1
|
Bucher EA, Mészáros G, Gebre KT, Emmerling R, Sölkner J. Genome-wide association study for milking speed in Fleckvieh cattle. J Dairy Sci 2024; 107:9582-9590. [PMID: 38908711 DOI: 10.3168/jds.2024-24854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024]
Abstract
Milking speed is an important trait influencing the udder health of dairy cows, as well as labor efficiency. However, it has received little attention in genomic association studies. The main objective of this study was to determine regions and genes on the genome with a potential effect on milking speed in Fleckvieh (dual-purpose Simmental) cattle. Genome-wide association studies were conducted using deregressed breeding values of bulls as phenotypes. We found 6 SNPs on 4 autosomes that were significantly associated with milking speed for additive effects. Significant regions on BTA4 and BTA19 correspond with findings for other dairy cattle breeds. Based on the observations of Fleckvieh breed managers, variation of milking speed in batches of daughters of some bulls is much higher than in daughter groups of other bulls. This difference in within-family variation may be caused by the transmission of alternative alleles from bulls being heterozygous for a gene affecting milking speed. To check on this, we considered the SD of yield deviations in milking speed of half-sib daughters as a new trait and performed GWAS for dominance effects. One signal on BTA5 passed the genome-wide Bonferroni threshold that corresponded to the significant signal from standard GWAS on deregressed breeding values. The key conclusion of this study is that several strong genomic signals were found for milking speed in Fleckvieh cattle, and that the strongest of them are supported by similar findings in Brown Swiss and Holstein Friesian cattle. Milking speed is a complex trait whose subprocesses have not yet been elucidated in detail. Hence, it remains a challenge to link the associated regions on the genome with causal genes and their functions.
Collapse
Affiliation(s)
- E A Bucher
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences of Vienna, 1180 Vienna, Austria
| | - G Mészáros
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences of Vienna, 1180 Vienna, Austria.
| | - K T Gebre
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences of Vienna, 1180 Vienna, Austria; Department of Animal, Rangeland and Wildlife Sciences (ARWS), Mekelle University, Enda-Eyesus Campus, Mekelle 0231, Ethiopia
| | - R Emmerling
- Institute of Animal Breeding, Bavarian State Research Center for Agriculture, 85586 Poing-Grub, Germany
| | - J Sölkner
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences of Vienna, 1180 Vienna, Austria
| |
Collapse
|
2
|
Bang NN, Hayes BJ, Lyons RE, Randhawa IAS, Gaughan JB, Trach NX, McNeill DM. Genomic Prediction and Genome-Wide Association Studies for Productivity, Conformation and Heat Tolerance Traits in Tropical Smallholder Dairy Cows. J Anim Breed Genet 2024. [PMID: 39462234 DOI: 10.1111/jbg.12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Genomic selection (GS) and genome-wide association studies (GWAS) have not been investigated in Vietnamese dairy cattle, even for basic milk production traits, largely due to the scarcity of individual phenotype recording in smallholder dairy farms (SDFs). This study aimed to estimate heritability (h2) and test the applicability of GS and GWAS for milk production, body conformation and novel heat tolerance traits using single test day phenotypic data. Thirty-two SDFs located in either the north (a lowland vs. a highland) or the south (a lowland vs. a highland) of Vietnam were each visited for an afternoon and the next morning to collect phenotype data of all lactating cows (n = 345). Tail hair from each cow was sampled for subsequent genotyping with a 50K SNP chip at that same visit. Milk production traits (single-test day) were milk yield (MILK, kg/cow/day), energy corrected milk yield adjusted for body weight (ECMbw, kg/100 kg BW/day), fat (mFA, %), protein (mPR, %) and dry matter (mDM, %). Conformation traits were body weight (BW, kg) and body condition score (BCS, 1 = thin to 5 = obese). Heat tolerance traits were panting score (PS, 0 = normal to 4.5 = extremely heat-stressed) and infrared temperatures (IRTs, °C) at 11 areas on the external body surface of the cow (inner vulval lip, outer vulval surface, inner tail base surface, ocular area, muzzle, armpit area, paralumbar fossa area, fore udder, rear udder, forehoof and hind hoof), assessed by an Infrared Camera. Univariate linear mixed models and a 10-fold cross-validation approach were applied for GS. Univariate single SNP mixed linear models were applied for the GWAS. Estimated h2 (using the genotype information to build relationships among animals) were moderate (0.20-0.37) for ECMbw, mFA, mPR, mRE, BW, BCS and IRT at rear udder; low (0.08-0.19) for PS and other IRTs; and very low (≤ 0.07) for MILK, ECM and mDM. Accuracy of genomic estimated breeding values (GEBVs) was low (≤ 0.12) for MILK, ECM, mDM and IRT at hind hoof; and moderate to high (0.32-0.46) for all other traits. The most significant regions on chromosomes (BTA) associated with milk production traits were 0.47-1.18 Mb on BTA14. Moderate to high h2 and moderate accuracies of GEBVs for mFA, mPR, ECMbw, BCS, BW, PS and IRTs at rear udder and outer vulval surface suggested that GS using single test day phenotypic data could be applied for these traits. However, a greater sample size is required to decrease the bias of GEBVs by GS and increase the power of detecting significant quantitative trait loci (QTLs) by GWAS.
Collapse
Affiliation(s)
- Nguyen N Bang
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
- Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia
| | - Russell E Lyons
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Imtiaz A S Randhawa
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - John B Gaughan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Nguyen X Trach
- Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - David M McNeill
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
3
|
Bernini F, Mancin E, Sartori C, Mantovani R, Vevey M, Blanchet V, Bagnato A, Strillacci MG. Genome-wide association studies for milk production traits in two autochthonous Aosta cattle breeds. Animal 2024; 18:101322. [PMID: 39378607 DOI: 10.1016/j.animal.2024.101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Genome-wide association studies (GWASs) are used to identify quantitative trait loci for phenotypic traits of interest. The use of multilocus mixed models allows to correct for population stratification and account for long-range linkage disequilibrium. In this study, GWASs were conducted to identify the genetic bases of milk production (milk yield, protein and fat composition, and yield) in two autochthonous dual-purpose cattle breeds from the Aosta Valley. Using either the breeding values or the deregressed proofs, common significative single nucleotide polymorphisms have been identified for milk yield, protein percentage, and fat percentage. Two major quantitative trait loci regions have been identified on the chromosomes 5 and 14 for the fat percentage, harbouring the MGST1, CYHR1, VPS28, and CPSF1 genes. For the protein percentage, a candidate region has been identified on BTA 6; in this region, the CSN1S1, CSN2, HSTN, CSN3, and RUFY3 genes are annotated. Most of the identified genes have already been associated with milk composition in other studies on cosmopolitan and local cattle. These results show that the genes involved in milk composition quantitative traits in the Aosta cattle are common also in other cattle breeds and they can be further investigated with the use of whole genome sequencing data.
Collapse
Affiliation(s)
- F Bernini
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy.
| | - E Mancin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, Università degli Studi di Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - C Sartori
- Department of Agronomy, Food, Natural Resources, Animals and Environment, Università degli Studi di Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - R Mantovani
- Department of Agronomy, Food, Natural Resources, Animals and Environment, Università degli Studi di Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - M Vevey
- Associazione Nazionale Bovini di Razza Valdostana, Frazione Favret 5, 11020 Gressan, Italy
| | - V Blanchet
- Associazione Nazionale Bovini di Razza Valdostana, Frazione Favret 5, 11020 Gressan, Italy
| | - A Bagnato
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - M G Strillacci
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
4
|
Aponte PFC, Carneiro PLS, Araujo AC, Pedrosa VB, Fotso-Kenmogne PR, Silva DA, Miglior F, Schenkel FS, Brito LF. Investigating the genomic background of calving-related traits in Canadian Jersey cattle. J Dairy Sci 2024:S0022-0302(24)01093-2. [PMID: 39218064 DOI: 10.3168/jds.2024-24768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Traits related to calving have a significant impact on animal welfare and farm profitability in dairy production systems. Identifying genomic regions associated with calving traits could contribute to refining dairy cattle breeding programs and management practices in the dairy industry. Therefore, the primary objectives of this study were to estimate genetic parameters and perform genome-wide association studies (GWAS) and functional enrichment analyses for stillbirth, gestation length, calf size, and calving ease traits in North American Jersey cattle. A total of 40,503 animals with phenotypic records and 5,398 animals genotyped for 45,101 single nucleotide polymorphisms (SNPs) were included in the analyses. Genetic parameters were estimated based on animal models and Bayesian methods. The effects of SNPs were estimated using the Single-step Genomic Best Linear Unbiased Prediction (ssGBLUP) method. The heritability (standard error) estimates ranged from 0.01 (0.01) for stillbirths (SB) in heifers to 0.11 (0.01) for gestation length (GL) in cows. The genetic correlations ranged from -0.58 (0.11) between calving ease (CE) and SB in heifers to 0.44 (0.14) between calving ease and calf size (CZ) in cows. CE showed the highest genetic correlation between heifers and cows, 0.8 (0.22) respectively. The candidate genes identified, including MTHFR, SERPINA5, IGFBP3, and ZRANB1, are involved in key biological processes and metabolic pathways related to the studied traits. Reducing environmental variation and identifying novel indicators of reproduction traits in the Jersey breed are needed given the low heritability estimates for most traits evaluated in this study. In conclusion, this study provides a characterization of the genetic background of calving-related traits in Jersey cattle. The estimates obtained can be used to improve or build selection indexes in Jersey cattle breeding programs in North America.
Collapse
Affiliation(s)
- Pedro F C Aponte
- Postgraduate Program in Animal Science, State University of Southwest Bahia, Itapetinga, BA, 45700-000, Brazil
| | - Paulo L S Carneiro
- Department of Biology, State University of Southwest Bahia, Jequié, BA, 45205-490, Brazil.
| | - Andre C Araujo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Patrick R Fotso-Kenmogne
- Postgraduate Program in Animal Science, State University of Southwest Bahia, Itapetinga, BA, 45700-000, Brazil
| | - Delvan Alves Silva
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Filippo Miglior
- Center for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Lactanet Canada, Guelph, ON, N1K 1E5, Canada
| | - Flavio S Schenkel
- Center for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA; Center for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
5
|
Shang S, Li Z, Li J, Zhao X, Zhang W, Zhang X, Bai J, Yang Z, Guo K. Effects of high moisture ear corn on production performance, milk fatty acid composition, serum antioxidant status, and immunity in primiparous dairy cows. Anim Biosci 2024; 37:1204-1212. [PMID: 38575129 PMCID: PMC11222838 DOI: 10.5713/ab.23.0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Accepted: 01/26/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE This study evaluated the effects of high moisture ear corn (HMEC) on production performance, milk fatty acid composition, serum antioxidant status, and immunity in primiparous dairy cows. METHODS A total of 45 healthy primiparous Holstein cows (36.50±4.30 kg of milk/d, 201±9.00 lactating days in milk) were sorted into 3 groups: control group (CG, n = 15); 50% HMEC (replacing 50% steam-flaked corn with HMEC, n = 15); and 100% HMEC (replacing steam-flaked corn with HMEC, n = 15) on an equal dry matter (DM) basis. The study consisted of adaptation period of 14 days, followed by a formal period of 60 days. Feed intake and milk yield were recorded daily. Milk and blood samples were collected on 1, 30, and 60 d of the experimental period. RESULTS The 50% HMEC group and 100% HMEC group significantly increased (p<0.05) milk yield and DM intake in dairy cows compared to the control group (CG). The 100% HMEC group showed an increase (p<0.05) in 4% fat-corrected milk (4% FCM). Both the 50% HMEC group and 100% HMEC group exhibited significant decreases (p<0.05) in the content of C10:0, C12:0, and C14:0 fatty acids, along with a significant increase (p<0.05) in cis-9C18:1 content. The saturated fatty acid content was significantly lower (p<0.05) in the 50% HMEC and 100% HMEC groups than that of CG. Conversely, the monounsaturated fatty acid content was higher (p<0.05) in the 50% HMEC and 100% HMEC groups than that in CG. Notably, the 100% HMEC group significantly increased (p<0.05) the serum superoxide dismutase and glutathione peroxidase content, while also decreasing the serum malondialdehyde content (p<0.05). Moreover, the 100% HMEC group significantly increased (p<0.05) the content of immunoglobulin G (IgG) and IgM. CONCLUSION High moisture ear corn could improve production performance and milk fatty acid levels and enhance immunity and antioxidant capacity in dairy cows. These results lay the foundation for the wider application of HMEC in ruminant animal diets.
