 0.06 for validation accuracies. The inflation of GEBV tended to be reduced using cow genotypes. Genomic evaluation by SS-RR-TDM is feasible to select young bulls for the longitudinal traits in Thai dairy cattle, and the accuracy of selection is expected to be increased with more genotypes. Genomic selection using the SS-RR-TDM should be implemented in the routine genetic evaluation of the Thai dairy cattle population. The genetic evaluation should consider including genotypes of both sires and cows.
Collapse
Affiliation(s)
- S Buaban
- The Bureau of Biotechnology in Livestock Production, Department of Livestock Development, Pathum Thani 12000, Thailand
| | - S Prempree
- The Bureau of Biotechnology in Livestock Production, Department of Livestock Development, Pathum Thani 12000, Thailand
| | - P Sumreddee
- The Bureau of Biotechnology in Livestock Production, Department of Livestock Development, Pathum Thani 12000, Thailand
| | - M Duangjinda
- Department of Animal Science, Khon Kaen University, Meaung, Khon Kaen 40002, Thailand.
| | - Y Masuda
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| |
Collapse
|
7
|
Oliveira HRD, McEwan JC, Jakobsen JH, Blichfeldt T, Meuwissen THE, Pickering NK, Clarke SM, Brito LF. Across-country genomic predictions in Norwegian and New Zealand Composite sheep populations with similar development history. J Anim Breed Genet 2021; 139:1-12. [PMID: 34418183 DOI: 10.1111/jbg.12642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/29/2021] [Accepted: 08/06/2021] [Indexed: 01/11/2023]
Abstract
The goal of this study was to assess the feasibility of across-country genomic predictions in Norwegian White Sheep (NWS) and New Zealand Composite (NZC) sheep populations with similar development history. Different training populations were evaluated (i.e., including only NWS or NZC, or combining both populations). Predictions were performed using the actual phenotypes (normalized) and the single-step GBLUP via Bayesian inference. Genotyped NWS animals born in 2016 (N = 267) were used to assess the accuracy and bias of genomic estimated breeding values (GEBVs) predicted for birth weight (BW), weaning weight (WW), carcass weight (CW), EUROP carcass classification (EUC), and EUROP fat grading (EUF). The accuracy and bias of GEBVs differed across traits and training population used. For instance, the GEBV accuracies ranged from 0.13 (BW) to 0.44 (EUC) for GEBVs predicted including only NWS, from 0.06 (BW) to 0.15 (CW) when including only NZC, and from 0.10 (BW) to 0.41 (EUC) when including both NWS and NZC animals in the training population. The regression coefficients used to assess the spread of GEBVs (bias) ranged from 0.26 (BW) to 0.64 (EUF) for only NWS, 0.10 (EUC) to 0.52 (CW) for only NZC, and from 0.42 (WW) to 2.23 (EUC) for both NWS and NZC in the training population. Our findings suggest that across-country genomic predictions based on ssGBLUP might be possible for NWS and NZC, especially for novel traits.
