1
|
Zhang S, Nie Q, Sun Y, Zuo S, Chen C, Li S, Yang J, Hu J, Zhou X, Yu Y, Huang P, Lian L, Xie M, Nie S. Bacteroides uniformis degrades β-glucan to promote Lactobacillus johnsonii improving indole-3-lactic acid levels in alleviating colitis. MICROBIOME 2024; 12:177. [PMID: 39300532 DOI: 10.1186/s40168-024-01896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/30/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Intake of dietary fiber is associated with a reduced risk of inflammatory bowel disease. β-Glucan (BG), a bioactive dietary fiber, has potential health-promoting effects on intestinal functions; however, the underlying mechanism remains unclear. Here, we explore the role of BG in ameliorating colitis by modulating key bacteria and metabolites, confirmed by multiple validation experiments and loss-of-function studies, and reveal a novel bacterial cross-feeding interaction. RESULTS BG intervention ameliorates colitis and reverses Lactobacillus reduction in colitic mice, and Lactobacillus abundance was significantly negatively correlated with the severity of colitis. It was confirmed by further studies that Lactobacillus johnsonii was the most significantly enriched Lactobacillus spp. Multi-omics analysis revealed that L. johnsonii produced abundant indole-3-lactic acid (ILA) leading to the activation of aryl hydrocarbon receptor (AhR) responsible for the mitigation of colitis. Interestingly, L. johnsonii cannot utilize BG but requires a cross-feeding with Bacteroides uniformis, which degrades BG and produces nicotinamide (NAM) to promote the growth of L. johnsonii. A proof-of-concept study confirmed that BG increases L. johnsonii and B. uniformis abundance and ILA levels in healthy individuals. CONCLUSIONS These findings demonstrate the mechanism by which BG ameliorates colitis via L. johnsonii-ILA-AhR axis and reveal the important cross-feeding interaction between L. johnsonii and B. uniformis. Video Abstract.
Collapse
Affiliation(s)
- Shanshan Zhang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Yonggan Sun
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Sheng Zuo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Chunhua Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Song Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jingrui Yang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Yongkang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Ping Huang
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lu Lian
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Castro-López C, Romero-Luna HE, García HS, Vallejo-Cordoba B, González-Córdova AF, Hernández-Mendoza A. Key Stress Response Mechanisms of Probiotics During Their Journey Through the Digestive System: A Review. Probiotics Antimicrob Proteins 2023; 15:1250-1270. [PMID: 36001271 DOI: 10.1007/s12602-022-09981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
The survival of probiotic microorganisms during their exposure to harsh environments plays a critical role in the fulfillment of their functional properties. In particular, transit through the human gastrointestinal tract (GIT) is considered one of the most challenging habitats that probiotics must endure, because of the particularly stressful conditions (e.g., oxygen level, pH variations, nutrient limitations, high osmolarity, oxidation, peristalsis) prevailing in the different sections of the GIT, which in turn can affect the growth, viability, physiological status, and functionality of microbial cells. Consequently, probiotics have developed a series of strategies, called "mechanisms of stress response," to protect themselves from these adverse conditions. Such mechanisms may include but are not limited to the induction of new metabolic pathways, formation/production of particular metabolites, and changes of transcription rates. It should be highlighted that some of such mechanisms can be conserved across several different strains or can be unique for specific genera. Hence, this review attempts to review the state-of-the-art knowledge of mechanisms of stress response displayed by potential probiotic strains during their transit through the GIT. In addition, evidence whether stress responses can compromise the biosafety of such strains is also discussed.
Collapse
Affiliation(s)
- Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Haydee E Romero-Luna
- Instituto Tecnológico Superior de Xalapa/Tecnológico Nacional de México, Reserva Territorial s/n Sección 5, Santa Bárbara, Xalapa-Enríquez, Veracruz, 91096, México
| | - Hugo S García
- Unidad de Investigación Y Desarrollo de Alimentos, Instituto Tecnológico de Veracruz/Tecnológico Nacional de México, Miguel Ángel de Quevedo 2779, Veracruz, Veracruz, 91897, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México.
| |
Collapse
|
3
|
Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA. 'Multi-omics' data integration: applications in probiotics studies. NPJ Sci Food 2023; 7:25. [PMID: 37277356 DOI: 10.1038/s41538-023-00199-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
The concept of probiotics is witnessing increasing attention due to its benefits in influencing the host microbiome and the modulation of host immunity through the strengthening of the gut barrier and stimulation of antibodies. These benefits, combined with the need for improved nutraceuticals, have resulted in the extensive characterization of probiotics leading to an outburst of data generated using several 'omics' technologies. The recent development in system biology approaches to microbial science is paving the way for integrating data generated from different omics techniques for understanding the flow of molecular information from one 'omics' level to the other with clear information on regulatory features and phenotypes. The limitations and tendencies of a 'single omics' application to ignore the influence of other molecular processes justify the need for 'multi-omics' application in probiotics selections and understanding its action on the host. Different omics techniques, including genomics, transcriptomics, proteomics, metabolomics and lipidomics, used for studying probiotics and their influence on the host and the microbiome are discussed in this review. Furthermore, the rationale for 'multi-omics' and multi-omics data integration platforms supporting probiotics and microbiome analyses was also elucidated. This review showed that multi-omics application is useful in selecting probiotics and understanding their functions on the host microbiome. Hence, recommend a multi-omics approach for holistically understanding probiotics and the microbiome.