Collapse
Affiliation(s)
- Songlin Shang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206,
China
| | - Zheng Li
- Beijing Institute of Feed Control, Beijing 100107,
China
| | - Jiajun Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206,
China
| | - Xi Zhao
- Beijing Institute of Feed Control, Beijing 100107,
China
| | - Wenjing Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206,
China
| | - Xinrui Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206,
China
| | - Jinni Bai
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206,
China
| | - Zhiye Yang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206,
China
| | - Kaijun Guo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206,
China
| |
Collapse
|
6
|
Hosseinzadeh S, Rafat SA, Javanmard A, Fang L. Identification of candidate genes associated with milk production and mastitis based on transcriptome-wide association study. Anim Genet 2024; 55:430-439. [PMID: 38594914 DOI: 10.1111/age.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/10/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Genetic research for the assessment of mastitis and milk production traits simultaneously has a long history. The main issue that arises in this context is the known existence of a positive correlation between the risk of mastitis and lactation performance due to selection. The transcriptome-wide association study (TWAS) approach endeavors to combine the expression quantitative trait loci and genome-wide association study summary statistics to decode complex traits or diseases. Accordingly, we used the farmgtex project results as a complete bovine database for mastitis and milk production. The results of colocalization and TWAS approaches were used for the detection of functional associated candidate genes with milk production and mastitis traits on multiple tissue-based transcriptome records. Also, we used the david database for gene ontology to identify significant terms and associated genes. For the identification of interaction networks, the genemania and string databases were used. Also, the available z-scores in TWAS results were used for the calculation of the correlation between tissues. Therefore, the present results confirm that LYNX1, DGAT1, C14H8orf33, and LY6E were identified as significant genes associated with milk production in eight, six, five, and five tissues, respectively. Also, FBXL6 was detected as a significant gene associated with mastitis trait. CLN3 and ZNF34 genes emerged via both the colocalization and TWAS approaches as significant genes for milk production trait. It is expected that TWAS and colocalization can improve our perception of the potential health status control mechanism in high-yielding dairy cows.
Collapse
Affiliation(s)
- Sevda Hosseinzadeh
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Abbas Rafat
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Arash Javanmard
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Pozovnikova MV, Leibova VB, Tulinova OV, Romanova EA, Dysin AP, Dementieva NV, Azovtseva AI, Sedykh SE. Comparison of miR-106b, miR-191, and miR-30d expression dynamics in milk with regard to its composition in Holstein and Ayrshire cows. Anim Biosci 2024; 37:965-981. [PMID: 38419530 PMCID: PMC11065953 DOI: 10.5713/ab.23.0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/25/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE Milk composition varies considerably and depends on paratypical, genetic, and epigenetic factors. MiRNAs belong to the class of small non-coding RNAs; they are one of the key tools of epigenetic control because of their ability to regulate gene expression at the post-transcriptional level. We compared the relative expression levels of miR-106b, miR-191, and miR-30d in milk to demonstrate the relationship between the content of these miRNAs with protein and fat components of milk in Holstein and Ayrshire cattle. METHODS Milk fat, protein, and casein contents were determined in the obtained samples, as well as the content of the main fatty acids (g/100 g milk), including: saturated acids, such as myristic (C14:0), palmitic (C16:0), and stearic (C18:0) acids; monounsaturated acids, including oleic (C18:1) acid; as well as long-, medium- and short-chain, polyunsaturated, and trans fatty acids. Real-time stem-loop one-tube reverse transcription polymerase chain reaction with TaqMan probes was used to measure the miRNA expression levels. RESULTS The miRNA expression levels in milk samples were found to be decreased in the first two months in Holstein breed, and in the first four months in Ayrshire breed. Correlation analysis did not reveal any dependence between changes in the expression level of miRNA and milk fat content, but showed a multidirectional relationship with individual milk fatty acids. Positive associations between the expression levels of miR-106b and miR-30d and protein and casein content were found in the Ayrshire breed. Receiver operating characteristic curve analysis showed that miR-106b and miR-30d expression levels can cause changes in fatty acid and protein composition of milk in Ayrshire cows, whereas miR-106b expression level determines the fatty acid composition in Holsteins. CONCLUSION The data obtained in this study showed that miR-106b, miR-191, and miR-30d expression levels in milk samples have peculiarities associated with breed affiliation and the lactation period.
Collapse
Affiliation(s)
- Marina V. Pozovnikova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, St. Petersburg, 196625,
Russia
| | - Viktoria B. Leibova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, St. Petersburg, 196625,
Russia
| | - Olga V. Tulinova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, St. Petersburg, 196625,
Russia
| | - Elena A. Romanova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, St. Petersburg, 196625,
Russia
| | - Artem P. Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, St. Petersburg, 196625,
Russia
| | - Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, St. Petersburg, 196625,
Russia
| | - Anastasiia I. Azovtseva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, St. Petersburg, 196625,
Russia
| | - Sergey E. Sedykh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090,
Russia
| |
Collapse
|
8
|
Lázaro SF, Tonhati H, Oliveira HR, Silva AA, Scalez DCB, Nascimento AV, Santos DJA, Stefani G, Carvalho IS, Sandoval AF, Brito LF. Genetic parameters and genome-wide association studies for mozzarella and milk production traits, lactation length, and lactation persistency in Murrah buffaloes. J Dairy Sci 2024; 107:992-1021. [PMID: 37730179 DOI: 10.3168/jds.2023-23284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023]
Abstract
Genetic and genomic analyses of longitudinal traits related to milk production efficiency are paramount for optimizing water buffaloes breeding schemes. Therefore, this study aimed to (1) compare single-trait random regression models under a single-step genomic BLUP setting based on alternative covariance functions (i.e., Wood, Wilmink, and Ali and Schaeffer) to describe milk (MY), fat (FY), protein (PY), and mozzarella (MZY) yields, fat-to-protein ratio (FPR), somatic cell score (SCS), lactation length (LL), and lactation persistency (LP) in Murrah dairy buffaloes (Bubalus bubalis); (2) combine the best functions for each trait under a multiple-trait framework; (3) estimate time-dependent SNP effects for all the studied longitudinal traits; and (4) identify the most likely candidate genes associated with the traits. A total of 323,140 test-day records from the first lactation of 4,588 Murrah buffaloes were made available for the study. The model included the average curve of the population nested within herd-year-season of calving, systematic effects of number of milkings per day, and age at first calving as linear and quadratic covariates, and additive genetic, permanent environment, and residual as random effects. The Wood model had the best goodness of fit based on the deviance information criterion and posterior model probabilities for all traits. Moderate heritabilities were estimated over time for most traits (0.30 ± 0.02 for MY; 0.26 ± 0.03 for FY; 0.45 ± 0.04 for PY; 0.28 ± 0.05 for MZY; 0.13 ± 0.02 for FPR; and 0.15 ± 0.03 for SCS). The heritability estimates for LP ranged from 0.38 ± 0.02 to 0.65 ± 0.03 depending on the trait definition used. Similarly, heritabilities estimated for LL ranged from 0.10 ± 0.01 to 0.14 ± 0.03. The genetic correlation estimates across days in milk (DIM) for all traits ranged from -0.06 (186-215 DIM for MY-SCS) to 0.78 (66-95 DIM for PY-MZY). The SNP effects calculated for the random regression model coefficients were used to estimate the SNP effects throughout the lactation curve (from 5 to 305 d). Numerous relevant genomic regions and candidate genes were identified for all traits, confirming their polygenic nature. The candidate genes identified contribute to a better understanding of the genetic background of milk-related traits in Murrah buffaloes and reinforce the value of incorporating genomic information in their breeding programs.
Collapse
Affiliation(s)
- Sirlene F Lázaro
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Humberto Tonhati
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alessandra A Silva
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Daiane C B Scalez
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - André V Nascimento
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | | | - Gabriela Stefani
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Isabella S Carvalho
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Amanda F Sandoval
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
9
|
Wen H, Johnson JS, Freitas PHF, Maskal JM, Gloria LS, Araujo AC, Pedrosa VB, Tiezzi F, Maltecca C, Huang Y, Schinckel AP, Brito LF. Longitudinal genomic analyses of automatically-recorded vaginal temperature in lactating sows under heat stress conditions based on random regression models. Genet Sel Evol 2023; 55:95. [PMID: 38129768 PMCID: PMC10734178 DOI: 10.1186/s12711-023-00868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Automatic and continuous recording of vaginal temperature (TV) using wearable sensors causes minimal disruptions to animal behavior and can generate data that enable the evaluation of temporal body temperature variation under heat stress (HS) conditions. However, the genetic basis of TV in lactating sows from a longitudinal perspective is still unknown. The objectives of this study were to define statistical models and estimate genetic parameters for TV in lactating sows using random regression models, and identify genomic regions and candidate genes associated with HS indicators derived from automatically-recorded TV. RESULTS Heritability estimates for TV ranged from 0.14 to 0.20 over time (throughout the day and measurement period) and from 0.09 to 0.18 along environmental gradients (EG, - 3.5 to 2.2, which correspond to dew point values from 14.87 to 28.19 ˚C). Repeatability estimates of TV over time and along EG ranged from 0.57 to 0.66 and from 0.54 to 0.77, respectively. TV measured from 12h00 to 16h00 had moderately high estimates of heritability (0.20) and repeatability (0.64), indicating that this period might be the most suitable for recording TV for genetic selection purposes. Significant genotype-by-environment interactions (GxE) were observed and the moderately high estimates of genetic correlations between pairs of extreme EG indicate potential re-ranking of selection candidates across EG. Two important genomic regions on chromosomes 10 (59.370-59.998 Mb) and16 (21.548-21.966 Mb) were identified. These regions harbor the genes CDC123, CAMK1d, SEC61A2, and NUDT5 that are associated with immunity, protein transport, and energy metabolism. Across the four time-periods, respectively 12, 13, 16, and 10 associated genomic regions across 14 chromosomes were identified for TV. For the three EG classes, respectively 18, 15, and 14 associated genomic windows were identified for TV, respectively. Each time-period and EG class had uniquely enriched genes with identified specific biological functions, including regulation of the nervous system, metabolism and hormone production. CONCLUSIONS TV is a heritable trait with substantial additive genetic variation and represents a promising indicator trait to select pigs for improved heat tolerance. Moderate GxE for TV exist, indicating potential re-ranking of selection candidates across EG. TV is a highly polygenic trait regulated by a complex interplay of physiological, cellular and behavioral mechanisms.
Collapse
Affiliation(s)
- Hui Wen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN, USA
| | - Pedro H F Freitas
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Jacob M Maskal
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Leonardo S Gloria
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Andre C Araujo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | | | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
10
|
Zhu H, Lu X, Jiang H, Yang Z, Xu T. Descriptive Statistics and Genome-Wide Copy Number Analysis of Milk Production Traits of Jiangsu Chinese Holstein Cows. Animals (Basel) 2023; 14:17. [PMID: 38200748 PMCID: PMC10778490 DOI: 10.3390/ani14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Milk production traits are the most important quantitative economic traits in dairy cow production; improving the yield and quality of milk is an important way to ensure the production efficiency of the dairy industry. This study carried out a series of in-depth statistical genetics studies and molecular analyses on the Chinese Holstein cows in the Jiangsu Province, such as descriptive statistics and copy number variation analysis. A genetic correlation, phenotypic correlation, and descriptive statistical analysis of five milk production traits (milk yield, milk fat percentage, milk fat yield, milk protein percentage, and milk protein yield) of the dairy cows were analyzed using the SPSS and DMU software. Through quality control, 4173 cows and their genomes were used for genomic study. Then, SNPs were detected using DNA chips, and a copy number variation (CNV) analysis was carried out to locate the quantitative trait loci (QTL) of the milk production traits by Perl program software Penn CNV and hidden Markov model (HMM). The phenotypic means of the milk yield, milk fat percentage, milk fat mass, milk protein percentage, and milk protein mass at the first trimester were lower than those at the other trimesters by 8.821%, 1.031%, 0.930%, 0.003%, and 0.826%, respectively. The five milk production traits showed a significant phenotypic positive correlation (p < 0.01) and a high genetic positive correlation among the three parities. Based on the GGPBovine 100 K SNP data, QTL-detecting research on the fist-parity milk performance of dairy cows was carried out via the CNV. We identified 1731 CNVs and 236 CNVRs in the 29 autosomes of 984 Holstein dairy cows, and 19 CNVRs were significantly associated with the milk production traits (p < 0.05). These CNVRs were analyzed via a bioinformatics analysis; a total of 13 gene ontology (GO) terms and 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly enriched (p < 0.05), and these terms and pathways are mainly related to lipid metabolism, amino acid metabolism, and cellular catabolic processes. This study provided a theoretical basis for the molecular-marker-assisted selection of dairy cows by developing descriptive statistics on the milk production traits of dairy cows and by locating the QTL and functional genes that affect the milk production traits of first-born dairy cows. The results describe the basic status of the milk production traits of the Chinese Holstein cows in Jiangsu and locate the QTL and functional genes that affect the milk production traits of the first-born cows, providing a theoretical basis for the molecular-marker-assisted selection of dairy cows.