Collapse
Affiliation(s)
- Hinayah Rojas de Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.,Department of Animal Biosciences, Centre for Genetic Improvement of Livestock (CGIL), University of Guelph, Guelph, ON, Canada
| | - John C McEwan
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Jette H Jakobsen
- The Norwegian Association of Sheep and Goat Breeders, Ås, Norway
| | - Thor Blichfeldt
- The Norwegian Association of Sheep and Goat Breeders, Ås, Norway
| | - Theo H E Meuwissen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Shannon M Clarke
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.,Department of Animal Biosciences, Centre for Genetic Improvement of Livestock (CGIL), University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Lázaro SF, Tonhati H, Oliveira HR, Silva AA, Nascimento AV, Santos DJA, Stefani G, Brito LF. Genomic studies of milk-related traits in water buffalo (Bubalus bubalis) based on single-step genomic best linear unbiased prediction and random regression models. J Dairy Sci 2021; 104:5768-5793. [PMID: 33685677 DOI: 10.3168/jds.2020-19534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/02/2021] [Indexed: 01/14/2023]
Abstract
Genomic selection has been widely implemented in many livestock breeding programs, but it remains incipient in buffalo. Therefore, this study aimed to (1) estimate variance components incorporating genomic information in Murrah buffalo; (2) evaluate the performance of genomic prediction for milk-related traits using single- and multitrait random regression models (RRM) and the single-step genomic best linear unbiased prediction approach; and (3) estimate longitudinal SNP effects and candidate genes potentially associated with time-dependent variation in milk, fat, and protein yields, as well as somatic cell score (SCS) in multiple parities. The data used to estimate the genetic parameters consisted of a total of 323,140 test-day records. The average daily heritability estimates were moderate (0.35 ± 0.02 for milk yield, 0.22 ± 0.03 for fat yield, 0.42 ± 0.03 for protein yield, and 0.16 ± 0.03 for SCS). The highest heritability estimates, considering all traits studied, were observed between 20 and 280 d in milk (DIM). The genetic correlation estimates at different DIM among the evaluated traits ranged from -0.10 (156 to 185 DIM for SCS) to 0.61 (36 to 65 DIM for fat yield). In general, direct selection for any of the traits evaluated is expected to result in indirect genetic gains for milk yield, fat yield, and protein yield but also increase SCS at certain lactation stages, which is undesirable. The predicted RRM coefficients were used to derive the genomic estimated breeding values (GEBV) for each time point (from 5 to 305 DIM). In general, the tuning parameters evaluated when constructing the hybrid genomic relationship matrices had a small effect on the GEBV accuracy and a greater effect on the bias estimates. The SNP solutions were back-solved from the GEBV predicted from the Legendre random regression coefficients, which were then used to estimate the longitudinal SNP effects (from 5 to 305 DIM). The daily SNP effect for 3 different lactation stages were performed considering 3 different lactation stages for each trait and parity: from 5 to 70, from 71 to 150, and from 151 to 305 DIM. Important genomic regions related to the analyzed traits and parities that explain more than 0.50% of the total additive genetic variance were selected for further analyses of candidate genes. In general, similar potential candidate genes were found between traits, but our results suggest evidence of differential sets of candidate genes underlying the phenotypic expression of the traits across parities. These results contribute to a better understanding of the genetic architecture of milk production traits in dairy buffalo and reinforce the relevance of incorporating genomic information to genetically evaluate longitudinal traits in dairy buffalo. Furthermore, the candidate genes identified can be used as target genes in future functional genomics studies.
Collapse
Affiliation(s)
- Sirlene F Lázaro
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Humberto Tonhati
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Alessandra A Silva
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - André V Nascimento
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Daniel J A Santos
- Department of Animal and Avian Science, University of Maryland, College Park 20742
| | - Gabriela Stefani
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
9
|
Gutierrez-Reinoso MA, Aponte PM, Garcia-Herreros M. Genomic Analysis, Progress and Future Perspectives in Dairy Cattle Selection: A Review. Animals (Basel) 2021; 11:599. [PMID: 33668747 PMCID: PMC7996307 DOI: 10.3390/ani11030599] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Genomics comprises a set of current and valuable technologies implemented as selection tools in dairy cattle commercial breeding programs. The intensive progeny testing for production and reproductive traits based on genomic breeding values (GEBVs) has been crucial to increasing dairy cattle productivity. The knowledge of key genes and haplotypes, including their regulation mechanisms, as markers for productivity traits, may improve the strategies on the present and future for dairy cattle selection. Genome-wide association studies (GWAS) such as quantitative trait loci (QTL), single nucleotide polymorphisms (SNPs), or single-step genomic best linear unbiased prediction (ssGBLUP) methods have already been included in global dairy programs for the estimation of marker-assisted selection-derived effects. The increase in genetic progress based on genomic predicting accuracy has also contributed to the understanding of genetic effects in dairy cattle offspring. However, the crossing within inbred-lines critically increased homozygosis with accumulated negative effects of inbreeding like a decline in reproductive performance. Thus, inaccurate-biased estimations based on empirical-conventional models of dairy production systems face an increased risk of providing suboptimal results derived from errors in the selection of candidates of high genetic merit-based just on low-heritability phenotypic traits. This extends the generation intervals and increases costs due to the significant reduction of genetic gains. The remarkable progress of genomic prediction increases the accurate selection of superior candidates. The scope of the present review is to summarize and discuss the advances and challenges of genomic tools for dairy cattle selection for optimizing breeding programs and controlling negative inbreeding depression effects on productivity and consequently, achieving economic-effective advances in food production efficiency. Particular attention is given to the potential genomic selection-derived results to facilitate precision management on modern dairy farms, including an overview of novel genome editing methodologies as perspectives toward the future.