Collapse
Affiliation(s)
- Iliya Dauda Kwoji
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, 4090, Durban, South Africa
| | - Olayinka Ayobami Aiyegoro
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, Northwest, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, 4090, Durban, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, 4090, Durban, South Africa.
| |
Collapse
|
4
|
Xia Y, Oyunsuren E, Yang Y, Shuang Q. Comparative metabolomics and microbial communities associated network analysis of black and white horse- sourced koumiss. Food Chem 2022; 370:130996. [PMID: 34520975 DOI: 10.1016/j.foodchem.2021.130996] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/08/2021] [Accepted: 08/29/2021] [Indexed: 01/22/2023]
Abstract
The quality and formation of bioactive components in fermented koumiss are based on the complex metabolism of the microbial community. In the present study, changes in the bioactive metabolites and microbial communities in black and white horse-sourced koumiss were evaluated during the fermentation process. 74 and 69 differential metabolites were formed when BLM and WHM were fermentated into koumiss. Lactobacillus and Dekkera grew rapidly and became the dominant genera in the koumiss. Bioactive compounds (e.g., adenine, d-proline) were significantly enhanced after natural fermentation and were positively correlated with Lactobacillus, Dekkera and Acetobacter. The microbial metabolic network showed that Lactobacillus and Dekkera were the functional core microbiota and played significant roles in the formation of bioactive compounds, followed by Acetobacter, Streptococcus and Leuconostoc. The current study results provide new insight into the formation of bioactive components in koumiss, which is useful for directionally isolating functional microorganisms suitable for koumiss fermentation.
Collapse
Affiliation(s)
- Yanan Xia
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Erdenebat Oyunsuren
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yang Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Quan Shuang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
5
|
Zhu H, Cao C, Wu Z, Zhang H, Sun Z, Wang M, Xu H, Zhao Z, Wang Y, Pei G, Yang Q, Zhu F, Yang J, Deng X, Hong Y, Li Y, Sun J, Zhu F, Shi M, Qian K, Ye T, Zuo X, Zhao F, Guo J, Xu G, Yao Y, Zeng R. The probiotic L. casei Zhang slows the progression of acute and chronic kidney disease. Cell Metab 2021; 33:1926-1942.e8. [PMID: 34270930 DOI: 10.1016/j.cmet.2021.06.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
The relationship between gut microbial dysbiosis and acute or chronic kidney disease (CKD) is still unclear. Here, we show that oral administration of the probiotic Lactobacillus casei Zhang (L. casei Zhang) corrected bilateral renal ischemia-reperfusion (I/R)-induced gut microbial dysbiosis, alleviated kidney injury, and delayed its progression to CKD in mice. L. casei Zhang elevated the levels of short-chain fatty acids (SCFAs) and nicotinamide in the serum and kidney, resulting in reduced renal inflammation and damage to renal tubular epithelial cells. We also performed a 1-year phase 1 placebo-controlled study of oral L. casei Zhang use (Chinese clinical trial registry, ChiCTR-INR-17013952), which was well tolerated and slowed the decline of kidney function in individuals with stage 3-5 CKD. These results show that oral administration of L. casei Zhang, by altering SCFAs and nicotinamide metabolism, is a potential therapy to mitigate kidney injury and slow the progression of renal decline.