Collapse
Affiliation(s)
- Hao Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; (H.Z.); (Z.Y.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Hui Jiang
- Center for Quantitative Genetics and Genomics, Aarhus University, 8000 Aarhus C, Denmark;
| | - Zhangping Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; (H.Z.); (Z.Y.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Tianle Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; (H.Z.); (Z.Y.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
- International Joint Research Laboratory, Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|
11
|
Atashi H, Chen Y, Wilmot H, Bastin C, Vanderick S, Hubin X, Gengler N. Single-step genome-wide association analyses for selected infrared-predicted cheese-making traits in Walloon Holstein cows. J Dairy Sci 2023; 106:7816-7831. [PMID: 37567464 DOI: 10.3168/jds.2022-23206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/01/2023] [Indexed: 08/13/2023]
Abstract
This study aimed to perform genome-wide association study to identify genomic regions associated with milk production and cheese-making properties (CMP) in Walloon Holstein cows. The studied traits were milk yield, fat percentage, protein percentage, casein percentage (CNP), calcium content, somatic cell score (SCS), coagulation time, curd firmness after 30 min from rennet addition, and titratable acidity. The used data have been collected from 2014 to 2020 on 78,073 first-parity (485,218 test-day records), 48,766 second-parity (284,942 test-day records), and 21,948 third-parity (105,112 test-day records) Holstein cows distributed in 671 herds in the Walloon Region of Belgium. Data of 565,533 single nucleotide polymorphisms (SNP), located on 29 Bos taurus autosomes (BTA) of 6,617 animals (1,712 males), were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method. The SNP solutions were estimated using a single-step genomic BLUP approach. The proportion of the total additive genetic variance explained by windows of 50 consecutive SNPs (with an average size of ∼216 KB) was calculated, and regions accounting for at least 1.0% of the total additive genetic variance were used to search for positional candidate genes. Heritability estimates for the studied traits ranged from 0.10 (SCS) to 0.53 (CNP), 0.10 (SCS) to 0.50 (CNP), and 0.12 (SCS) to 0.49 (CNP) in the first, second, and third parity, respectively. Genome-wide association analyses identified 6 genomic regions (BTA1, BTA14 [4 regions], and BTA20) associated with the considered traits. Genes including the SLC37A1 (BTA1), SHARPIN, MROH1, DGAT1, FAM83H, TIGD5, MROH6, NAPRT, ADGRB1, GML, LYPD2, JRK (BTA14), and TRIO (BTA20) were identified as positional candidate genes for the studied CMP. The findings of this study help to unravel the genomic background of a cow's ability for cheese production and can be used for the future implementation and use of genomic evaluation to improve the cheese-making traits in Walloon Holstein cows.
Collapse
Affiliation(s)
- H Atashi
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; Department of Animal Science, Shiraz University, 71441-13131 Shiraz, Iran.
| | - Y Chen
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - H Wilmot
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; National Fund for Scientific Research (FRS-FNRS), 1000 Brussels, Belgium
| | - C Bastin
- National Fund for Scientific Research (FRS-FNRS), 1000 Brussels, Belgium
| | - S Vanderick
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - X Hubin
- Elevéo asbl Awé Group, 5590 Ciney, Belgium
| | - N Gengler
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
12
|
Ahmad SF, Chandrababu Shailaja C, Vaishnav S, Kumar A, Gaur GK, Janga SC, Ahmad SM, Malla WA, Dutt T. Read-depth based approach on whole genome resequencing data reveals important insights into the copy number variation (CNV) map of major global buffalo breeds. BMC Genomics 2023; 24:616. [PMID: 37845620 PMCID: PMC10580622 DOI: 10.1186/s12864-023-09720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Elucidating genome-wide structural variants including copy number variations (CNVs) have gained increased significance in recent times owing to their contribution to genetic diversity and association with important pathophysiological states. The present study aimed to elucidate the high-resolution CNV map of six different global buffalo breeds using whole genome resequencing data at two coverages (10X and 30X). Post-quality control, the sequence reads were aligned to the latest draft release of the Bubaline genome. The genome-wide CNVs were elucidated using a read-depth approach in CNVnator with different bin sizes. Adjacent CNVs were concatenated into copy number variation regions (CNVRs) in different breeds and their genomic coverage was elucidated. RESULTS Overall, the average size of CNVR was lower at 30X coverage, providing finer details. Most of the CNVRs were either deletion or duplication type while the occurrence of mixed events was lesser in number on a comparative basis in all breeds. The average CNVR size was lower at 30X coverage (0.201 Mb) as compared to 10X (0.013 Mb) with the finest variants in Banni buffaloes. The maximum number of CNVs was observed in Murrah (2627) and Pandharpuri (25,688) at 10X and 30X coverages, respectively. Whereas the minimum number of CNVs were scored in Surti at both coverages (2092 and 17,373). On the other hand, the highest and lowest number of CNVRs were scored in Jaffarabadi (833 and 10,179 events) and Surti (783 and 7553 events) at both coverages. Deletion events overnumbered duplications in all breeds at both coverages. Gene profiling of common overlapped genes and longest CNVRs provided important insights into the evolutionary history of these breeds and indicate the genomic regions under selection in respective breeds. CONCLUSION The present study is the first of its kind to elucidate the high-resolution CNV map in major buffalo populations using a read-depth approach on whole genome resequencing data. The results revealed important insights into the divergence of major global buffalo breeds along the evolutionary timescale.
Collapse
Affiliation(s)
- Sheikh Firdous Ahmad
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Celus Chandrababu Shailaja
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Sakshi Vaishnav
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Gyanendra Kumar Gaur
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Sarath Chandra Janga
- Luddy School of Informatics, Computing & Engineering, Indiana University Indianapolis (IUI), Indianapolis, 46202, USA
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and AH, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu & Kashmir, 190006, India.
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Triveni Dutt
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
13
|
Atashi H, Chen Y, Wilmot H, Vanderick S, Hubin X, Soyeurt H, Gengler N. Single-step genome-wide association for selected milk fatty acids in Dual-Purpose Belgian Blue cows. J Dairy Sci 2023; 106:6299-6315. [PMID: 37479585 DOI: 10.3168/jds.2022-22432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/17/2023] [Indexed: 07/23/2023]
Abstract
The aim of this study was to estimate genetic parameters and identify genomic regions associated with selected individual and groups of milk fatty acids (FA) predicted by milk mid-infrared spectrometry in Dual-Purpose Belgian Blue cows. The used data were 69,349 test-day records of milk yield, fat percentage, and protein percentage along with selected individual and groups FA of milk (g/dL milk) collected from 2007 to 2020 on 7,392 first-parity (40,903 test-day records), and 5,185 second-parity (28,446 test-day records) cows distributed in 104 herds in the Walloon Region of Belgium. Data of 28,466 SNPs, located on 29 Bos taurus autosomes (BTA), of 1,699 animals (639 males and 1,060 females) were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method. The SNP solutions were estimated using a single-step genomic best linear unbiased prediction approach. The proportion of genetic variance explained by each 25-SNP sliding window (with an average size of ~2 Mb) was calculated, and regions accounting for at least 1.0% of the total additive genetic variance were used to search for candidate genes. Average daily heritability estimated for the included milk FA traits ranged from 0.01 (C4:0) to 0.48 (C12:0) and 0.01 (C4:0) to 0.42 (C12:0) in the first and second parities, respectively. Genetic correlations found between milk yield and the studied individual milk FA, except for C18:0, C18:1 trans, C18:1 cis-9, were positive. The results showed that fat percentage and protein percentage were positively genetically correlated with all studied individual milk FA. Genome-wide association analyses identified 11 genomic regions distributed over 8 chromosomes [BTA1, BTA4, BTA10, BTA14 (4 regions), BTA19, BTA22, BTA24, and BTA26] associated with the studied FA traits, though those found on BTA14 partly overlapped. The genomic regions identified differed between parities and lactation stages. Although these differences in genomic regions detected may be due to the power of quantitative trait locus detection, it also suggests that candidate genes underlie the phenotypic expression of the studied traits may vary between parities and lactation stages. These findings increase our understanding about the genetic background of milk FA and can be used for the future implementation of genomic evaluation to improve milk FA profile in Dual-Purpose Belgian Blue cows.
Collapse
Affiliation(s)
- H Atashi
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; Department of Animal Science, Shiraz University, 71441-13131 Shiraz, Iran.
| | - Y Chen
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - H Wilmot
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; National Fund for Scientific Research (F.R.S.-FNRS), 1000 Brussels, Belgium
| | - S Vanderick
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - X Hubin
- Elevéo asbl Awé Group, 5590 Ciney, Belgium
| | - H Soyeurt
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - N Gengler
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
14
|
Silva TDL, Gondro C, Fonseca PADS, da Silva DA, Vargas G, Neves HHDR, Carvalho Filho I, Teixeira CDS, de Albuquerque LG, Carvalheiro R. Feet and legs malformation in Nellore cattle: genetic analysis and prioritization of GWAS results. Front Genet 2023; 14:1118308. [PMID: 37662838 PMCID: PMC10468598 DOI: 10.3389/fgene.2023.1118308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Beef cattle affected by feet and legs malformations (FLM) cannot perform their productive and reproductive functions satisfactorily, resulting in significant economic losses. Accelerated weight gain in young animals due to increased fat deposition can lead to ligaments, tendon and joint strain and promote gene expression patterns that lead to changes in the normal architecture of the feet and legs. The possible correlated response in the FLM due to yearling weight (YW) selection suggest that this second trait could be used as an indirect selection criterion. Therefore, FLM breeding values and the genetic correlation between FLM and yearling weight (YW) were estimated for 295,031 Nellore animals by fitting a linear-threshold model in a Bayesian approach. A genome-wide association study was performed to identify genomic windows and positional candidate genes associated with FLM. The effects of single nucleotide polymorphisms (SNPs) on FLM phenotypes (affected or unaffected) were estimated using the weighted single-step genomic BLUP method, based on genotypes of 12,537 animals for 461,057 SNPs. Twelve non-overlapping windows of 20 adjacent SNPs explaining more than 1% of the additive genetic variance were selected for candidate gene annotation. Functional and gene prioritization analysis of candidate genes identified six genes (ATG7, EXT1, ITGA1, PPARD, SCUBE3, and SHOX) that may play a role in FLM expression due to their known role in skeletal muscle development, aberrant bone growth, lipid metabolism, intramuscular fat deposition and skeletogenesis. Identifying genes linked to foot and leg malformations enables selective breeding for healthier herds by reducing the occurrence of these conditions. Genetic markers can be used to develop tests that identify carriers of these mutations, assisting breeders in making informed breeding decisions to minimize the incidence of malformations in future generations, resulting in greater productivity and animal welfare.
Collapse
Affiliation(s)
- Thales de Lima Silva
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Cedric Gondro
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
| | | | | | - Giovana Vargas
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | | | - Ivan Carvalho Filho
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Caio de Souza Teixeira
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Lucia Galvão de Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
- Researcher at National Council for Scientific and Technological Development (CNPq), Brasília, Brazil
| | - Roberto Carvalheiro
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
- Researcher at National Council for Scientific and Technological Development (CNPq), Brasília, Brazil
| |
Collapse
|
15
|
George L, Alex R, Sukhija N, Jaglan K, Vohra V, Kumar R, Verma A. Genetic improvement of economic traits in Murrah buffalo using significant SNPs from genome-wide association study. Trop Anim Health Prod 2023; 55:199. [PMID: 37184817 DOI: 10.1007/s11250-023-03606-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
GWAS helps to identify QTL and candidate genes of specific traits. Buffalo breeding has primarily focused on milk production, but its negative correlation with reproduction traits resulted in unfavorable decline of reproductive performance among buffaloes. A genome wide scan was performed on a total of 120 Murrah buffaloes genotyped by ddRAD sequencing for 13 traits related to female fertility, production, and growth. The identified 25 significant single nucleotide polymorphisms (SNPs) (P <1×106) are associated with age at first calving (AFC), age at first service (AFS), period from calving to 1st Artifical Insemination (AI), service period (SP) and 6 month body weight (6M). Fifteen genetic variants overlapped with different QTL regions of reported studies. Among the associated loci, outstanding candidate genes for fertility, including AQP1, TRNAE-CUC, NRIP1, CPNE4, and VOPP1, have effect in different fertility traits. AQP1 gene is expressed in ovulatory phase and various stages of pregnancy. TRNAE-CUC gene is associated with AFC and number . of calvings after 4 years of age. Glycogen content-associated gene CPNE4 regulates muscle glycogen and is upregulated during early pregnancy. NRIP1 generegulates ovulation, corpus luteum at pregnancy, and mammary gland development. The objective is to identify potential genomic regions and genetic variants associated with economic traits and to select the most significant SNP which have positive effect on all the traits.