Collapse
Affiliation(s)
- Miguel A. Gutierrez-Reinoso
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi (UTC), Latacunga 05-0150, Ecuador
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile
| | - Pedro M. Aponte
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Quito 170157, Ecuador
- Campus Cumbayá, Instituto de Investigaciones en Biomedicina “One-health”, Universidad San Francisco de Quito (USFQ), Quito 170157, Ecuador
| | - Manuel Garcia-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2005-048 Santarém, Portugal
| |
Collapse
|
10
|
Konstantinov KV, Goddard ME. Application of multivariate single-step SNP best linear unbiased predictor model and revised SNP list for genomic evaluation of dairy cattle in Australia. J Dairy Sci 2020; 103:8305-8316. [PMID: 32622609 DOI: 10.3168/jds.2020-18242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/21/2020] [Indexed: 11/19/2022]
Abstract
The objectives of this study were (1) to evaluate the computational feasibility of the multitrait test-day single-step SNP-BLUP (ssSNP-BLUP) model using phenotypic records of genotyped and nongenotyped animals, and (2) to compare accuracies (coefficient of determination; R2) and bias of genomic estimated breeding values (GEBV) and de-regressed proofs as response variables in 3 Australian dairy cattle breeds (i.e., Holstein, Jersey, and Red breeds). Additive genomic random regression coefficients for milk, fat, protein yield and somatic cell score were predicted in the first, second, and third lactation. The predicted coefficients were used to derive 305-d GEBV and were compared with the traditional parent averages obtained from a BLUP model without genomic information. Cow fertility traits were evaluated from the 5-trait repeatability model (i.e., calving interval, days from calving to first service, pregnancy diagnosis, first service nonreturn rate, and lactation length). The de-regressed proofs were only for calving interval. Our results showed that ssSNP-BLUP using multitrait test-day model increased reliability and reduced bias of breeding values of young animals when compared with parent average from traditional BLUP in Australian Holsten, Jersey, and Red breeds. The use of a custom selection of approximately 46,000 SNP (custom XT SNP list) increased the reliability of GEBV compared with the results obtained using the commercial Illumina 50K chip (Illumina, San Diego, CA). The use of the second preconditioner substantially improved the convergence rate of the preconditioned conjugate gradient method, but further work is needed to improve the efficiency of the computation of the Kronecker matrix product by vector. Application of ssSNP-BLUP to multitrait random regression models is computationally feasible.
Collapse
Affiliation(s)
- K V Konstantinov
- DataGene Limited, Agriculture Victoria, AgriBio Centre for AgriBusiness, 5 Ring Rd., Bundoora, Victoria 3083, Australia.
| | - M E Goddard
- Melbourne School of Land and Environment, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
11
|
Moreira FF, Oliveira HR, Volenec JJ, Rainey KM, Brito LF. Integrating High-Throughput Phenotyping and Statistical Genomic Methods to Genetically Improve Longitudinal Traits in Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:681. [PMID: 32528513 PMCID: PMC7264266 DOI: 10.3389/fpls.2020.00681] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/30/2020] [Indexed: 05/28/2023]
Abstract
The rapid development of remote sensing in agronomic research allows the dynamic nature of longitudinal traits to be adequately described, which may enhance the genetic improvement of crop efficiency. For traits such as light interception, biomass accumulation, and responses to stressors, the data generated by the various high-throughput phenotyping (HTP) methods requires adequate statistical techniques to evaluate phenotypic records throughout time. As a consequence, information about plant functioning and activation of genes, as well as the interaction of gene networks at different stages of plant development and in response to environmental stimulus can be exploited. In this review, we outline the current analytical approaches in quantitative genetics that are applied to longitudinal traits in crops throughout development, describe the advantages and pitfalls of each approach, and indicate future research directions and opportunities.