Collapse
Affiliation(s)
- Han Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chujin Cao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Zhongcai Wu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Meng Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Huzi Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Zhi Zhao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yuxi Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Guangchang Pei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Qian Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Fengming Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Juan Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xuan Deng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yu Hong
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yinzheng Li
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jie Sun
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Fan Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Mengxia Shi
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Kun Qian
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ting Ye
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xuezhi Zuo
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Fenfei Zhao
- Wuhan Institute of Biotechnology, Wuhan 430000, China; Wuhan Biobank, Wuhan 430000, China
| | - Jing Guo
- Wuhan Institute of Biotechnology, Wuhan 430000, China; Wuhan Biobank, Wuhan 430000, China
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
6
|
Lam-Sidun D, Peters KM, Borradaile NM. Mushroom-Derived Medicine? Preclinical Studies Suggest Potential Benefits of Ergothioneine for Cardiometabolic Health. Int J Mol Sci 2021; 22:ijms22063246. [PMID: 33806754 PMCID: PMC8004618 DOI: 10.3390/ijms22063246] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Medicinal use of mushrooms has been documented since ancient times, and in the modern world, mushrooms have a longstanding history of use in Eastern medicine. Recent interest in plant-based diets in Westernized countries has brought increasing attention to the use of mushrooms and mushroom-derived compounds in the prevention and treatment of chronic diseases. Edible mushrooms are the most abundant food sources of the modified amino acid, ergothioneine. This compound has been shown to accumulate in almost all cells and tissues, but preferentially in those exposed to oxidative stress and injury. The demonstrated cytoprotectant effect of ergothioneine has led many to suggest a potential therapeutic role for this compound in chronic conditions that involve ongoing oxidative stress and inflammation, including cardiovascular and metabolic diseases. However, the in vivo effects of ergothioneine and its underlying therapeutic mechanisms in the whole organism are not as clear. Moreover, there are no well-defined, clinical prevention and intervention trials of ergothioneine in chronic disease. This review highlights the cellular and molecular mechanisms of action of ergothioneine and its potential as a Traditional, Complementary and Alternative Medicine for the promotion of cardiometabolic health and the management of the most common manifestations of cardiometabolic disease.
Collapse
|
7
|
Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius E, Roberts TJ, van der Hoek SA, Kell DB. The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev 2020; 33:190-217. [PMID: 32051057 PMCID: PMC7653990 DOI: 10.1017/s0954422419000301] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Ergothioneine (ERG) is an unusual thio-histidine betaine amino acid that has potent antioxidant activities. It is synthesised by a variety of microbes, especially fungi (including in mushroom fruiting bodies) and actinobacteria, but is not synthesised by plants and animals who acquire it via the soil and their diet, respectively. Animals have evolved a highly selective transporter for it, known as solute carrier family 22, member 4 (SLC22A4) in humans, signifying its importance, and ERG may even have the status of a vitamin. ERG accumulates differentially in various tissues, according to their expression of SLC22A4, favouring those such as erythrocytes that may be subject to oxidative stress. Mushroom or ERG consumption seems to provide significant prevention against oxidative stress in a large variety of systems. ERG seems to have strong cytoprotective status, and its concentration is lowered in a number of chronic inflammatory diseases. It has been passed as safe by regulatory agencies, and may have value as a nutraceutical and antioxidant more generally.
Collapse
Affiliation(s)
- Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Louise C. Kenny
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Crown Street, LiverpoolL8 7SS, UK
| | - Cathal M. McCarthy
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Republic of Ireland
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Republic of Ireland
| | - Kalaivani Paramasivan
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Timothy J. Roberts
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| | - Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| |
Collapse
|
8
|
Impact of Lactobacillus paracasei IMC502 in coculture with traditional starters on volatile and non-volatile metabolite profiles in yogurt. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Qi W, Li XX, Guo YH, Bao YZ, Wang N, Luo XG, Yu CD, Zhang TC. Integrated metabonomic-proteomic analysis reveals the effect of glucose stress on metabolic adaptation of Lactococcus lactis ssp. lactis CICC23200. J Dairy Sci 2020; 103:7834-7850. [PMID: 32684472 DOI: 10.3168/jds.2019-17810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
A combined proteomic and metabonomic approach was used to investigate the metabolism of Lactococcus lactis ssp. lactis subjected to glucose stress treatment. A proteomic method was used to determine 1,427 altered proteins, including 278 proteins with increased expression and 255 proteins with decreased expression. A metabonomic approach was adopted to identify 98 altered metabolites, including 62 metabolites with increased expression and 26 metabolites with decreased expression. The integrated analysis indicated that the RNA and DNA mismatch repair process and energy metabolism were enhanced in response to high-glucose stress in L. lactis. Lactococcus lactis responded to glucose stress by up-regulating oxidoreductase activity, which acted on glycosyl bonds, hydrolase activity, and organic acid transmembrane transporter activity. This led to an improvement in the metabolic flux from glucose to pyruvate, lactate, acetate, and maltose. Down-regulation of amino acid transmembrane transporter, aminoacyl-transfer RNA ligase, hydroxymethyl-, formyl-, and related transferase activities resulted in a decrease in the nitrogen metabolism-associated metabolic pathway, which might be related to inhibition of the production of biogenic amines. Overall, we highlight the response of metabolism to glucose stress and provide potential possibilities for the reduced formation of biogenic amines in improved level of sugar in the dairy fermentation industry. Moreover, according to the demand for industrial production, sugar concentration in fermented foods should be higher, or lower, than a set value that is dependent on bacterial strain and biogenic amine yield.
Collapse
Affiliation(s)
- Wei Qi
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China.
| | - Xiao-Xue Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Yao-Hua Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Yan-Zhou Bao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Nan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Xue-Gang Luo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Chun-Di Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Tong-Cun Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China.
| |
Collapse
|