Collapse
Affiliation(s)
- Linda George
- Division of Animal Genetics and Breeding, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Rani Alex
- Division of Animal Genetics and Breeding, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Nidhi Sukhija
- Division of Animal Genetics and Breeding, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Komal Jaglan
- Division of Animal Genetics and Breeding, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Vikas Vohra
- Division of Animal Genetics and Breeding, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Ravi Kumar
- Division of Animal Genetics and Breeding, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Archana Verma
- Division of Animal Genetics and Breeding, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
16
|
Ahmad SF, Singh A, Gangwar M, Kumar S, Dutt T, Kumar A. Haplotype-based association study of production and reproduction traits in multigenerational Vrindavani population. Gene 2023; 867:147365. [PMID: 36918047 DOI: 10.1016/j.gene.2023.147365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Haplotype-based association analysis promises to reveal important information regarding the effect of genetic variants on economic traits of interest. The present study aimed to evaluate the haplotype structure of Vrindavani cattle and explore the association of haplotypes with (re)production traits of economic interest. Genotyping array data of medium density (Bovine50KSNP BeadChip) on 96 randomly selected Vrindavani cows was used in the present study. Genotypes were called in GenomeStudio program while quality control was undertaken in PLINK using standard thresholds. The phenotypic traits used in the present study included age at first calving, dry days, lactation length, peak yield, total lactation milk yield, inter-calving period and service period. The haplotype structure of Vrindavani population was assessed, using a sliding window of 20 SNP with a shift of 5 SNPs at a time, in terms of the size of haplotype blocks regarding their length (in Kb) and frequency in chromosome-wise fashion. Haplotype blocks were assessed for possible association with important production and reproduction traits across three lactation cycles in Vrindavani cattle population. The first ten principal components were included in the model for haplotype-based association analysis to correct for stratification effects of assessed individuals. Multiple haplotypes were found to be associated with age at first calving, total lactation milk yield, peak yield, dry days, inter-calving period and service period. Various candidate genes were found to overlap haplotypes that were significantly associated with age at first calving (CDH18, MARCHF11, MYO10, FBXL7), total lactation milk yield (TGF, PDE1A, and COL8A1), peak yield (PPARGC1A, RCAN1, KCNE1, SMIM34 and MRPS6), dry days (CPNE4, ACAD11 and MRAS), inter-calving period (ABCG5, ABCG8 and COX7A2L) and service period (FOXL2 and PIK3CB). The putative candidate genes overlapping the significantly associated haplotypes revealed important pathways affecting the production and reproduction performance of animals. The identified genes and pathways may serve as good candidate markers to select animals for improved production and reproduction performance in future generations.
Collapse
Affiliation(s)
- Sheikh Firdous Ahmad
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Akansha Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Munish Gangwar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subodh Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Amit Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| |
Collapse
|
17
|
Massender E, Oliveira HR, Brito LF, Maignel L, Jafarikia M, Baes CF, Sullivan B, Schenkel FS. Genome-wide association study for milk production and conformation traits in Canadian Alpine and Saanen dairy goats. J Dairy Sci 2023; 106:1168-1189. [PMID: 36526463 DOI: 10.3168/jds.2022-22223] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022]
Abstract
Increasing the productivity of Canadian dairy goats is critical to the competitiveness of the sector; however, little is known about the underlying genetic architecture of economically important traits in these populations. Consequently, the objectives of this study were as follows: (1) to perform a single-step GWAS for milk production traits (milk, protein, and fat yields, and protein and fat percentages in first and later lactations) and conformation traits (body capacity, dairy character, feet and legs, fore udder, general appearance, rear udder, suspensory ligament, and teats) in the Canadian Alpine and Saanen breeds; and (2) to identify positional and functional candidate genes related to these traits. The data available for analysis included 305-d milk production records for 6,409 Alpine and 3,434 Saanen does in first lactation and 5,827 Alpine and 2,632 Saanen does in later lactations; as well as linear type conformation records for 5,158 Alpine and 2,342 Saanen does. Genotypes were available for 833 Alpine and 874 Saanen animals. Both single-breed and multiple-breed GWAS were performed using single-trait animal models. Positional and functional candidate genes were then identified in downstream analyses. The GWAS identified 189 unique SNP that were significant at the chromosomal level, corresponding to 271 unique positional candidate genes within 50 kb up- and downstream, across breeds and traits. This study provides evidence for the economic importance of several candidate genes (e.g., CSN1S1, CSN2, CSN1S2, CSN3, DGAT1, and ZNF16) in the Canadian Alpine and Saanen populations that have been previously reported in other dairy goat populations. Moreover, several novel positional and functional candidate genes (e.g., RPL8, DCK, and MOB1B) were also identified. Overall, the results of this study have provided greater insight into the genetic architecture of milk production and conformation traits in the Canadian Alpine and Saanen populations. Greater understanding of these traits will help to improve dairy goat breeding programs.
Collapse
Affiliation(s)
- Erin Massender
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Hinayah R Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Luiz F Brito
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Laurence Maignel
- Canadian Centre for Swine Improvement Inc., Ottawa, ON, K1A 0C6, Canada
| | - Mohsen Jafarikia
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Canadian Centre for Swine Improvement Inc., Ottawa, ON, K1A 0C6, Canada
| | - Christine F Baes
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Brian Sullivan
- Canadian Centre for Swine Improvement Inc., Ottawa, ON, K1A 0C6, Canada
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
18
|
Čítek J, Brzáková M, Bauer J, Tichý L, Sztankóová Z, Vostrý L, Steyn Y. Genome-Wide Association Study for Body Conformation Traits and Fitness in Czech Holsteins. Animals (Basel) 2022; 12:ani12243522. [PMID: 36552441 PMCID: PMC10375906 DOI: 10.3390/ani12243522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was a genome-wide association study (GWAS) on conformation traits using 25,486 genotyped Czech Holsteins, with 35,227 common SNPs for each genotype. Linear trait records were collected between 1995 and 2020. The Interbull information from Multiple Across Country Evaluation (MACE) was included for bulls that mostly had daughter records in a foreign country. When using the Bonferroni correction, the number of SNPs that were either significant or approached the significance threshold was low-dairy capacity composite on BTA4, feet and legs composite BTA21, total score BTA10, stature BTA24, body depth BTA6, angularity BTA20, fore udder attachment BTA10. Without the Bonferroni correction, the total number of significant or near of significance SNPs was 32. The SNPs were localized on BTA1,2,4,5,6,7,8,18,22,25,26,28 for dairy capacity composite, BTA15,21 for feet and legs composite, BTA10 for total score, BTA24 stature, BTA6,23 body depth, BTA20 angularity, BTA2 rump angle, BTA9,10 rear legs rear view, BTA2,19 rear legs side view, BTA10 fore udder attachment, BTA2 udder depth, BTA10 rear udder height, BTA12 central alignment, BTA24 rear teat placement, BTA8,29 rear udder width. The results provide biological information for the improvement of body conformation and fitness in the Holstein population.
Collapse
Affiliation(s)
- Jindřich Čítek
- Department of Genetics and Agricultural Biotechnology, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic
- Veterinary Research Institute, Hudcova 296, 621 00 Brno, Czech Republic
| | - Michaela Brzáková
- Institute of Animal Science, Přátelství 815, 104 00 Praha, Czech Republic
| | - Jiří Bauer
- Czech Moravian Breeders' Corporation, Benešovská 123, 252 09 Hradištko, Czech Republic
| | - Ladislav Tichý
- Institute of Animal Science, Přátelství 815, 104 00 Praha, Czech Republic
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Praha, Czech Republic
| | - Zuzana Sztankóová
- Institute of Animal Science, Přátelství 815, 104 00 Praha, Czech Republic
| | - Luboš Vostrý
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Praha, Czech Republic
| | - Yvette Steyn
- Department of Animal and Dairy Science, University of Georgia, 425 River Road, Athens, GA 30602, USA
| |
Collapse
|
19
|
Narayana SG, de Jong E, Schenkel FS, Fonseca PA, Chud TC, Powel D, Wachoski-Dark G, Ronksley PE, Miglior F, Orsel K, Barkema HW. Underlying genetic architecture of resistance to mastitis in dairy cattle: A systematic review and gene prioritization analysis of genome-wide association studies. J Dairy Sci 2022; 106:323-351. [DOI: 10.3168/jds.2022-21923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/01/2022] [Indexed: 11/05/2022]
|
20
|
Atashi H, Bastin C, Wilmot H, Vanderick S, Hubin X, Gengler N. Genome-wide association study for selected cheese-making properties in Dual-Purpose Belgian Blue cows. J Dairy Sci 2022; 105:8972-8988. [PMID: 36175238 DOI: 10.3168/jds.2022-21780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/21/2022] [Indexed: 01/05/2023]
Abstract
This study aimed to estimate genetic parameters and identify genomic region(s) associated with selected cheese-making properties (CMP) in Dual-Purpose Belgian Blue (DPBB) cows. Edited data were 46,301 test-day records of milk yield, fat percentage, protein percentage, casein percentage, milk calcium content (CC), coagulation time (CT), curd firmness after 30 min from rennet addition (a30), and milk titratable acidity (MTA) collected from 2014 to 2020 on 4,077 first-parity (26,027 test-day records), and 3,258 second-parity DPBB cows (20,274 test-day records) distributed in 124 herds in the Walloon Region of Belgium. Data of 28,266 SNP, located on 29 Bos taurus autosomes (BTA) of 1,699 animals were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method. The SNP solutions were estimated using a single-step genomic BLUP approach. The proportion of the total additive genetic variance explained by windows of 25 consecutive SNPs (with an average size of ∼2 Mb) was calculated, and regions accounting for at least 1.0% of the total additive genetic variance were used to search for candidate genes. Heritability estimates for the included CMP ranged from 0.19 (CC) to 0.50 (MTA), and 0.24 (CC) to 0.41 (MTA) in the first and second parity, respectively. The genetic correlation estimated between CT and a30 varied from -0.61 to -0.41 and from -0.55 to -0.38 in the first and second lactations, respectively. Negative genetic correlations were found between CT and milk yield and composition, while those estimated between curd firmness and milk composition were positive. Genome-wide association analyses results identified 4 genomic regions (BTA1, BTA3, BTA7, and BTA11) associated with the considered CMP. The identified genomic regions showed contrasting results between parities and among the different stages of each parity. It suggests that different sets of candidate genes underlie the phenotypic expression of the considered CMP between parities and lactation stages of each parity. The findings of this study can be used for future implementation and use of genomic evaluation to improve the cheese-making traits in DPBB cows.
Collapse
Affiliation(s)
- H Atashi
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; Department of Animal Science, Shiraz University, 71441-65186 Shiraz, Iran.
| | - C Bastin
- Walloon Breeders Association, 5590 Ciney, Belgium
| | - H Wilmot
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; National Fund for Scientific Research (FRS-FNRS), Rue d'Egmont 5, B-1000 Brussels, Belgium
| | - S Vanderick
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - X Hubin
- Walloon Breeders Association, 5590 Ciney, Belgium
| | - N Gengler
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
21
|
Polymorphisms of the IL-17A Gene Influence Milk Production Traits and Somatic Cell Score in Chinese Holstein Cows. Bioengineering (Basel) 2022; 9:bioengineering9090448. [PMID: 36134995 PMCID: PMC9496013 DOI: 10.3390/bioengineering9090448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The cow’s milk production characteristics are a significant economic indicator in the livestock industry. Serum cytokines such as interleukin-17 (IL-17) may be potential indicators for bovine mastitis concerning the milk somatic cell count (SCC) and somatic cell score (SCS). The current study aims to find previously undiscovered single nucleotide polymorphisms in the bovine (IL-17A) gene and further investigates their associations with milk production traits in Chinese Holstein cows. Twenty Chinese Holstein cows were randomly chosen from six farms in Jiangsu Province, China. The DNA was extracted from selected samples of bloods for PCR amplification Sequence analyses were used to find SNPs in the bovine (IL-17A) gene. The discovered five SNPs are g-1578A>G, g-1835G>A, and g-398T>A in the 5′UTR; g3164T>C and g3409G>C in the exon region. The genotyping of Holstein cows (n = 992) was performed based on Sequenom Mass ARRAY and SNP data. The connection between SNPs, milk production variables, and the somatic cell score was investigated using the least-squares method. Based on the results, SNP g-398T>A had a significant linkage disequilibrium with g3164T>C. SNPs were found to have significant (p < 0.05) correlations with the test-day milk yield. In conclusion, IL-17A affects cow’s milk production traits significantly.