Collapse
Affiliation(s)
- Fabiana F. Moreira
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Jeffrey J. Volenec
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Katy M. Rainey
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
12
|
Genetic Parameter Estimation and Genomic Prediction of Duroc Boars' Sperm Morphology Abnormalities. Animals (Basel) 2019; 9:ani9100710. [PMID: 31547493 PMCID: PMC6826658 DOI: 10.3390/ani9100710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/28/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
Artificial insemination (AI) has been used globally as a routine technology in the swine production industry. However, genetic parameters and genomic prediction accuracy of semen traits have seldom been reported. In this study, we estimated genetic parameters and conducted genomic prediction for five types of sperm morphology abnormalities in a large Duroc boar population. The estimated heritability of the studied traits ranged from 0.029 to 0.295. In the random cross-validation scenario, the predictive ability ranged from 0.212 to 0.417 for genomic best linear unbiased prediction (GBLUP) and from 0.249 to 0.565 for single-step GBLUP (ssGBLUP). In the forward prediction scenario, the predictive ability ranged from 0.069 to 0.389 for GBLUP and from 0.085 to 0.483 for ssGBLUP. In conclusion, the studied sperm morphology abnormalities showed moderate to low heritability. Both GBLUP and ssGBLUP showed comparative predictive abilities of breeding values, and ssGBLUP outperformed GBLUP under many circumstances in respect to predictive ability. To our knowledge, this is the first time that the genetic parameters and genomic predictive ability of these traits were reported in such a large Duroc boar population.
Collapse
|
13
|
Oliveira HR, Brito LF, Lourenco DAL, Silva FF, Jamrozik J, Schaeffer LR, Schenkel FS. Invited review: Advances and applications of random regression models: From quantitative genetics to genomics. J Dairy Sci 2019; 102:7664-7683. [PMID: 31255270 DOI: 10.3168/jds.2019-16265] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/02/2019] [Indexed: 12/23/2022]
Abstract
An important goal in animal breeding is to improve longitudinal traits; that is, traits recorded multiple times during an individual's lifetime or physiological cycle. Longitudinal traits were first genetically evaluated based on accumulated phenotypic expression, phenotypic expression at specific time points, or repeatability models. Until now, the genetic evaluation of longitudinal traits has mainly focused on using random regression models (RRM). Random regression models enable fitting random genetic and environmental effects over time, which results in higher accuracy of estimated breeding values compared with other statistical approaches. In addition, RRM provide insights about temporal variation of biological processes and the physiological implications underlying the studied traits. Despite the fact that genomic information has substantially contributed to increase the rates of genetic progress for a variety of economically important traits in several livestock species, less attention has been given to longitudinal traits in recent years. However, including genomic information to evaluate longitudinal traits using RRM is a feasible alternative to yield more accurate selection and culling decisions, because selection of young animals may be based on the complete pattern of the production curve with higher accuracy compared with the use of traditional parent average (i.e., without genomic information). Moreover, RRM can be used to estimate SNP effects over time in genome-wide association studies. Thus, by analyzing marker associations over time, regions with higher effects at specific points in time are more likely to be identified. Despite the advances in applications of RRM in genetic evaluations, more research is needed to successfully combine RRM and genomic information. Future research should provide a better understanding of the temporal variation of biological processes and their physiological implications underlying the longitudinal traits.
Collapse
Affiliation(s)
- H R Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G2W1, Canada; Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - L F Brito
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - D A L Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - F F Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - J Jamrozik
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G2W1, Canada; Canadian Dairy Network, Guelph, ON, N1K 1E5, Canada
| | - L R Schaeffer
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - F S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G2W1, Canada.
| |
Collapse
|
14
|
Oliveira H, Lourenco D, Masuda Y, Misztal I, Tsuruta S, Jamrozik J, Brito L, Silva F, Schenkel F. Application of single-step genomic evaluation using multiple-trait random regression test-day models in dairy cattle. J Dairy Sci 2019; 102:2365-2377. [DOI: 10.3168/jds.2018-15466] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/20/2018] [Indexed: 01/30/2023]
|