Collapse
|
22
|
Liu D, Xu Z, Zhao W, Wang S, Li T, Zhu K, Liu G, Zhao X, Wang Q, Pan Y, Ma P. Genetic parameters and genome-wide association for milk production traits and somatic cell score in different lactation stages of Shanghai Holstein population. Front Genet 2022; 13:940650. [PMID: 36134029 PMCID: PMC9483179 DOI: 10.3389/fgene.2022.940650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to investigate the genetic parameters and genetic architectures of six milk production traits in the Shanghai Holstein population. The data used to estimate the genetic parameters consisted of 1,968,589 test-day records for 305,031 primiparous cows. Among the cows with phenotypes, 3,016 cows were genotyped with Illumina Bovine SNP50K BeadChip, GeneSeek Bovine 50K BeadChip, GeneSeek Bovine LD BeadChip v4, GeneSeek Bovine 150K BeadChip, or low-depth whole-genome sequencing. A genome-wide association study was performed to identify quantitative trait loci and genes associated with milk production traits in the Shanghai Holstein population using genotypes imputed to whole-genome sequences and both fixed and random model circulating probability unification and a mixed linear model with rMVP software. Estimated heritabilities (h2) varied from 0.04 to 0.14 for somatic cell score (SCS), 0.07 to 0.22 for fat percentage (FP), 0.09 to 0.27 for milk yield (MY), 0.06 to 0.23 for fat yield (FY), 0.09 to 0.26 for protein yield (PY), and 0.07 to 0.35 for protein percentage (PP), respectively. Within lactation, genetic correlations for SCS, FP, MY, FY, PY, and PP at different stages of lactation estimated in random regression model were ranged from -0.02 to 0.99, 0.18 to 0.99, 0.04 to 0.99, 0.04 to 0.99, 0.01 to 0.99, and 0.33 to 0.99, respectively. The genetic correlations were highest between adjacent DIM but decreased as DIM got further apart. Candidate genes included those related to production traits (DGAT1, MGST1, PTK2, and SCRIB), disease-related (LY6K, COL22A1, TECPR2, and PLCB1), heat stress-related (ITGA9, NDST4, TECPR2, and HSF1), and reproduction-related (7SK and DOCK2) genes. This study has shown that there are differences in the genetic mechanisms of milk production traits at different stages of lactation. Therefore, it is necessary to conduct research on milk production traits at different stages of lactation as different traits. Our results can also provide a theoretical basis for subsequent molecular breeding, especially for the novel genetic loci.
Collapse
Affiliation(s)
- Dengying Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Wei Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyi Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tuowu Li
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Zhu
- Shanghai Dairy Cattle Breeding Centre Co, Ltd, Shanghai, China
| | - Guanglei Liu
- Shanghai Dairy Cattle Breeding Centre Co, Ltd, Shanghai, China
| | - Xiaoduo Zhao
- Shanghai Dairy Cattle Breeding Centre Co, Ltd, Shanghai, China
| | - Qishan Wang
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Peipei Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Hay E, Toghiani S, Roberts AJ, Paim T, Kuehn LA, Blackburn HD. Genetic architecture of a composite beef cattle population. J Anim Sci 2022; 100:6623572. [PMID: 35771897 DOI: 10.1093/jas/skac230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022] Open
Abstract
Composite breeds are widely used in the beef industry. Composites allow producers to combine desirable traits from the progenitor breeds and simplify herd management, without repeated crossbreeding and maintenance of purebreds. In this study, genomic information was used to evaluate the genetic composition and characteristics of a three-breed beef cattle composite. This composite population referred to as Composite Gene Combination (CGC) consisted of 50% Red Angus, 25% Charolais, 25% Tarentaise. A total of 248 animals were used in this study CGC (n=79), Red Angus (n=61), Charolais (n=79) and Tarentaise (n=29). All animals were genotyped with 777k HD panel. Principal component and ADMIXTURE analyses were carried out to evaluate the genetic structure of CGC animals. The ADMIXTURE revealed the proportion of Tarentaise increased to approximately 57% while Charolais decreased to approximately 5%, and Red Angus decreased to 38% across generations. To evaluate these changes in the genomic composition across different breeds and in CGC across generations runs of homozygosity (ROH) were conducted. This analysis showed Red Angus to have the highest total length of ROH segments per animal with a mean of 349.92 Mb and lowest in CGC with a mean of 141.10 Mb. Furthermore, it showed the formation of new haplotypes in CGC around the sixth generation. Selection signatures were evaluated through Fst and HapFlk analyses. Several selection sweeps in CGC were identified especially in chromosomes 5 and 14 which have previously been reported to be associated with coat color and growth traits. The study supports our previous findings that progenitor combinations are not stable over generations and that either direct or natural selection plays a role in modifying the progenitor proportions. Furthermore, the results showed that Tarentaise contributed useful attributes to the composite in a cool semi-arid environment and suggests a re-exploration of this breed's role may be warranted.
Collapse
Affiliation(s)
- E Hay
- USDA Agricultural Research Service, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT 59301, USA
| | - S Toghiani
- USDA Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - A J Roberts
- USDA Agricultural Research Service, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT 59301, USA
| | - T Paim
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde, Goias, Brazil
| | - L A Kuehn
- USDA, Agricultural Research Service, US Meat Animal Research Center, Clay Center, 68933, USA
| | - H D Blackburn
- National Center for Genetic Resources Preservation, USDA, Fort Collins, CO, 80521, USA
| |
Collapse
|
24
|
Zare M, Atashi H, Hostens M. Genome-Wide Association Study for Lactation Performance in the Early and Peak Stages of Lactation in Holstein Dairy Cows. Animals (Basel) 2022; 12:ani12121541. [PMID: 35739877 PMCID: PMC9219502 DOI: 10.3390/ani12121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Although genome-wide association studies (GWAS) have been carried out within a variety of cattle breeds, they are mainly based on the accumulated 305-day lactation yield traits estimated by summing the test-day recorded every day during the lactation period, or combining the weekly or monthly test-day records by linear interpolation. Since the additive genetic variance for milk yield and composition changes during lactation, the genetic effects of QTL related to these traits are not constant during the lactation period. Therefore, a better understanding of the genetic architecture of milk production traits in different lactation stages (e.g., beginning, peak, and end stages of lactation) is needed. The aim of this study was to detect genomic loci associated with lactation performance during 9 to 50 days in milk (DIM) in Holstein dairy cows. Candidate genes identified for milk production traits showed contrasting results between the EARLY and PEAK stages of lactation. Based on the results of this study, it can be concluded that in any genomic study it should be taken into account that the genetic effects of genes related to the lactation performance are not constant during the lactation period. Abstract This study aimed to detect genomic loci associated with the lactation performance during 9 to 50 days in milk (DIM) in Holstein dairy cows. Daily milk yield (MY), fat yield (FY), and protein yield (PY) during 9 to 50 DIM were recorded on 134 multiparous Holstein dairy cows distributed in four research herds. Fat- and protein-corrected milk (FPCM), fat-corrected milk (FCM), and energy-corrected milk (ECM) were predicted. The records collected during 9 to 25 DIM were put into the early stage of lactation (EARLY) and those collected during 26 to 50 DIM were put into the peak stage of lactation (PEAK). Then, the mean of traits in each cow included in each lactation stage (EARLY and PEAK) were estimated and used as phenotypic observations for the genome-wide association study. The included animals were genotyped with the Illumina BovineHD Genotyping BeadChip (Illumina Inc., San Diego, CA, USA) for a total of 777,962 single nucleotide polymorphisms (SNPs). After quality control, 585,109 variants were analyzed using GEMMA software in a mixed linear model. Although there was no SNP associated with traits included at the 5% genome-wide significance threshold, 18 SNPs were identified to be associated with milk yield and composition at the suggestive genome-wide significance threshold. Candidate genes identified for milk production traits showed contrasting results between the EARLY and PEAK stages of lactation. This suggests that differential sets of candidate genes underlie the phenotypic expression of the considered traits in the EARLY and PEAK stages of lactation. Although further functional studies are needed to validate our findings in independent populations, it can be concluded that in any genomic study it should be taken into account that the genetic effects of genes related to the lactation performance are not constant during the lactation period.
Collapse
Affiliation(s)
- Mahsa Zare
- Department of Animal Science, Shiraz University, Shiraz 7144113131, Iran; (M.Z.); (H.A.)
| | - Hadi Atashi
- Department of Animal Science, Shiraz University, Shiraz 7144113131, Iran; (M.Z.); (H.A.)
| | - Miel Hostens
- Department of Population Health Sciences, University of Utrecht, Yalelaan 7, 3584 CL Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-30-253-1820
| |
Collapse
|
25
|
Canive M, Badia-Bringué G, Vázquez P, Garrido JM, Juste RA, Fernandez A, González-Recio O, Alonso-Hearn M. A Genome-Wide Association Study for Tolerance to Paratuberculosis Identifies Candidate Genes Involved in DNA Packaging, DNA Damage Repair, Innate Immunity, and Pathogen Persistence. Front Immunol 2022; 13:820965. [PMID: 35464478 PMCID: PMC9019162 DOI: 10.3389/fimmu.2022.820965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Although the genetic susceptibility to diseases has been extensively studied, the genetic loci and the primary molecular and cellular mechanisms that control disease tolerance are still largely unknown. Bovine paratuberculosis (PTB) is an enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP). PTB affects cattle worldwide and represents a major issue on animal health. In this study, the associations between host genetic and PTB tolerance were investigated using the genotypes from 277 Spanish Holstein cows with two distinct phenotypes: cases) infected animals with positive PCR and bacteriological culture results but without lesions in gut tissues (N= 24), and controls) animals with negative PCR and culture results but with PTB-associated lesions (N= 253). DNA from peripheral blood of the study population was genotyped with the Bovine EuroG MD Bead Chip, and the corresponding genotypes were imputed to whole-genome sequencing (WGS) data. A genome-wide association study was performed using the WGS data and the defined phenotypes in a case-control approach. A total of 142 single nucleotide polymorphisms (SNPs) were associated (false discovery rate ≤ 0.05, P values between 1.5 × 10-7 and 5.7 × 10-7) with tolerance (heritability= 0.55). The 40 SNPs with P-values < 5 × 10-7 defined 9 QTLs and 98 candidate genes located on BTA4, BTA9, BTA16, BTA25, and BTA26. Some of the QTLs identified in this study overlap with QTLs previously associated with PTB, bovine tuberculosis, mastitis, somatic cell score, bovine diarrhea virus persistent infection, tick resistance, and length of productive life. Two candidate genes with important roles in DNA damage response (ERCC4 and RMI2) were identified on BTA25. Functional analysis using the 98 candidate genes revealed a significant enrichment of the DNA packaging process (TNP2/PRMI1/PRM2/PRM3). In addition, the TNF-signaling (bta04668; TRAF5/CREB5/CASP7/CHUK) and the toxoplasmosis (bta05145; TGFβ2/CHUK/CIITA/SOCS1) pathways were significantly enriched. Interestingly, the nuclear Factor NF-κβ Inhibitor Kinase Alpha (CHUK), a key molecule in the regulation of the NF-κB pathway, was enriched in both pathways. Taken together, our results define a distinct immunogenetic profile in the PTB-tolerant animals designed to control bacterial growth, modulate inflammation, limit tissue damage and increase repair, thus reducing the severity of the disease.
Collapse
Affiliation(s)
- María Canive
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Patricia Vázquez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Joseba M Garrido
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ramón A Juste
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Almudena Fernandez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC, Madrid, Spain
| | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC, Madrid, Spain.,Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
26
|
Bohlouli M, Halli K, Yin T, Gengler N, König S. Genome-wide associations for heat stress response suggest potential candidate genes underlying milk fatty acid composition in dairy cattle. J Dairy Sci 2022; 105:3323-3340. [PMID: 35094857 DOI: 10.3168/jds.2021-21152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022]
Abstract
Contents of milk fatty acids (FA) display remarkable alterations along climatic gradients. Detecting candidate genes underlying such alterations might be beneficial for the exploration of climate sensitivity in dairy cattle. Consequently, we aimed on the definition of FA heat stress indicators, considering FA breeding values in response to temperature-humidity index (THI) alterations. Indicators were used in GWAS, in ongoing gene annotations and for the estimation of chromosome-wide variance components. The phenotypic data set consisted of 39,600 test-day milk FA records from 5,757 first-lactation Holstein dairy cows kept in 16 large-scale German cooperator herds. The FA traits were C18:0, polyunsaturated fatty acids (PUFA), saturated fatty acids (SFA), and unsaturated fatty acids (UFA). After genotype quality control, 40,523 SNP markers from 3,266 cows and 930 sires were considered. Meteorological data from the weather station in closest herd distance were used for the calculation of maximum hourly daily THI, which were allocated to 10 different THI classes. The same FA from 3 stages of lactation were considered as different, but genetically correlated traits. Consequently, a 3-trait reaction norm model was used to estimate genetic parameters and breeding values for FA along THI classes, considering either pedigree (A) or genomic (G) relationship matrices. De-regressed proofs and genomic estimated breeding values at the intermediate THI class 5 and at the extreme THI class 10 were used as pseudophenotypes in ongoing genomic analyses for thermoneutral (TNC) and heat stress conditions (HSC), respectively. The differences in de-regressed proofs and in genomic estimated breeding values from both THI classes were pseudophenotypes for heat stress response (HSR). Genetic correlations between the same FA under TNC and HSC were smallest in the first lactation stage and ranged from 0.20 for PUFA to 0.87 for SFA when modeling with the A matrix, and from 0.35 for UFA to 0.86 for SFA when modeling with the G matrix. In the first lactation stage, larger additive genetic variances under HSC compared with TNC indicate climate sensitivity for C18:0, PUFA, and UFA. Climate sensitivity was also reflected by pronounced chromosome-wide genetic variances for HSR of PUFA and UFA in the first stage of lactation. For all FA under TNC, HSC, and HSR, quite large genetic variance proportions were explained by BTA14. In GWAS, 30 SNP (within or close to 38 potential candidate genes) overlapped for HSR of the different FA. One unique potential candidate gene (AMFR) was detected for HSR of PUFA, 15 for HSR of SFA (ADGRB1, DENND3, DUSP16, EFR3A, EMP1, ENSBTAG00000003838, EPS8, MGP, PIK3C2G, STYK1, TMEM71, GSG1, SMARCE1, CCDC57, and FASN) and 3 for HSR of UFA (ENSBTAG00000048091, PAEP, and EPPK1). The identified unique genes play key roles in milk FA synthesis and are associated with disease resistance in dairy cattle. The results suggest consideration of FA in combination with climatic responses when inferring genetic mechanisms of heat stress in dairy cows.
Collapse
Affiliation(s)
- M Bohlouli
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - K Halli
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - T Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - N Gengler
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - S König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany.
| |
Collapse
|
27
|
Atashi H, Wilmot H, Vanderick S, Hubin X, Gengler N. Genome-wide association study for milk production traits in Dual-Purpose Belgian Blue cows. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Neumann GB, Korkuć P, Arends D, Wolf MJ, May K, Reißmann M, Elzaki S, König S, Brockmann GA. Design and performance of a bovine 200 k SNP chip developed for endangered German Black Pied cattle (DSN). BMC Genomics 2021; 22:905. [PMID: 34922441 PMCID: PMC8684242 DOI: 10.1186/s12864-021-08237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/03/2021] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND German Black Pied cattle (DSN) are an endangered dual-purpose breed which was largely replaced by Holstein cattle due to their lower milk yield. DSN cattle are kept as a genetic reserve with a current herd size of around 2500 animals. The ability to track sequence variants specific to DSN could help to support the conservation of DSN's genetic diversity and to provide avenues for genetic improvement. RESULTS Whole-genome sequencing data of 304 DSN cattle were used to design a customized DSN200k SNP chip harboring 182,154 variants (173,569 SNPs and 8585 indels) based on ten selection categories. We included variants of interest to DSN such as DSN unique variants and variants from previous association studies in DSN, but also variants of general interest such as variants with predicted consequences of high, moderate, or low impact on the transcripts and SNPs from the Illumina BovineSNP50 BeadChip. Further, the selection of variants based on haplotype blocks ensured that the whole-genome was uniformly covered with an average variant distance of 14.4 kb on autosomes. Using 300 DSN and 162 animals from other cattle breeds including Holstein, endangered local cattle populations, and also a Bos indicus breed, performance of the SNP chip was evaluated. Altogether, 171,978 (94.31%) of the variants were successfully called in at least one of the analyzed breeds. In DSN, the number of successfully called variants was 166,563 (91.44%) while 156,684 (86.02%) were segregating at a minor allele frequency > 1%. The concordance rate between technical replicates was 99.83 ± 0.19%. CONCLUSION The DSN200k SNP chip was proved useful for DSN and other Bos taurus as well as one Bos indicus breed. It is suitable for genetic diversity management and marker-assisted selection of DSN animals. Moreover, variants that were segregating in other breeds can be used for the design of breed-specific customized SNP chips. This will be of great value in the application of conservation programs for endangered local populations in the future.
Collapse
Affiliation(s)
- Guilherme B Neumann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Paula Korkuć
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Danny Arends
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Manuel J Wolf
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Gießen, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Gießen, Germany
| | - Monika Reißmann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Salma Elzaki
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany.,Department of Genetics and Animal Breeding, Faculty of Animal Production, University of Khartoum, Khartoum North, Sudan
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Gießen, Germany
| | - Gudrun A Brockmann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
29
|
Pedrosa VB, Schenkel FS, Chen SY, Oliveira HR, Casey TM, Melka MG, Brito LF. Genomewide Association Analyses of Lactation Persistency and Milk Production Traits in Holstein Cattle Based on Imputed Whole-Genome Sequence Data. Genes (Basel) 2021; 12:1830. [PMID: 34828436 PMCID: PMC8624223 DOI: 10.3390/genes12111830] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Lactation persistency and milk production are among the most economically important traits in the dairy industry. In this study, we explored the association of over 6.1 million imputed whole-genome sequence variants with lactation persistency (LP), milk yield (MILK), fat yield (FAT), fat percentage (FAT%), protein yield (PROT), and protein percentage (PROT%) in North American Holstein cattle. We identified 49, 3991, 2607, 4459, 805, and 5519 SNPs significantly associated with LP, MILK, FAT, FAT%, PROT, and PROT%, respectively. Various known associations were confirmed while several novel candidate genes were also revealed, including ARHGAP35, NPAS1, TMEM160, ZC3H4, SAE1, ZMIZ1, PPIF, LDB2, ABI3, SERPINB6, and SERPINB9 for LP; NIM1K, ZNF131, GABRG1, GABRA2, DCHS1, and SPIDR for MILK; NR6A1, OLFML2A, EXT2, POLD1, GOT1, and ETV6 for FAT; DPP6, LRRC26, and the KCN gene family for FAT%; CDC14A, RTCA, HSTN, and ODAM for PROT; and HERC3, HERC5, LALBA, CCL28, and NEURL1 for PROT%. Most of these genes are involved in relevant gene ontology (GO) terms such as fatty acid homeostasis, transporter regulator activity, response to progesterone and estradiol, response to steroid hormones, and lactation. The significant genomic regions found contribute to a better understanding of the molecular mechanisms related to LP and milk production in North American Holstein cattle.
Collapse
Affiliation(s)
- Victor B. Pedrosa
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (V.B.P.); (S.-Y.C.); (H.R.O.); (T.M.C.)
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, Brazil
| | - Flavio S. Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G2W1, Canada;
| | - Shi-Yi Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (V.B.P.); (S.-Y.C.); (H.R.O.); (T.M.C.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (V.B.P.); (S.-Y.C.); (H.R.O.); (T.M.C.)
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G2W1, Canada;
| | - Theresa M. Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (V.B.P.); (S.-Y.C.); (H.R.O.); (T.M.C.)
| | - Melkaye G. Melka
- Department of Animal and Food Science, University of Wisconsin River Falls, River Falls, WI 54022, USA;
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (V.B.P.); (S.-Y.C.); (H.R.O.); (T.M.C.)
| |
Collapse
|
30
|
Buaban S, Lengnudum K, Boonkum W, Phakdeedindan P. Genome-wide association study on milk production and somatic cell score for Thai dairy cattle using weighted single-step approach with random regression test-day model. J Dairy Sci 2021; 105:468-494. [PMID: 34756438 DOI: 10.3168/jds.2020-19826] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 08/24/2021] [Indexed: 12/26/2022]
Abstract
Genome-wide association studies are a powerful tool to identify genomic regions and variants associated with phenotypes. However, only limited mutual confirmation from different studies is available. The objectives of this study were to identify genomic regions as well as genes and pathways associated with the first-lactation milk, fat, protein, and total solid yields; fat, protein, and total solid percentage; and somatic cell score (SCS) in a Thai dairy cattle population. Effects of SNPs were estimated by a weighted single-step GWAS, which back-solved the genomic breeding values predicted using single-step genomic BLUP (ssGBLUP) fitting a single-trait random regression test-day model. Genomic regions that explained at least 0.5% of the total genetic variance were selected for further analyses of candidate genes. Despite the small number of genotyped animals, genomic predictions led to an improvement in the accuracy over the traditional BLUP. Genomic predictions using weighted ssGBLUP were slightly better than the ssGBLUP. The genomic regions associated with milk production traits contained 210 candidate genes on 19 chromosomes [Bos taurus autosome (BTA) 1 to 7, 9, 11 to 16, 20 to 21, 26 to 27 and 29], whereas 21 candidate genes on 3 chromosomes (BTA 11, 16, and 21) were associated with SCS. Many genomic regions explained a small fraction of the genetic variance, indicating polygenic inheritance of the studied traits. Several candidate genes coincided with previous reports for milk production traits in Holstein cattle, especially a large region of genes on BTA14. We identified 141 and 5 novel genes related to milk production and SCS, respectively. These novel genes were also found to be functionally related to heat tolerance (e.g., SLC45A2, IRAG1, and LOC101902172), longevity (e.g., SYT10 and LOC101903327), and fertility (e.g., PAG1). These findings may be attributed to indirect selection in our population. Identified biological networks including intracellular cell transportation and protein catabolism implicate milk production, whereas the immunological pathways such as lymphocyte activation are closely related to SCS. Further studies are required to validate our findings before exploiting them in genomic selection.
Collapse
Affiliation(s)
- S Buaban
- Bureau of Animal Husbandry and Genetic Improvement, Department of Livestock Development, Pathum Thani 12000, Thailand
| | - K Lengnudum
- Bureau of Biotechnology in Livestock Production, Department of Livestock Development, Pathum Thani 12000, Thailand
| | - W Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - P Phakdeedindan
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
31
|
Liu D, Chen Z, Zhao W, Guo L, Sun H, Zhu K, Liu G, Shen X, Zhao X, Wang Q, Ma P, Pan Y. Genome-wide selection signatures detection in Shanghai Holstein cattle population identified genes related to adaption, health and reproduction traits. BMC Genomics 2021; 22:747. [PMID: 34654366 PMCID: PMC8520274 DOI: 10.1186/s12864-021-08042-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Background Over several decades, a wide range of natural and artificial selection events in response to subtropical environments, intensive pasture and intensive feedlot systems have greatly changed the customary behaviour, appearance, and important economic traits of Shanghai Holstein cattle. In particular, the longevity of the Shanghai Holstein cattle population is generally short, approximately the 2nd to 3rd lactation. In this study, two complementary approaches, integrated haplotype score (iHS) and runs of homozygosity (ROH), were applied for the detection of selection signatures within the genome using genotyping by genome-reduced sequence data from 1092 cows. Results In total, 101 significant iHS genomic regions containing selection signatures encompassing a total of 256 candidate genes were detected. There were 27 significant |iHS| genomic regions with a mean |iHS| score > 2. The average number of ROH per individual was 42.15 ± 25.47, with an average size of 2.95 Mb. The length of 78 % of the detected ROH was within the range of 1–2 MB and 2–4 MB, and 99 % were shorter than 8 Mb. A total of 168 genes were detected in 18 ROH islands (top 1 %) across 16 autosomes, in which each SNP showed a percentage of occurrence > 30 %. There were 160 and 167 genes associated with the 52 candidate regions within health-related QTL intervals and 59 candidate regions within reproduction-related QTL intervals, respectively. Annotation of the regions harbouring clustered |iHS| signals and candidate regions for ROH revealed a panel of interesting candidate genes associated with adaptation and economic traits, such as IL22RA1, CALHM3, ITGA9, NDUFB3, RGS3, SOD2, SNRPA1, ST3GAL4, ALAD, EXOSC10, and MASP2. In a further step, a total of 1472 SNPs in 256 genes were matched with 352 cis-eQTLs in 21 tissues and 27 trans-eQTLs in 6 tissues. For SNPs located in candidate regions for ROH, a total of 108 cis-eQTLs in 13 tissues and 4 trans-eQTLs were found for 1092 SNPs. Eighty-one eGenes were significantly expressed in at least one tissue relevant to a trait (P value < 0.05) and matched the 256 genes detected by iHS. For the 168 significant genes detected by ROH, 47 gene-tissue pairs were significantly associated with at least one of the 37 traits. Conclusions We provide a comprehensive overview of selection signatures in Shanghai Holstein cattle genomes by combining iHS and ROH. Our study provides a list of genes associated with immunity, reproduction and adaptation. For functional annotation, the cGTEx resource was used to interpret SNP-trait associations. The results may facilitate the identification of genes relevant to important economic traits and can help us better understand the biological processes and mechanisms affected by strong ongoing natural or artificial selection in livestock populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08042-x.
Collapse
Affiliation(s)
- Dengying Liu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Zhenliang Chen
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Wei Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Longyu Guo
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Hao Sun
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Kai Zhu
- Shanghai Dairy Cattle Breeding Centre Co., Ltd, 201901, Shanghai, P.R. China
| | - Guanglei Liu
- Shanghai Dairy Cattle Breeding Centre Co., Ltd, 201901, Shanghai, P.R. China
| | - Xiuping Shen
- Shanghai Agricultural Development Promotion Center, 200335, Shanghai, PR China
| | - Xiaoduo Zhao
- Shanghai Dairy Cattle Breeding Centre Co., Ltd, 201901, Shanghai, P.R. China
| | - Qishan Wang
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, 310058, Hangzhou, PR China
| | - Peipei Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China.
| | - Yuchun Pan
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, 310058, Hangzhou, PR China.
| |
Collapse
|
32
|
Khonkhaeng B, Cherdthong A, Chantaprasarn N, Harvatine KJ, Foiklang S, Chanjula P, Wanapat M, So S, Polyorach S. Comparative effect of Volvariella volvacea-treated rice straw and purple corn stover fed at different levels on predicted methane production and milk fatty acid profiles in tropical dairy cows. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Meta-analysis of genome-wide association studies and gene networks analysis for milk production traits in Holstein cows. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
|
35
|
Lázaro SF, Tonhati H, Oliveira HR, Silva AA, Nascimento AV, Santos DJA, Stefani G, Brito LF. Genomic studies of milk-related traits in water buffalo (Bubalus bubalis) based on single-step genomic best linear unbiased prediction and random regression models. J Dairy Sci 2021; 104:5768-5793. [PMID: 33685677 DOI: 10.3168/jds.2020-19534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/02/2021] [Indexed: 01/14/2023]
Abstract
Genomic selection has been widely implemented in many livestock breeding programs, but it remains incipient in buffalo. Therefore, this study aimed to (1) estimate variance components incorporating genomic information in Murrah buffalo; (2) evaluate the performance of genomic prediction for milk-related traits using single- and multitrait random regression models (RRM) and the single-step genomic best linear unbiased prediction approach; and (3) estimate longitudinal SNP effects and candidate genes potentially associated with time-dependent variation in milk, fat, and protein yields, as well as somatic cell score (SCS) in multiple parities. The data used to estimate the genetic parameters consisted of a total of 323,140 test-day records. The average daily heritability estimates were moderate (0.35 ± 0.02 for milk yield, 0.22 ± 0.03 for fat yield, 0.42 ± 0.03 for protein yield, and 0.16 ± 0.03 for SCS). The highest heritability estimates, considering all traits studied, were observed between 20 and 280 d in milk (DIM). The genetic correlation estimates at different DIM among the evaluated traits ranged from -0.10 (156 to 185 DIM for SCS) to 0.61 (36 to 65 DIM for fat yield). In general, direct selection for any of the traits evaluated is expected to result in indirect genetic gains for milk yield, fat yield, and protein yield but also increase SCS at certain lactation stages, which is undesirable. The predicted RRM coefficients were used to derive the genomic estimated breeding values (GEBV) for each time point (from 5 to 305 DIM). In general, the tuning parameters evaluated when constructing the hybrid genomic relationship matrices had a small effect on the GEBV accuracy and a greater effect on the bias estimates. The SNP solutions were back-solved from the GEBV predicted from the Legendre random regression coefficients, which were then used to estimate the longitudinal SNP effects (from 5 to 305 DIM). The daily SNP effect for 3 different lactation stages were performed considering 3 different lactation stages for each trait and parity: from 5 to 70, from 71 to 150, and from 151 to 305 DIM. Important genomic regions related to the analyzed traits and parities that explain more than 0.50% of the total additive genetic variance were selected for further analyses of candidate genes. In general, similar potential candidate genes were found between traits, but our results suggest evidence of differential sets of candidate genes underlying the phenotypic expression of the traits across parities. These results contribute to a better understanding of the genetic architecture of milk production traits in dairy buffalo and reinforce the relevance of incorporating genomic information to genetically evaluate longitudinal traits in dairy buffalo. Furthermore, the candidate genes identified can be used as target genes in future functional genomics studies.
Collapse
Affiliation(s)
- Sirlene F Lázaro
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Humberto Tonhati
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Alessandra A Silva
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - André V Nascimento
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Daniel J A Santos
- Department of Animal and Avian Science, University of Maryland, College Park 20742
| | - Gabriela Stefani
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
36
|
Polymorphisms of the ACSL1 Gene Influence Milk Production Traits and Somatic Cell Score in Chinese Holstein Cows. Animals (Basel) 2020; 10:ani10122282. [PMID: 33287296 PMCID: PMC7761635 DOI: 10.3390/ani10122282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Milk production traits of cows are important economic indicators of the livestock industry. Many dairy farms strive to improve the quality of their milk. Long-chain acyl-CoA synthetase 1 (ACSL1) is a gene related to lipid metabolism. It is widely found in various organisms and can affect fat content and protein content in milk. Single nucleotide polymorphisms (SNP) refers to the polymorphism of DNA sequence caused by a single nucleotide variation at the gene level, which plays a vital function in the genetic study of milk production traits in dairy cows. Our study identified six SNPs of the ACSL1 gene in Chinese Holstein cows, which were related to milk yield, milk fat content, milk protein content and somatic cell score (SCS) to some extent. In summary, the pleiotropic effects of bovine ACSL1 for milk production traits were found in this paper, which will provide a reference for Chinese Holstein cow breeding selection and high economic benefits. Abstract Improving the quality of milk is a challenge for zootechnicians and dairy farms across the globe. Long-chain acyl-CoA synthetase 1 (ACSL1) is a significant member of the long-chain acyl-CoA synthetase gene family. It is widely found in various organisms and influences the lactation performance of cows, including fat percentage, milk protein percentage etc. Our study was aimed to investigate the genetic effects of single nucleotide polymorphisms (SNPs) in ACSL1 on milk production traits. Twenty Chinese Holstein cows were randomly selected to extract DNA from their blood samples for PCR amplification and sequencing to identify SNPs of the bovine ACSL1 gene, and six SNPs (5’UTR-g.20523C>G, g.35446C>T, g.35651G>A, g.35827C>T, g.35941G>A and g.51472C>T) were discovered. Then, Holstein cow genotyping (n = 992) was performed by Sequenom MassARRAY based on former SNP information. Associations between SNPs and milk production traits and somatic cell score (SCS) were analyzed by the least-squares method. The results showed that SNP g.35827C>T was in high linkage disequilibrium with g.35941G>A. Significant associations were found between SNPs and test-day milk yield (TDMY), fat content (FC), protein content (PC) and SCS (p < 0.05). Among these SNPs, SNP 5’UTR-g.20523C>G showed an extremely significant effect on PC and SCS (p < 0.01). The SNP g.35446C>T showed a statistically significant effect on FC, PC, and SCS (p < 0.01), and also TDMY (p < 0.05). The SNP g.35651G>A had a statistically significant effect on PC (p < 0.01). The SNP g.35827C>T showed a highly significant effect on TDMY, FC, and SCS (p < 0.01) and significantly influenced PC (p < 0.05). Lastly, SNP g.51472C>T was significantly associated with TDMY, FC, and SCS (p < 0.05). In summary, the pleiotropic effects of bovine ACSL1 for milk production traits were found in this paper, but further investigation will be required on the intrinsic correlation to provide a theoretical basis for the research on molecular genetics of milk quality traits of Holstein cows.
Collapse
|
37
|
Raschia M, Nani J, Carignano H, Amadio A, Maizon D, Poli M. Weighted single-step genome-wide association analyses for milk traits in Holstein and Holstein x Jersey crossbred dairy cattle. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Lin S, Wan Z, Zhang J, Xu L, Han B, Sun D. Genome-Wide Association Studies for the Concentration of Albumin in Colostrum and Serum in Chinese Holstein. Animals (Basel) 2020; 10:ani10122211. [PMID: 33255903 PMCID: PMC7759787 DOI: 10.3390/ani10122211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/24/2023] Open
Abstract
Albumin can be of particular benefit in fighting infections for newborn calves due to its anti-inflammatory and anti-oxidative stress properties. To identify the candidate genes related to the concentration of albumin in colostrum and serum, we collected the colostrum and blood samples from 572 Chinese Holstein cows within 24 h after calving and measured the concentration of albumin in the colostrum and serum using the ELISA methods. The cows were genotyped with GeneSeek 150 K chips (containing 140,668 single nucleotide polymorphisms; SNPs). After quality control, we performed GWASs via GCTA software with 91,620 SNPs and 563 cows. Consequently, 9 and 7 genome-wide significant SNPs (false discovery rate (FDR) at 1%) were identified. Correspondingly, 42 and 206 functional genes that contained or were approximate to (±1 Mbp) the significant SNPs were acquired. Integrating the biological process of these genes and the reported QTLs for immune and inflammation traits in cattle, 3 and 12 genes were identified as candidates for the concentration of colostrum and serum albumin, respectively; these are RUNX1, CBR1, OTULIN,CDK6, SHARPIN, CYC1, EXOSC4, PARP10, NRBP2, GFUS, PYCR3, EEF1D, GSDMD, PYCR2 and CXCL12. Our findings provide important information for revealing the genetic mechanism behind albumin concentration and for molecular breeding of disease-resistance traits in dairy cattle.
Collapse
Affiliation(s)
- Shan Lin
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (J.Z.); (L.X.); (B.H.)
| | - Zihui Wan
- Stae Key Laboratory of Agriobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| | - Junnan Zhang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (J.Z.); (L.X.); (B.H.)
| | - Lingna Xu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (J.Z.); (L.X.); (B.H.)
| | - Bo Han
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (J.Z.); (L.X.); (B.H.)
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (J.Z.); (L.X.); (B.H.)
- Correspondence:
| |
Collapse
|
39
|
Lozada-Soto EA, Maltecca C, Wackel H, Flowers W, Gray K, He Y, Huang Y, Jiang J, Tiezzi F. Evidence for recombination variability in purebred swine populations. J Anim Breed Genet 2020; 138:259-273. [PMID: 32975329 DOI: 10.1111/jbg.12510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/27/2020] [Accepted: 09/05/2020] [Indexed: 01/04/2023]
Abstract
This study aimed to investigate interpopulation variation due to sex, breed and age, and the intrapopulation variation in the form of genetic variance for recombination in swine. Genome-wide recombination rate and recombination occurrences (RO) were traits studied in Landrace (LR) and Large White (LW) male and female populations. Differences were found for sex, breed, sex-breed interaction, and age effects for genome-wide recombination rate and RO at one or more chromosomes. Dams were found to have a higher genome-wide recombination rate and RO at all chromosomes than sires. LW animals had higher genome-wide recombination rate and RO at seven chromosomes but lower at two chromosomes than LR individuals. The sex-breed interaction effect did not show any pattern not already observable by sex. Recombination increased with increasing parity in females, while in males no effect of age was observed. We estimated heritabilities and repeatabilities for both investigated traits and obtained the genetic correlation between male and female genome-wide recombination rate within each of the two breeds studied. Estimates of heritability and repeatability were low (h2 = 0.01-0.26; r = 0.18-0.42) for both traits in all populations. Genetic correlations were high and positive, with estimates of 0.98 and 0.94 for the LR and LW breeds, respectively. We performed a GWAS for genome-wide recombination rate independently in the four sex/breed populations. The results of the GWAS were inconsistent across the four populations with different significant genomic regions identified. The results of this study provide evidence of variability for recombination in purebred swine populations.
Collapse
Affiliation(s)
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Hanna Wackel
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - William Flowers
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Kent Gray
- Smithfield Premium Genetics, Rose Hill, NC, USA
| | - Yuqing He
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | | | - Jicai Jiang
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
40
|
Silva AA, Silva DA, Silva FF, Costa CN, Silva HT, Lopes PS, Veroneze R, Thompson G, Carvalheira J. GWAS and gene networks for milk-related traits from test-day multiple lactations in Portuguese Holstein cattle. J Appl Genet 2020; 61:465-476. [PMID: 32607783 DOI: 10.1007/s13353-020-00567-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/07/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
This study focused on the identification of QTL regions, candidate genes, and network related genes based on the first 3 lactations (LAC3) of milk, fat, and protein yields, and somatic cell score (SCS) in Portuguese Holstein cattle. Additionally, the results were compared with those from only first lactation (LAC1) data. The analyses were performed using the weighted single-step GWAS under an autoregressive test-day (TD) multiple lactations model. A total of 11,434,294 and 4,725,673 TD records from LAC3 and LAC1, respectively, including 38,323 autosomal SNPs and 1338 genotyped animals were used in GWAS analyses. A total of 51 (milk), 5 (fat), 24 (protein), and 4 (SCS) genes were associated to previously annotated relevant QTL regions for LAC3. The CACNA2D1 at BTA4 explained the highest proportion of genetic variance respectively for milk, fat, and protein yields. For SCS, the TRNAG-CCC at BTA14, MAPK10, and PTPN3 genes, both at BTA6 were considered important candidate genes. The accessed network refined the importance of the reported genes. CACNA2D1 regulates calcium density and activation/inactivation kinetics of calcium transport in the mammary gland; whereas TRNAG-CCC, MAPK10, and PTPN3 are directly involved with inflammatory processes widely derived from mastitis. In conclusion, potential candidate genes (TRNAG-CCC, MAPK10, and PTPN3) associated with somatic cell were highlighted, which further validation studies are needed to clarify its mechanism action in response to mastitis. Moreover, most of the candidate genes identified were present in both (LAC3 and LAC1) for milk, fat and protein yields, except for SCS, in which no candidate genes were shared between LAC3 and LAC1. The larger phenotypic information provided by LAC3 dataset was more effective to identify relevant genes, providing a better understanding of the genetic architecture of these traits over all lactations simultaneously.
Collapse
Affiliation(s)
- Alessandra Alves Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Delvan Alves Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Fabyano Fonseca Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Hugo Teixeira Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Paulo Sávio Lopes
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Renata Veroneze
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Gertrude Thompson
- Research Center in Biodiversity and Genetic Resources (CIBIO-InBio), University of Porto, Vairão, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Julio Carvalheira
- Research Center in Biodiversity and Genetic Resources (CIBIO-InBio), University of Porto, Vairão, Porto, Portugal. .,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| |
Collapse
|
41
|
Freitas PHF, Oliveira HR, Silva FF, Fleming A, Schenkel FS, Miglior F, Brito LF. Short communication: Time-dependent genetic parameters and single-step genome-wide association analyses for predicted milk fatty acid composition in Ayrshire and Jersey dairy cattle. J Dairy Sci 2020; 103:5263-5269. [PMID: 32307163 DOI: 10.3168/jds.2019-17820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/28/2020] [Indexed: 12/27/2022]
Abstract
Milk fat content and fatty acid (FA) composition have great economic value to the dairy industry as they are directly associated with taste and chemical-physical characteristics of milk and dairy products. In addition, consumers' choices are not only based on the nutritional aspects of food, but also on products known to promote better health. Milk FA composition is also related to the metabolic status and physiological stages of cows and thus can also be used as indicator for other novel traits of interest (e.g., metabolic diseases and methane yield). Genetic selection is a promising alternative to manipulate milk FA composition. In this study, we aimed to (1) estimate time-dependent genetic parameters for 5 milk FA groups (i.e., short-chain, medium-chain, long-chain, saturated, and unsaturated) predicted based on milk mid-infrared spectroscopy, for Canadian Ayrshire and Jersey breeds, and (2) conduct a time-dependent, single-step genome-wide association study to identify genomic regions, candidate genes, and metabolic pathways associated with milk FA. We analyzed 31,709 test-day records of 9,648 Ayrshire cows from 268 herds, and 34,341 records of 11,479 Jersey cows from 883 herds. The genomic database contained a total of 2,330 Ayrshire and 1,019 Jersey animals. The average daily heritability ranged from 0.18 (long-chain FA) to 0.34 (medium-chain FA) in Ayrshire, and from 0.25 (long-chain and unsaturated FA) to 0.52 (medium-chain and saturated FA) in Jersey. Important genomic regions were identified in Bos taurus autosomes BTA3, BTA5, BTA12, BTA13, BTA14, BTA16, BTA18, BTA20, and BTA21. The proportion of the variance explained by 20 adjacent SNP ranged from 0.71% (saturated FA) to 1.11% (long-chain FA) in Ayrshire, and from 0.70% (unsaturated FA) to 3.09% (medium-chain FA) in Jersey cattle. Important candidate genes and pathways were also identified, such as the PTK2 and TRAPPC9 genes, associated with milk fat percentage, and HMGCS, FGF10, and C6 genes, associated with fertility traits and immune response. Our findings on the genetic parameters and candidate genes contribute to a better understanding of the genetic architecture of milk FA composition in Ayrshire and Jersey dairy cattle.
Collapse
Affiliation(s)
- P H F Freitas
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Department of Animal Sciences, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - H R Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - F F Silva
- Department of Animal Sciences, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - A Fleming
- Lactanet Canada, Guelph, Ontario, N1K 1E5, Canada
| | - F S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - F Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - L F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
42
|
Lu H, Wang Y, Bovenhuis H. Genome-wide association study for genotype by lactation stage interaction of milk production traits in dairy cattle. J Dairy Sci 2020; 103:5234-5245. [PMID: 32229127 DOI: 10.3168/jds.2019-17257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 01/28/2020] [Indexed: 01/14/2023]
Abstract
Substantial evidence demonstrates that the genetic background of milk production traits changes during lactation. However, most GWAS for milk production traits assume that genetic effects are constant during lactation and therefore might miss those quantitative trait loci (QTL) whose effects change during lactation. The GWAS for genotype by lactation stage interaction are aimed at explicitly detecting the QTL whose effects change during lactation. The purpose of this study was to perform GWAS for genotype by lactation stage interaction for milk yield, lactose yield, lactose content, fat yield, fat content, protein yield, and somatic cell score to detect QTL with changing effects during lactation. For this study, 19,286 test-day records of 1,800 first-parity Dutch Holstein cows were available and cows were genotyped using a 50K SNP panel. A total of 7 genomic regions with effects that change during lactation were detected in the GWAS for genotype by lactation stage interaction. Two regions on Bos taurus autosome (BTA)14 and BTA19 were also significant based on a GWAS that assumed constant genetic effects during lactation. Five regions on BTA4, BTA10, BTA11, BTA16, and BTA23 were only significant in the GWAS for genotype by lactation stage interaction. The biological mechanisms that cause these changes in genetic effects are still unknown, but negative energy balance and effects of pregnancy may play a role. These findings increase our understanding of the genetic background of lactation and may contribute to the development of better management indicators based on milk composition.
Collapse
Affiliation(s)
- Haibo Lu
- Animal Breeding and Genomics, Wageningen University and Research, PO Box 338, 6700AH, Wageningen, the Netherlands
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, P. R. China
| | - Henk Bovenhuis
- Animal Breeding and Genomics, Wageningen University and Research, PO Box 338, 6700AH, Wageningen, the Netherlands.
| |
Collapse
|
43
|
Silva DA, Costa CN, Silva AA, Silva HT, Lopes PS, Silva FF, Veroneze R, Thompson G, Aguilar I, Carvalheira J. Autoregressive and random regression test‐day models for multiple lactations in genetic evaluation of Brazilian Holstein cattle. J Anim Breed Genet 2019; 137:305-315. [DOI: 10.1111/jbg.12459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Delvan Alves Silva
- Department of Animal Science Universidade Federal de Viçosa Viçosa Brazil
| | | | | | | | - Paulo Sávio Lopes
- Department of Animal Science Universidade Federal de Viçosa Viçosa Brazil
| | | | - Renata Veroneze
- Department of Animal Science Universidade Federal de Viçosa Viçosa Brazil
| | - Gertrude Thompson
- Research Center in Biodiversity and Genetic Resources (CIBIO‐InBio) University of Porto Vairão Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS) University of Porto Vairão Portugal
| | - Ignacio Aguilar
- Instituto Nacional de Investigación Agropecuaria Montevideo Uruguay
| | - Júlio Carvalheira
- Research Center in Biodiversity and Genetic Resources (CIBIO‐InBio) University of Porto Vairão Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS) University of Porto Vairão Portugal
| |
Collapse
|
44
|
Cruz VAR, Oliveira HR, Brito LF, Fleming A, Larmer S, Miglior F, Schenkel FS. Genome-Wide Association Study for Milk Fatty Acids in Holstein Cattle Accounting for the DGAT1 Gene Effect. Animals (Basel) 2019; 9:E997. [PMID: 31752271 PMCID: PMC6912218 DOI: 10.3390/ani9110997] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
The identification of genomic regions and candidate genes associated with milk fatty acids contributes to better understand the underlying biology of these traits and enables breeders to modify milk fat composition through genetic selection. The main objectives of this study were: (1) to perform genome-wide association analyses for five groups of milk fatty acids in Holstein cattle using a high-density (777K) SNP panel; and (2) to compare the results of GWAS accounting (or not) for the DGAT1 gene effect as a covariate in the statistical model. The five groups of milk fatty acids analyzed were: (1) saturated (SFA); (2) unsaturated (UFA); (3) short-chain (SCFA); (4) medium-chain (MCFA); and (5) long-chain (LCFA) fatty acids. When DGAT1 was not fitted as a covariate in the model, significant SNPs and candidate genes were identified on BTA5, BTA6, BTA14, BTA16, and BTA19. When fitting the DGAT1 gene in the model, only the MGST1 and PLBD1 genes were identified. Thus, this study suggests that the DGAT1 gene accounts for most of the variability in milk fatty acid composition and the PLBD1 and MGST1 genes are important additional candidate genes in Holstein cattle.
Collapse
Affiliation(s)
- Valdecy A. R. Cruz
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada; (V.A.R.C.); (H.R.O.); (L.F.B.); (A.F.); (S.L.); (F.M.)
| | - Hinayah R. Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada; (V.A.R.C.); (H.R.O.); (L.F.B.); (A.F.); (S.L.); (F.M.)
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Luiz F. Brito
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada; (V.A.R.C.); (H.R.O.); (L.F.B.); (A.F.); (S.L.); (F.M.)
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Allison Fleming
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada; (V.A.R.C.); (H.R.O.); (L.F.B.); (A.F.); (S.L.); (F.M.)
- Lactanet Canada, Guelph, Ontario, ON N1K 1E5, Canada
| | - Steven Larmer
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada; (V.A.R.C.); (H.R.O.); (L.F.B.); (A.F.); (S.L.); (F.M.)
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada; (V.A.R.C.); (H.R.O.); (L.F.B.); (A.F.); (S.L.); (F.M.)
- Ontario Genomics, Toronto, Ontario, ON M5G 1M1, Canada
| | - Flavio S. Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada; (V.A.R.C.); (H.R.O.); (L.F.B.); (A.F.); (S.L.); (F.M.)
| |
Collapse
|
45
|
Oliveira HR, Lourenco DAL, Masuda Y, Misztal I, Tsuruta S, Jamrozik J, Brito LF, Silva FF, Cant JP, Schenkel FS. Single-step genome-wide association for longitudinal traits of Canadian Ayrshire, Holstein, and Jersey dairy cattle. J Dairy Sci 2019; 102:9995-10011. [PMID: 31477296 DOI: 10.3168/jds.2019-16821] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/08/2019] [Indexed: 11/19/2022]
Abstract
Estimating single nucleotide polymorphism (SNP) effects over time is essential to identify and validate candidate genes (or quantitative trait loci) associated with time-dependent variation of economically important traits and to better understand the underlying mechanisms of lactation biology. Therefore, in this study, we aimed to estimate time-dependent effects of SNP and identifying candidate genes associated with milk (MY), fat (FY), and protein (PY) yields, and somatic cell score (SCS) in the first 3 lactations of Canadian Ayrshire, Holstein, and Jersey breeds, as well as suggest their potential pattern of phenotypic effect over time. Random regression coefficients for the additive direct genetic effect were estimated for each animal using single-step genomic BLUP, based on 2 random regression models: one considering MY, FY, and PY in the first 3 lactations and the other considering SCS in the first 3 lactations. Thereafter, SNP solutions were obtained for random regression coefficients, which were used to estimate the SNP effects over time (from 5 to 305 d in lactation). The top 1% of SNP that showed a high magnitude of SNP effect in at least 1 d in lactation were selected as relevant SNP for further analyses of candidate genes, and clustered according to the trajectory of their SNP effects over time. The majority of SNP selected for MY, FY, and PY increased the magnitude of their effects over time, for all breeds. In contrast, for SCS, most selected SNP decreased the magnitude of their effects over time, especially for the Holstein and Jersey breeds. In general, we identified a different set of candidate genes for each breed, and similar genes were found across different lactations for the same trait in the same breed. For some of the candidate genes, the suggested pattern of phenotypic effect changed among lactations. Among the lactations, candidate genes (and their suggested phenotypic effect over time) identified for the second and third lactations were more similar to each other than for the first lactation. Well-known candidate genes with major effects on milk production traits presented different suggested patterns of phenotypic effect across breeds, traits, and lactations in which they were identified. The candidate genes identified in this study can be used as target genes in studies of gene expression.
Collapse
Affiliation(s)
- H R Oliveira
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil.
| | - D A L Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - Y Masuda
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - I Misztal
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - S Tsuruta
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - J Jamrozik
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Canadian Dairy Network, Guelph, ON, N1K 1E5, Canada
| | - L F Brito
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - F F Silva
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - J P Cant
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - F S Schenkel
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|